Synthetic Benchmarks for Scientific Research in
Explainable Machine Learning

Yang Liu* Sujay Khandagale* Colin White
Abacus.Al Abacus.Al Abacus.Al
San Francisco, CA 94103 San Francisco, CA 94103 San Francisco, CA 94103
yang@abacus.ai sujay@abacus.ai colin@abacus.ai

Willie Neiswanger

Stanford University

Stanford, CA 94305
neiswanger@cs.stanford.edu

Abstract

As machine learning models grow more complex and their applications become
more high-stakes, tools for explaining model predictions have become increasingly
important. This has spurred a flurry of research in model explainability and has
given rise to feature attribution methods such as LIME and SHAP. Despite their
widespread use, evaluating and comparing different feature attribution methods
remains challenging: evaluations ideally require human studies, and empirical
evaluation metrics are often data-intensive or computationally prohibitive on real-
world datasets. In this work, we address this issue by releasing XAI-BENCH: a
suite of synthetic datasets along with a library for benchmarking feature attribution
algorithms. Unlike real-world datasets, synthetic datasets allow the efficient com-
putation of conditional expected values that are needed to evaluate ground-truth
Shapley values and other metrics. The synthetic datasets we release offer a wide
variety of parameters that can be configured to simulate real-world data. We demon-
strate the power of our library by benchmarking popular explainability techniques
across several evaluation metrics and identifying surprising failure modes even for
the most widely used explainers. The versatility and efficiency of our library will
help researchers bring their explainability methods from development to deploy-
ment. Our code is available at https://github.com/abacusai/xai-benchl

1 Introduction

The last decade has seen a huge increase in applications of machine learning in a wide variety of
high-stakes domains, such as credit scoring, fraud detection, criminal recidivism, and loan repay-
ment [28, 8, 29, [7]. With the widespread deployment of machine learning models in applications
that impact human lives, research on model explainability is becoming increasingly more important.
The applications of model explainability include debugging, legal obligations to give explanations,
recognizing and mitigating bias, data labeling, and faster adoption of machine learning technolo-
gies [26} 144,16, [15]. Many different methods for explainability are actively being explored including
logic rules [[1840,36], hidden semantics [43]], feature attribution [32, 126} 31} 11}|39], and explanation
by example [24}[10]. The most common type of explainers are post-hoc, local feature attribution
methods [44} 126} 1,132, 31} [11], which output a set of weights corresponding to the importance of each
feature for a given datapoint and model prediction. Although various feature attribution methods are

*Equal contribution

Preprint. Under review.

https://github.com/abacusai/xai-bench

being deployed in different use cases today, currently there are no widely adopted methods to easily
evaluate and/or compare different feature attribution algorithms. Indeed, evaluating the effectiveness
of explanations is an intrinsically human-centric task that ideally requires human studies. However,
it is often desirable to develop new explainability techniques using empirical evaluation metrics
before the human trial stage. Although empirical evaluation metrics have been proposed, many of
these metrics are either computationally prohibitive or require strong assumptions, to compute on
real-world datasets. For example, a popular method for feature attribution is to approximate Shapley
values [26, 113125/ [39], but computing the distance to ground-truth Shapley values requires estimating
exponentially many conditional feature distributions, which is not possible to compute unless the
dataset contains sufficiently many datapoints across exponentially many combinations of features.

In this work, we overcome these challenges by releasing a suite of synthetic datasets, which make
it possible to efficiently benchmark feature attribution methods. The use of synthetic datasets,
for which the ground-truth distribution of data is known, makes it possible to exactly compute
the conditional distribution over any set of features, thus enabling computations of many feature
attribution evaluation metrics such as distance to ground-truth Shapley values [26], remove-and-
retrain (ROAR) [20], faithfulness [3]], and monotonicity [27]]. Our synthetic datasets offer a wide
variety of parameters which can be configured to simulate real-world data and have the potential to
identify subtle failure modes of explainability techniques. We give examples of how real datasets can
be converted to similar synthetic datasets, thereby allowing explainability methods to be benchmarked
on realistic synthetic datasets.

We showcase the power of our library by benchmarking popular explainers such as SHAP [26],
LIME [32], MAPLE [31], SHAPR [1]], and L2X[11]], with respect to a broad set of evaluation
metrics, across a variety of axes of comparison, such as feature correlation, model type, and data
distribution type. Our library is designed to substantially accelerate the time it takes for researchers
and practitioners to move their explainability algorithms from development to deployment. All of our
code, API docs, and walkthroughs are available at https://github.com/abacusai/xai-bench.
We welcome contributions and hope to grow the repository to handle a wide variety of use-cases. We
expect the scope and breadth of our framework to increase over time.

Our contributions. We summarize our main contributions below.

* We release a set of synthetic datasets with known ground-truth distributions, along with a library
that makes it possible to efficiently evaluate feature attribution techniques with respect to ten
different metrics. Our synthetic datasets offer a wide variety of parameters that can be configured
to simulate real-world applications.

* We demonstrate the power of our library by benchmarking popular explainers such as SHAP [26],
LIME [32], MAPLE [31], SHAPR [1]], and L2X[11], and identifying their failure modes.

2 Related Work

Model explainability in machine learning has seen a wide range of approaches, and multiple tax-
onomies have been proposed to classify the different types of approaches. Zhang et al. [44] describe
three dimensions of explainability techniques: passive/active, type of explanation, and local/global
explainations. The types of explanations they identified are logic rules [18 40, 36], hidden seman-
tics [43]], feature attribution [32) 26, 1311 [11} |39} [1]], and explanation by example [24} [10]. Other
surveys on explainable Al include Arrieta et al. [S]], Adadi and Berrada [2]], and Dosilovi¢ et al. [16]].

Techniques for feature attribution include approximating Shapley values [26, 13} 25| 139]], approximat-
ing the model locally with a more explainable model [32]], and approximating the mutual information
of each feature with the label [11]]. In Appendix [E} we give descriptions and implementation details
of the five feature attribution methods we implemented.

2.1 Benchmarking Explainability Techniques

One recent work [21] gave an experimental survey of explainability methods, testing SHAP [26]],
LIME [32], Anchors [133]], Saliency Maps [37], and Grad-CAM++ [9]], and their proposed ExMatchina
on image, text, audio, and sensory datasets. They use human labeling via Mechanical Turk as an
evaluation metric. Another work [6] gave an experimental survey of several algorithms including
local/global, white-box/black-box, and supervised/unsupervised techniques. The only feature attri-
bution algorithms they tested were SHAP and LIME. Another recent work gives a benchmark on

https://github.com/abacusai/xai-bench

SFRA By
X \ologlo Xigv (E
L) %
Yy OOooog X yi O
Data Model Metrics
Examples: Examples: Examples: Examples:
real data, multilayer perceptron, SHAP, SHAPR, shapley, roar
synthetic data decision tree, MAPLE, LIME, L2X, faithfulness,
families linear regression Random monotonicity

Figure 1: Overview of the main components in XAI-BENCH.

explainability for time-series classification [17]. Another recent work [[15] gives a set of benchmark
natural language processing (NLP) datasets aimed at comparing explainability methods. This work
releases multiple datsets with human-annotated explanations, as well as a few newly proposed metrics
specifically chosen to capture the explainability of predictions in NLP applications. To the best of our
knowledge, no prior work has released a library with five different evaluation metrics or released a
set of synthetic datasets for explainability with more than one tunable parameter.

2.2 Explainability evaluation metrics

While the “correctness” of feature attribution methods may be subjective, comparisons between
methods are often based on human studies [22} 34, 35]]. However, human studies are not always
possible, and several empirical (non-human) evaluation metrics have been proposed. Faithfulness [3]]
measures the correlation between the weights of the feature attribution algorithm, and the effect
of the features on the performance of the model. Monotonicity [27] checks whether iteratively
adding features from least weighted feature to most weighted feature, causes the prediction to
monotonically improve. By retraining a model with subsets of features ablated, ROAR [20]] uses a new
model with partially ablated input features to evaluate a feature attribution technique while avoiding
problems with distribution shift. Note that all of the above metrics evaluate feature importance by
computing the effect of removing the feature from a single set of features .S. In contrast, Shapley
values [26] [13] 25 [39] evaluate all possible sets .S that a feature can be removed from to compute an
average effect.

3 Evaluation Metrics

3.1 Preliminaries

Now we give definitions and background information used throughout the next three sections. Given
a distribution D, each datapoint is of the form (x, y) ~ D, where @ denotes the set of features, and y
denotes the label. We assume that = € [0,1]” and y € [0, 1], yet all of the concepts we discuss can
be generalized to arbitrary categorical and real-valued feature distributions and labels. Assume we
have a training set Dy, and a test set Dyeg;, both drawn from D. We train a model f : [0,1]° — [0, 1]
on the training set. Common choices for f include a neural network or a decision tree.

A feature attribution method is a function g which can be used to estimate the importance of each
feature in making a prediction. That is, given a model f and a datapoint x, then g(x, f) = w €
[~1,1]7, where each output weight w; corresponds to the relative importance of feature i when
making the prediction f(a). Common choices for g include SHAP [26] or LIME [32].

3.2 Metrics

In this section, we define several different evaluation metrics for explainability methods. Each
evaluation metric has pros and cons, and all of them should ideally be used across different datasets to
see the clearest picture of the comparative performance of different feature attribution techniques. A
feature attribution evaluation metric is a function which evaluates the weights of a feature attribution
method on a datapoint «. For example, given a datapoint « and a set of feature weights w = g(z, f),
then a value near zero indicates that g did not provide an accurate feature attribution estimate for x,
while a value near one indicates that g did provide an accurate feature attribution estimate.

Many evaluation metrics involve evaluating the change in performance of the model when a subset
of features of a datapoint are removed. In order to measure the true marginal improvement for a
set of features .S, we evaluate the model when replacing the features S with their expected values
conditioned on the remaining features. Formally, given a datapoint * ~ D and a set of indices

S C {1,---,D}, we define D (xg) as the conditional probability distribution &’ ~ D such that
x, = x; forall i € S. In other words, given x and S, we have
p(x' ~D(xzs)) =p(@ ~D |z, =uzforalies). (1)

By this definition, D (x) = D, and if we define F' = {1,--- , D}, then ' ~ D (z) is equal to
with probability 1. Given a datapoint &, a model f, and a weight vector w, the first evaluation metric,
faithfulness (faith—) [3]], is defined as follows:

By p(ap)/ (@)] — f(@)]

1<i<D

faith— = Pearson (, [wi]1<i<D> . 2)
In other words, faith— computes the Pearson correlation coefficient [42] between the weight vector
and the approximate marginal contribution of each feature. We also study a new variant of faithfulness:
instead of computing the marginal improvement between D (a; F\i) and D (xr), we compute the
marginal improvement between D (xg) and D (2 ;3):

faith+ = Pearson (Em,ND(m{i}) [f(w')] _ Ew/ND(mw) [f(a:/)]‘

, [wi]1<i<D> . 3)

1<i<D

The next metric computes the marginal improvement of each feature ordered by the weight vector w
without replacement, and then computes the fraction of indices ¢ such that the marginal improvement
for feature i is greater than the marginal improvement for feature ¢ + 1. Formally, define S~ (w, ¢)
as the set of 7 least important weights, define ST (w, 7) as the set of 4 most important weights, and
let S~ (w,0) = (). Given a datapoint &, a model f, and a weight vector w, we define monotonicity
(mono—) [27] as follows:

- _ N _ /
6i - Em/ND(ws_(w,i+l))[f(w)] Ew,ND(mS_(w,i))[f(w)]7 (4)
| D=2
mono— = —— > L5 <16, 1 (5)
i=0
Similar to faithfulness, we define a new variant of monotonicity by computing in the opposite order:
+ _ AN /
0 = Eon(eg i) @~ Eoip(ay, o,) F @], (6)
=
mono— = —— z; Listi<ts, | (7)

The types of metrics discussed so far, faith and mono, each evaluate weight vectors by comparing an
estimate of the marginal improvement of a set of features to their corresponding weights. Estimating
the marginal improvement requires computing f on different combinations of features, and it is possi-
ble that these combinations of features have very low density in D, and are therefore unlikely to occur
in Dyin. This is especially true for structured data or data where there are large low-density regions
in D and may make the evaluations on f unreliable. To help mitigate this issue, another paradigm of
explainability evaluation metrics was proposed: remove-and-retrain (ROAR) [20]. In this paradigm,
in order to evaluate the marginal improvement of sets of features, the model is retrained using a new

dataset with the features removed. For example, rather than computing |E_, (@r.) [f(x)] — f(x)]

we would compute | f*(E x']) — f(x)|, where f* denotes a model that has been trained
P)

z'~D(xp\;
on a modification of Diin wheﬁe each datapoint has its ¢ features with highest weight removed. The
original work advocated for reporting a curve of retrained model performance against number of
features ablated [20]]. In order to report a scalar metric, we propose four new metrics by combining the
remove-and-retrain paradigm with faithfulness and monotonicity: roar-faith+/- and roar-mono+/-.
That is, the definitions are similar to faith+/- and mono+/-, but f is replaced with f* as defined above,
accordingly. The formal definitions can be found in Appendix To compute a ROAR-based

metric on all datapoints in the test set, the explainer must evaluate all datapoints in the training set to
construct D + 1 ablated datasets, and then the model must be retrained for each of the datasets.

A caveat for all of the aforementioned metrics is that they evaluate each feature weight by computing
the effect of removing the feature from a single set of features .S. While this evaluation is sufficient
for linear models, it may lead to unreliable measurements for nonlinear models such as neural
networks. To address this, we use Shapley values [26) [13} 125} 39], which take into account the
marginal improvement of a feature ¢ across all possible exponentially many sets with and without .
We consider two Shapley-based metrics: shapley-mse and shapley-corr, which involve computing
the ground-truth Shapley values [26] for each feature, and then computing either the mean squared
error (MSE) or Pearson correlation, respectively, between the weight vector and the set of ground-
truth Shapley values. We give the formal definitions of the Shapley-based metrics in Appendix [E] See
Table[T|for a summary of the properties of each metric.

Table 1: Summary of evaluation metrics. Linearity indicates whether model linearity is an implicit
assumption. Retrain indicates whether computing a metric requires retraining the original model. To
compute the evaluation metric on the entire test set, the model must be retrained ©(D) times.

Metric Type Model evaluations Retrain Linearity
faith+/- correlation O(D) v
mono-+/- ranking ©(D) v
roar-faith+/- correlation O(D) v v
roar-mono+/- ranking ©(D) v v
shapley-mse accuracy 0(2P)
shapley-corr correlation 0(2P)

Researchers may use any or all of the above metrics for evaluating and comparing different feature
attribution explaination techniques. The metric to rely on the most depends on the specific use-
case, dataset, feature attribution technique, or computational constraints. For example, researchers
evaluating Shapley-based methods such as Kernel-SHAP [26]], SHAPR [1]], or other SHAP vari-
ants [39, 4, [19], may wish to use the shapley-mse and shapley-corr metrics. However, the runtime of
these metrics is exponential in the number of features. For tasks involving highly structured data such
as image data, ROAR-based metrics may perform better because the faithfulness and monotonicity
may compute the function in low-density areas. For tasks involving high-dimensional data and a large
cost to retrain the model, faithfulness and monotonicity will be much less computationally intensive
than ROAR-based or Shapley-based metrics.

4 Synthetic Datasets

In this section, we describe the synthetic datasets used in our library. We start by discussing the
benefits of synthetic datasets when evaluating feature attribution methods. Next, we describe our
multivariate Gaussian and mixture of Gaussian datasets.

4.1 The case for synthetic data

As shown in Section [3.2] key to the metrics is computing the conditional expectation
Eg ~p(as)[f(2')] for a subset S, datapoint z, and trained model f. On real-world datasets, the
conditional distribution D (xs) (defined in Equation 1) can only be approximated, and the approxi-
mation may be very poor when the conditional distribution defines a low-dimensional region of the
feature space. Since all evaluation metrics require computing ©(D) or ©(2P) such expectations, for
each datapoint x, is is likely that some evaluations will make use of a poor approximation. However,
for the synthetic datasets that we define, the conditional distributions are known, allowing exact
computation of the evaluation metrics.

Additionally, as we show in Section[5] synthetic datasets allow one to explicitly control all attributes of
the dataset, which allows for targeted experiments, for example, investigating explainer performance
as a function of feature correlation. For explainers such as SHAP [26] which assume feature
independence, this type of experiment may be very beneficial. Finally, synthetic datasets can be used
to simulate real datasets, which enables fair benchmarking of explainers with quantitative metrics.

4.2 Mutivariate Gaussian and mixture of Gaussians features

Now we describe the synthetic datasets in our library. In general, the datasets are expressed as
y = h(x), with y as label and « as feature vector. The generation is split into two parts, generating
features , and defining a function to generate labels y from x.

We first describe feature generation, beginning with multivariate normal and mixture of Gaussians
synthetic features. The multivariate normal distribution of a D-dimensional random vector X =
(X1,...,Xp)T can be written as X ~ N (p,), where p is the D-dimensional mean vector, and
3 is the D x D covariance matrix. Without loss of generality, we can partition the D-dimensional
vector ¢ as X = (X1, X2)T. To compute the distribution of X conditional on X5 = x% where
x3 is a K-dimensional vector with 0 < K < D, we can then partition p and ¥ accordingly:

_ M N X 312
H [NJ ’ {221 Yo"
Then the conditional distribution is a new multivariate normal (X| X5 = x3) ~ N (u*, 3*) where

=+ T2 (2 — po), B =341 + 21235, T 8

For any x5 € RX one can compute p* and 3* and then generate samples from the conditional
distribution. g can take any value, and 3 must be symmetric and positive definite. Similarly, we also
include mixture of multivariate Gaussian features with derivation in Appendix [D]

4.3 Labels

After creating a distribution of features by either a multivariate Gaussian or mixture of Gaussians,
we then create the distribution of labels. The distributions we implement are linear, piecewise
constant, and nonlinear additive.

Data labels are computed in two steps: (/) raw labels are computed from features, i.e. Yrw =

Zle U, (x,,) where ¥,, is a function that operates on feature n, and (2) final labels are normalized
to have zero mean and unit variance. The normalization ensures that a baseline ML model, which
always predicts the mean of the dataset, has an MSE of 1. This allows results derived from different

types of datasets to be comparable at scale.

For linear datasets, ¥,,(z,,) are scalar weights, and we can rewrite the raw labels as y,q., = wlex.

For piecewise constant datasets, ¥,,(x,,) are piecewise constant functions made up of different
threshold values (similar to Aas et al. [1]]). Fornonlinear additive datasets, ¥,,(x,,) are nonlinear
functions including absolute, cosine, and exponent function adapted from Chen et al. [L1]. Detailed
specifications can be found in Appendix

5 Experiments

In this section, we describe our experiments in benchmarking several popular feature attribution
methods across synthetic datasets.

5.1 Feature attribution methods

We compare six different feature attribution methods: SHAP [26], SHAPR [1]], brute-force Kernel
SHAP (BF-SHAP) [26], LIME [32], MAPLE [31]], and L2X [11]. We also compare the methods
to RANDOM explainer, which outputs random weights drawn from a standard normal distribution.
See Appendix [E] for descriptions and implementation details for all methods. We report mean and
standard deviation from three trials for all experiments.

5.2 Parameterized synthetic data experiments

Now we run experiments using multivariate Gaussian datasets described in Section[d] Without loss of
generality, we can assume that the feature set is normalized (in other words, p is set to 0, and the
diagonal of X is set to 1). In all sections except Section[5.3] we set the non-diagonal terms of X to p,
which allows for convenient parameterization of a global level of feature dependence and has been
used in prior work [1]].

We run experiments that compare six feature attribution methods on the ten different evaluation
metrics defined in Section [3.1] across several different datasets and ML models. In this section, we
conduct experiments by varying one or two of these dimensions at a time while holding the other
dimensions fixed (for example, we compare different datasets while keeping the ML model fixed)
and in Appendix [E.T] we give the exhaustive set of experiments.

Performance across metrics As shown in Table 2] the relative performance of explainers varies
dramatically across metrics for a fixed decision tree model trained on a piecewise constant
dataset with p = 0. It is not surprising that SHAPR, which is an improvement of SHAP, performs
well in Shapley metrics. In fact, SHAP, BF-SHAP, SHAPR, and LIME offer accurate approximation
of ground truth Shapley values (>0.9 shapley-corr). In addition, LIME achieves top performance in
three out of four ROAR-based metrics. Unexpectedly, none of the explainers outperformed random
on mono-, suggesting that this metric is not helpful for this dataset and model. Another surprising
observation is that while MAPLE performs well for faith+/-, and roar-mono+/-, it fails for roar-faith+/-
by producing large negative scores, suggesting that it systematically ranks feature importance in an
order opposite to the marginal improvement-based rankings in roar-faith+/-.

Table 2: Explainer performance across metrics. All performance numbers are from explaining a
multilayer perceptron trained on the Gaussian piecewise constant dataset with p = 0.

RANDOM SHAP BF-SHAP SHAPR LIME MAPLE L2X
faith+(1) —0.02810.022 092210020 0.887+0.031 0.918+0.039 0.85910.035 0.626+0.050 —0.004+0.100
faith-(1) —0.02240.023 0.970+0.006 0.937+0.017 0.97710.004 0.91810.010 0.647+0.045 0.002+0.080

m0n0+(T) 0.53810.012 0-72010,018 0.676:&0027 0.71910,019 0.66710,032 0-71210,008 0.562:&0,024
mono-(1) 0.46710.006 0.433+0.019 0.44940.027 0.43510.012 0.42810014 0.44040.017 0.430+0.040

roar-faith+(1) 0.00310.028 0.46110.095 0.49610.016 0.46810.0s2 0.58510.046 —0.42910.018 0.04510.060
roar-faith-(T) ~ 0.00810.040 0.58140.024 0.53510.067 0.559+0.026 0.62110.019 —0.33910.013 0.05210.038
r0ar—mon0+(T) 0-474i0.016 0-74710.028 0-771i0.015 0-730i0.022 0-707i0.l)24 0-425i0.009 0-500i0.027
roar—mono—(T) 0.4923:0‘019 0-721i0,032 0.683i0.033 0.7133:0‘044 0.7453:0‘020 0-471i0.016 0-451i0.041
shapley—corr(?) 0-001i0»014 0-992i0»005 0-956j:0.007 0.998i0,001 0-955i0.009 0-735;{:0.038 0-073i0.084
shapley—mse(w 1.13410.040 0.003:&0.001 0.008;&0,001 0.000:&0.000 0.02610,001 0.07110,007 0.18810,022

Performance across dataset types and feature correlations Next, we explore how the type of
dataset and feature correlation affects performance of explainers on a decision tree model with
the faithfulness metric. As shown in Figure [2} a general trend is that explainers become less
faithful as feature correlation increases. Explainers such as SHAP assume feature independence
and tend to perform well when features are indeed independent (p = 0). This is especially apparent
with the linear dataset, where all performance of most methods cluster around 0.9 at p = 0.
However, LIME’s performance drops as much as ~ 90% when features are almost perfectly correlated
(p = 0.99). On the other hand, for both the nonlinear additive and piecewise constant
datasets, MAPLE’s performance stayed relative stable across values of p.

GaussianLinear GaussianNonLinearAdditive GaussianPiecewiseConstant
1.00 1.00 1.00 =
075 0.75 0.75
L 0.50 0.50 0.50
“ 025 0.25 0.25
000} —————— | 00 0.00} ——————
-0.25 095
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 '—Ull.i)l) 0.25 0.50 0.75 1.00
Rho Rho Rho
—— RANDOM —— SHAP SHAPR ~ —— BF-SHAP —— MAPLE —— LIME L2X

Figure 2: Results for faith- on a multilayer perceptron trained on three types of Gaussian datasets.

Performance across ML models Next, we train three ML models: linear regression, decision tree,
and multilayer perceptron, with a piecewise constant dataset and compare faith-. Figure [3{shows
that as in Figure [2] explainer performance drops as features become more correlated. Most explainers
perform well for linear regression up to p = 0.75. The performance of SHAP, SHAPR, and LIME

remain relatively consistent across ML models. In contrast, BF-SHAP performs significantly worse
on the tree model. The nearly consistent negative faith- score of MAPLE on the tree model provides
additional evidence to Table[2]that in some cases, the most important feature weights MAPLE predicts
tend be the least important.

linear regression decision tree multilayer perceptron

0.75
0.50 040} ————= 060} S
— 0.40
= 2
£ 02 0.20
o 0.20
E 0.00
= o i 0.00} — e —
0.20
0 0.20
A0 -0.40
0.00 025 050 0.5 L00 0.00 025 050 0.5 L00 0.00 025 050 0.5 100
Rho Rho Rho

—— RANDOM —— SHAP SHAPR —— BF-SHAP —— MAPLE — LIME LZX]

Figure 3: Results for faith- for three types of ML models— linear regression, decision tree, and
multilayer perceptron— trained on a Gaussian piecewise constant dataset.

5.3 Simulating the wine dataset

In this section, we demonstrate the power and flexibility of synthetic datasets by simulating the
popular wine dataset [[12}138] with synthetic features so that it can be used to efficiently benchmark
feature attribution methods.

The white wine dataset has 11 continuous features (x.,) and one integer quality rating (yr.a) between
0 and 10. In this section, it is formulated as a regression task, but it can also be formulated as a
multi-class classification task. The features are first normalized to have zero mean and unit variance,
then an empirical covariance matrix is computed (Appendix Figure[5), which is then used as the input
covariance matrix to generate synthetic multivariate Gaussian features (). Simulated wine quality
(ysim) 1s labeled by a k-nearest neighbor model based on real datapoints (Trear, Yreal)-

We evaluate how close the simulated dataset is to the real one in two steps. First, we compute the
Jensen-Shannon Divergence (JSD) [41] of the real and synthetic wine datasets. JSD measures the
similarity between two distributions, it is bounded between 0 and 1, and lower JSD suggests higher
similarity between two distributions. The JSD of marginal distributions between the real empirical
features and the synthetic Gaussian features has a mean of 0.20, and the JSD of real and synthetic
targets is 0.23, suggesting a good fit. Second, we train three types of ML models on both simulated
and real wine datasets and compare the MSE of explanations on a common held-out real test set. As
shown in Appendix Table[5] consistent low MSE across ML models and explainers suggest that the
simulated dataset is a good proxy for the original wine dataset for evaluating explainers.

Next, we compute evaluation metrics for five different explainers on the synthetic wine dataset. Note
that computing these metrics accurately is not possible on the real wine dataset, as the conditional
distribution is unknown. As shown in Table |3} SHAP performs well on the Shapley metrics, con-
sistent with Table 2] Both LIME and MAPLE outperform SHAP on faith+. MAPLE achieves top
performance on mono-, however, none of the explainers significantly outperform RANDOM.

Table 3: Explainer performance on the simulated wine dataset across metrics. All performance
numbers are from explainers explaining a decision tree model.

RANDOM SHAP LIME MAPLE L2X
faith- (1) 0.012409.011 04619034 0.23710031 —0.00710.036 —0.01040.032
faith+ (T) 0-025i0.038 0.488i0.023 0-595i0.022 0.556i0,021 O~055i0.035
mono- (1) 0.490+0.004 0.50210.010 0.500£0.013 0.506+0.011 0.49210.001
mono+ (T) 0-523i0.010 0.55610,012 0~539i0.005 0-513i0.008 O~522i0.008
shapley-corr (T) O~011i0.027 0.81510,024 0.692i()‘019 0.669i0,007 0~035i0.055
shapley-mse (J,) 1~032i0.022 0.01410_003 0~032i04005 0-041i0.001 0~O55i0.001

5.4 Recommended usage

Throughout Section 5] we gave a sample of the types of experiments that can be done using XAI-
BENCH (recall that our comprehensive experiments are in Appendix [E.T). For researchers looking
to develop new explainability techniques, we recommend benchmarking new algorithms across all
metrics using our synthetic multivariate Gaussian and mixture of Gaussian datasets with different
values of p. These datasets give a good initial picture of the efficacy of new techniques. For
researchers with a dataset and application in mind, we recommend converting the dataset into a
synthetic dataset using the technique described in Section[5.3] Note that converting to a synthetic
dataset also gives the ability to evaluate explainability techniques on perturbations of the original
covariance matrix, to simulate robustness to distribution shift. Finally, researchers can decide on
the evaluation metric that is most suitable to the application at hand, based on the model, intended
use-case, size and number of features of the dataset, and level of feature correlation. For example,
ROAR-based metrics may be the most appropriate for structured data that is prone to unreliable
function evaluations in low-density regions of the feature space, and faithfulness and monotonicity
are the most lightweight options for applications in which high-dimensional data and high cost of
model training make ROAR-based and Shapley-based metrics infeasible.

6 Societal Impact

Machine learning models are more prevalent now than ever before. With the widespread deployment
of models in applications that impact human lives, explainability is becoming increasingly more
important for the purposes of debugging, legal obligations, and mitigating bias 26} 44,16, |15]]. Given
the importance of high-quality explanations, it is essential that the explainability methods are reliable
across all types of datasets. Our work seeks to speed up the development of explainability methods,
with a focus on catching edge cases and failure modes, to ensure that new explainability methods are
robust before they are used in the real world. Of particular importance are improving the reliability
of explainability methods intended to recognize biased predictions, for example, ensuring that the
features used to predict criminal recidivism are not based on race or gender [23]]. Frameworks for
evaluating and comparing explainability methods are an important part of creating inclusive and
unbiased technology. As pointed out in prior work [14], while methods for explainability or debiasing
are important, they must be part of a larger, socially contextualized project to examine the ethical
considerations of the machine learning application.

7 Conclusions and Limitations

In this work, we released a set of synthetic datasets along with a library for benchmarking fea-
ture attribution algorithms. The use of synthetic datasets with known ground-truth distributions
makes it possible to exactly compute the conditional distribution over any set of features, enabling
computations of several explainability evaluation metrics, including ground-truth Shapley values,
ROAR, faithfulness, and monotonicity. Our synthetic datasets offer a variety of parameters which
can be configured to simulate real-world data and have the potential to identify failure modes of
explainability techniques. We showcase the power of our library by benchmarking several popular
explainers with respect to ten evaluation metrics across a variety of settings.

Furthermore, despite the fact that the synthetic datasets aim to cover a broad range of feature
distributions, correlations, scales, and target generation functions, there is almost certainly a gap
between synthetic and real-world datasets. However, as discussed before, it is often the case that we
do not know the ground truth generative model of real datasets, thus making it impossible to compute
many objective metrics. Hence, there is a trade-off between data realism and ground truth availability.

Note that our library is not meant to be a replacement for human interpretability studies. Since the
goals of explainability methods are inherently human-centric, the only foolproof method of evaluating
explanation methods are to use human trials. Rather, our library is meant to substantially speed up
the process of development, refinement, and identifying failure modes, before reaching human trials.

Overall, we recommend developing new explainability methods in this library, and then conducting
human trials on real data. Our library is designed to substantially accelerate the time it takes to
move new explainability algorithms from development to deployment. With the release of API
documentation, walkthroughs, and a contribution guide, we hope that the scope of our library can
increase over time.

References

[1] Kjersti Aas, Martin Jullum, and Anders Lgland. Explaining individual predictions when features
are dependent: More accurate approximations to shapley values. Artificial Intelligence, page
103502, 2021.

[2] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on explainable
artificial intelligence (xai). IEEE access, 6:52138-52160, 2018.

[3] David Alvarez-Melis and Tommi S Jaakkola. Towards robust interpretability with self-explaining
neural networks. arXiv preprint arXiv:1806.07538, 2018.

[4] Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural networks with a
polynomial time algorithm for shapley value approximation. In International Conference on
Machine Learning, pages 272-281. PMLR, 2019.

[5] Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-L6pez, Daniel Molina, Richard Ben-
jamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and
challenges toward responsible ai. Information Fusion, 58:82—115, 2020.

[6] Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C
Hoffman, Stephanie Houde, Q Vera Liao, Ronny Luss, Aleksandra Mojsilovié, et al. One
explanation does not fit all: A toolkit and taxonomy of ai explainability techniques. arXiv
preprint arXiv:1909.03012, 2019.

[7] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning. NIPS
Tutorial, 2017.

[8] Miranda Bogen and Aaron Rieke. Help wanted: An examination of hiring algorithms, equity,
and bias, 2018.

[9] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian.
Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks.
In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 839-847.
IEEE, 2018.

[10] Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, and Cynthia Rudin.
This looks like that: deep learning for interpretable image recognition. arXiv preprint
arXiv:1806.10574, 2018.

[11] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In International Conference on
Machine Learning, pages 883—-892. PMLR, 2018.

[12] Paulo Cortez, Anténio Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling

wine preferences by data mining from physicochemical properties. Decision support systems,
47(4):547-553, 2009.

[13] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input
influence: Theory and experiments with learning systems. In 2016 IEEE symposium on security
and privacy (SP), pages 598-617. IEEE, 2016.

[14] Emily Denton, Ben Hutchinson, Margaret Mitchell, and Timnit Gebru. Detecting bias with
generative counterfactual face attribute augmentation. arXiv preprint arXiv:1906.06439, 2019.

[15] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard
Socher, and Byron C Wallace. Eraser: A benchmark to evaluate rationalized nlp models. arXiv
preprint arXiv:1911.03429, 2019.

[16] Filip Karlo Dosilovi¢, Mario Br¢ié, and Nikica Hlupié. Explainable artificial intelligence: A

survey. In 2018 41st International convention on information and communication technology,
electronics and microelectronics (MIPRO), pages 0210-0215. IEEE, 2018.

10

[17] Kevin Fauvel, Véronique Masson, and Elisa Fromont. A performance-explainability framework
to benchmark machine learning methods: Application to multivariate time series classifiers.
arXiv preprint arXiv:2005.14501, 2020.

[18] LiMin Fu. Rule learning by searching on adapted nets. In AAAI volume 91, pages 590-595,
1991.

[19] Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. Causal shapley values:
Exploiting causal knowledge to explain individual predictions of complex models. arXiv
preprint arXiv:2011.01625, 2020.

[20] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for inter-
pretability methods in deep neural networks. arXiv preprint arXiv:1806.10758, 2018.

[21] Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani Srivastava. How
can i explain this to you? an empirical study of deep neural network explanation methods.
Advances in Neural Information Processing Systems, 2020.

[22] Isaac Lage, Andrew Slavin Ross, Been Kim, Samuel J Gershman, and Finale Doshi-Velez.
Human-in-the-loop interpretability prior. arXiv preprint arXiv:1805.11571, 2018.

[23] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the compas
recidivism algorithm. ProPublica (5 2016), 9, 2016.

[24] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[25] Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory approach. Applied
Stochastic Models in Business and Industry, 17(4):319-330, 2001.

[26] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in Neural Information Processing Systems, 30:4765—4774, 2017.

[27] Ronny Luss, Pin-Yu Chen, Amit Dhurandhar, Prasanna Sattigeri, Yunfeng Zhang, Karthikeyan
Shanmugam, and Chun-Chen Tu. Generating contrastive explanations with monotonic attribute
functions. arXiv preprint arXiv:1905.12698, 2019.

[28] Amitabha Mukerjee, Rita Biswas, Kalyanmoy Deb, and Amrit P Mathur. Multi—objective
evolutionary algorithms for the risk—return trade—off in bank loan management. International
Transactions in operational research, 2002.

[29] Eric WT Ngai, Yong Hu, Yiu Hing Wong, Yijun Chen, and Xin Sun. The application of data
mining techniques in financial fraud detection: A classification framework and an academic
review of literature. Decision support systems, 50(3):559-569, 2011.

[30] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviere, Alina Beygelzimer,
Florence d’ Alché Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility in machine
learning research (a report from the neurips 2019 reproducibility program). arXiv preprint
arXiv:2003.12206, 2020.

[31] Gregory Plumb, Denali Molitor, and Ameet Talwalkar. Model agnostic supervised local
explanations. arXiv preprint arXiv:1807.02910, 2018.

[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016.

[33] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-
agnostic explanations. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[34] Andrew Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability
of deep neural networks by regularizing their input gradients. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

11

[35] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based

localization. In Proceedings of the IEEE international conference on computer vision, pages
618-626, 2017.

[36] Rudy Setiono and Huan Liu. Understanding neural networks via rule extraction. In IJCAI,
volume 1, pages 480-485. Citeseer, 1995.

[37] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

[38] Mateusz Staniak and Przemyslaw Biecek. Explanations of model predictions with live and
breakdown packages. arXiv preprint arXiv:1804.01955, 2018.

[39] Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifications using
game theory. The Journal of Machine Learning Research, 11:1-18, 2010.

[40] Geoffrey G Towell and Jude W Shavlik. Extracting refined rules from knowledge-based neural
networks. Machine learning, 13(1):71-101, 1993.

[41] Andrew KC Wong and Manlai You. Entropy and distance of random graphs with application to
structural pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1985.

[42] Sewall Wright. Correlation and causation. Journal of Agricultural Research, 20:557-580, 1921.

[43] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 8827-8836, 2018.

[44] Yu Zhang, Peter Tifo, Ale§ Leonardis, and Ke Tang. A survey on neural network interpretability.
arXiv preprint arXiv:2012.14261, 2020.

12

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Our abstract and introduction accurately reflect our
paper.

(b) Did you describe the limitations of your work? [Yes] See Section

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We discuss the ethics guidelines in Section [6]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We did not
include theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We did not include
theoretical results.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] All code,
data, and instructions needed to reproduce our experimental results are available at
https://github.com/abacusai/xai-bench.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All training details are specified in our repository and discussed in
the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We included error bars for the experiments (Section [5).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We give runtime and hardware
details in Section

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all creators
of explainability methods and metrics implemented, both in our repository and in the
appendix.

(b) Did you mention the license of the assets? [Yes] We mentioned the licenses for all
assets in our repository.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We include new assets in our repository.

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [Yes] We did not gather any new data. All of our datasets are synthetic.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] All of the datasets we use are synthetic.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We did not have human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We did not have human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]| We did not have human subjects.

13

https://github.com/abacusai/xai-bench

A Dataset Documentation and Intended Use

Our code is available at https://github.com/abacusai/xai-bench.

A.1 Author responsibility

We bear all responsibility in case of violation of rights, etc. The license of our repository is the
Apache License 2.0. For more information, see https://github.com/abacusai/xai-bench/
blob/main/LICENSE.

A.2 Maintenance plan and contributing policy.

We plan to actively maintain the repository, and we welcome contributions from the explainability
community and machine learning community at large. For more information, see https://github.
com/abacusai/xai-bench. As our benchmarks are synthetic, we will host the code to generate
the datasets on GitHub.

A.3 Code of conduct

Our Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
The policy is copied below.

“We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, caste, color, religion, or sexual identity and orientation.”

B Reproducibility Checklist

To ensure reproducibility, we use the Machine Learning Reproducibility Checklist v2.0, Apr. 7,
2020 [30]. An earlier verision of this checklist (v1.2) was used for NeurIPS 2019 [30]].

* For all models and algorithms presented,

— A clear description of the mathematical setting, algorithm, and/or model. We
clearly describe all of the settings and algorithms in Section [3.1]and Appendix Sec-
tion[El

— A clear explanation of any assumptions. Some of the explainability techniques
implemented in our repository make assumptions about the dataset (e.g., that all
features are independent). We give this information in Appendix [E}

— An analysis of the complexity (time, space, sample size) of any algorithm. We the
complexity analysis in Section[3.T]and Appendix Section [E]
* For any theoretical claim,

— A clear statement of the claim. We do not make theoretical claims.
— A complete proof of the claim. We do not make theoretical claims.
* For all datasets used, check if you include:

— The relevant statistics, such as number of examples. We used a real dataset in
Section[5.3] We give the statistics for this dataset in the same section.

— The details of train / validation / test splits We give this information in our repository.

— An explanation of any data that were excluded, and all pre-processing step. We
did not exclude any data or perform any preprocessing.

— A link to a downloadable version of the dataset or simulation environment. Our
repository contains all of the instructions to download and run experiments on the
datasets in our work. See https://github.com/abacusai/xai-bench,

14

https://github.com/abacusai/xai-bench
https://github.com/abacusai/xai-bench/blob/main/LICENSE
https://github.com/abacusai/xai-bench/blob/main/LICENSE
https://github.com/abacusai/xai-bench
https://github.com/abacusai/xai-bench
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/abacusai/xai-bench

— For new data collected, a complete description of the data collection process, such
as instructions to annotators and methods for quality control. We release new
synthetic datasets, so there was no collection process. The code to generate the
synthetic datasets is hosted on GitHub.

* For all shared code related to this work, check if you include:

— Specification of dependencies. We give installation instructions in the README of
our repository.

Training code. The training code is available in our repository.

Evaluation code. The training code is available in our repository.

(Pre-)trained model(s). We do not release any pre-trained models. The code to run
all experiments in our work can be found in the GitHub repository.

README file includes table of results accompanied by precise command to run
to produce those results. We include a README with detailed instructions to repro-
duce our experiments.

* For all reported experimental results, check if you include:

— The range of hyper-parameters considered, method to select the best hyper-
parameter configuration, and specification of all hyper-parameters used to gener-
ate results. We use default configuration for explainers except SHAPR, tuning details
in Appendix [E.2]

— The exact number of training and evaluation runs. We report 3 runs for each
experiment.

— A clear definition of the specific measure or statistics used to report results. We
define our metrics in Section [3.2]and Appendix [E.T]

— A description of results with central tendency (e.g. mean) & variation (e.g. error
bars). We report mean and standard deviation for all experiments.

— The average runtime for each result, or estimated energy cost. We report the
runtimes in Section[Hl

— A description of the computing infrastructure used. We use CPUs for all experi-
ments. We give details of our experiments in Appendix Section [H]

C Multivariate Gaussian distribution

The probability density function of a non-degenerative multi-variate normal distribution is

_exp(—3(@—p) =z — p)
fe(z1,...yzp) = 203 ,)

with parameters pr € R” and ¥ € RP*P,

D Mixture of Gaussian features

Now we describe the mixture of Gaussian features. Suppose now that X = (X1,...,Xp)T is a
D-dimensional random vector distributed as a mixture of k£ Gaussians. We write this as X ~
> =1 N (pj, X;), where each p; is a D-dimensional mean vector for the 4™ mixture component,

and 3; is the D x D covariance matrix for the j® mixture component.

Suppose, as before we use the partition defined by X = [ij and partition the parameters of each

mixture component accordingly as

M R DO/ R T 12
1 Lij,z]’zj {Zjﬂl b)) }

forj =1,...,k. Then, given Xy = x3, the conditional distribution is also a mixture of Gaussians,
written (X 1| X2 = 23) ~ 375 miN(p},), where the parameters of each mixture component
can be written

15 = i1+ 2512550 (®3 — pji2) (10)
5=+ X5 12%; 5,82 (11)
* 7 fi2(@3) (12)

FA—
> i=1 Tefe(x3)
and where f;o denotes the probability density function of the multivariate normal distribution
N (g2, Ej,22)-

E Descriptions of Explainability Metrics and Explainers

E.1 Metrics

In this section, we give the formal definitions for the rest of the evaluation metrics from Section E}
We start by giving the definition of the ROAR-based metrics.

Recall that the major difference between ROAR-based metrics and other metrics is that in order to eval-
uate the marginal improvement of sets of features, ROAR-based metrics retrain the model using a new

dataset with the features removed. For example, rather than computing |E_, (@r:) [f(z")] — f(x)

b}

we would compute ‘ f *(]Em,ND()[a:’ 1) — f(x)|, where f* denotes a model that has been trained

TF\i
on a modification of Dy,i, where each datapoint has its ¢ features with highest weight removed. Given
a datapoint « and a set of features S C F’, we start by defining Z g, the expected value of a datapoint
conditioned on the features S from x:

_ { x; for indices i € S (13)

Tg = , Do

s E [z} | @' ~ Dst 2} = z; for j € S| forindices i ¢ S
Let Dfr;n denote a new training set by replacing each @ ~ Diyin With &\ o (aw(a),i)» Where w(x)
denotes the weight vector for « and o~ (w(x),i) denotes the ith most important feature for x
according to w. Thatis, D/ is the training set modified by removing the ith most important features

train
for each datapoint. Let f i~ denote the model f retrained on D" instead of Dy.in. Then we define

roar-faith- as follows:

17—
train

roar-faith- = Pearson (’fi_(jp\i) - f(w)‘1gi§D , [’U}Z‘]lgiSD) , (14)

Next, let Dfrj[m denote a new training set by replacing each & ~ Dy With T p\ o+ (aw () i), Where

w(x) denotes the weight vector for « and o™ (w(x), i) denotes the ith most important feature for
x according to w. That is, Dfr;n is the training set modified by removing the ¢th most important
features for each datapoint. Let f “+ denote the model f retrained on Dfr;-n instead of Dy,i,. Similar
to roar-faith-, we define roar-faith+ as follows:

roar-faith+ = Pearson (|fi+(i{,;}) — fi+(:f:{@})|1gi§D , [wi]lgigD)) (15)

Recall from Section [3|that S~ (w), i) denotes the set of i least important weights, S (w, i) denotes
the set of ¢ most important weights, and S~ (w,0) = . Let Dti(iﬁ)f denote a new training set by

replacing each @ ~ Dypin With T p\ 5 (w(a), k), Where w(x) denotes the weight vector for . That is,

16

D{ﬁ;n is the training set modified by removing the k least important features for each datapoint. Let

f S(k)= denote the model f retrained on Di(ilz)f instead of Dy,in. We define roar-mono- as follows:

S S(k)— (= ST/~
= Y@) Y @), (16)
1 D-2
roar-mono- = D1 H|5:‘§|5l+1| 17
1=0

S(k)+

train

Similarly, let D
where w(x) denotes the weight vector for . That is, D

denote a new training set by replacing each @ ~ Dyin With & p\ 5+ (w (), k) »
k+

irain 1S the training set modified by removing

S(k)+

the k& most important features for each datapoint. Let f5(*)* denote the model f retrained on Do

instead of Dy.,;,. We define roar-mono+ as follows:

g:r _ fS(k)Jr(a_:SLl(w)) _ fS(k)Jr(a_:Sf(w))’ (18)
| D=2
roar-mono+ = D1 ; HMT\SWLJ (19)

Now we give the formal definition for Shapley values. Given a datapoint x, the Shapley value v; is
defined as follows.

v; = Z |S|'(F|;||'S| - 1)' (Ew,ND(mSu{i})[f($l)} . Em’ND(wS)[f(w/)])a (20)

SCF\{i}

where D (xg) is defined as in Equation |1} Then for a datapoint x, shapley-corr is defined as the
correlation between the weight vector w and the set of Shapley values for x, and shapley-mse is
defined as the mean squared error between the weight vector w and the set of Shapley values for .
Formally,

shapley—corr = Pearson ([’Uihgigp, [’wi]lgiSD) s (21)
D

shapley-mse = Z (v; — wi)2 . (22)
=1

The main drawback of this metric is its time complexity, which is ©(27) for a D-dimensional dataset.
Computation quickly becomes infeasible as D scales up.

E.2 Local Feature Attribute Explainers

In this section, we give descriptions and implementation details of all of the explainability methods
and metrics implemented in our library.

E.2.1 SHAP

Lundberg et al. [26] proposed a few methods such as BF-SHAP to estimate Shapley values defined
by Equation 20} Due to the unavailability of the generative model of conditional distribution for
real datasets, one can not accurately compute E[fs(xs)]. BE-SHAP makes two assumptions: (1)
model linearity, which makes E[fs(zs)] = fs(E[xs]), (2) feature independence assumption: E[xg]
with marginal expectation instead of conditional expectation. In this work, we refer the official
implementation of SHAP as SHAP, and re-implemented brute-force kernel SHAP as BF-SHAP.

E.2.2 SHAPR

Aas et al. [[1] proposes several techniques to relax both assumptions and improve BF-SHAP such as
“Gaussian”, “copula”, and “empirical”. Because the “empirical” method with a fixed o performs well
across tasks in the original paper, we re-implemented the original R package in python with a tuned

from {0.1, 0.2, 0.4, 0.8} and fixed 0 = 0.4 and refer it as SHAPR.

17

E.2.3 LIME

Local Interpretable Model-agnostic Explanations (LIME) [32] interprets individual predictions based
on locally approximating the model around a given prediction. We use LIME from the official SHAP
repository.

E.24 MAPLE

MAPLE [31] is another technique that combines local neighborhood selection with local feature
selection. We use official implementation from the official SHAP repository.

E.25 L2X

L2X [11] used a mutual information-based approach to explainability. The L2X explainer has a
hyperparameter k£ which needs to be defined by the user to decide the top £ most important features
to pick. For each D-dimensional data point, L2X outputs a D-dimensional binary vector [;; with 1
indicating important features and 0 indicating unimportant features. Because % is often unknown a
priori, we modified L2X as follows:

9 D
=— I 23
YT R+ 1)]; & (23
where ﬁ is a scaling factor to ensure the elements in w sum up to 1. The original L2X model

uses 1 million training samples to achieve good performance, due to the computation limitation of
metrics calculation, we limit the training set size of synthetic experiment to 1000, and experiments
show that L2X often fails to achieve good performance.

E.2.6 RANDOM

RANDOM explainer is implemented to serve as a baseline model. The explainer generates random
weights from standard normal distribution.

F Dataset details

For 5-dimensional datasets, linear w = [4,3,2,1,0],

piecewise constant:

1, 1 >=0
0 = 24
l(xl) { —1, 1 < 0 ()
-2, z2 < —0.5
1, —0.5< 15 <0
v = 2
2(22) 1, ~0<x3 <05 25)
2,) 2 0.5
U3(x3) = floor(2cos(mxs)) (26)
U(z;) =0, i=4,5 (27)

where floor() is a rounding function that rounds a real number to the nearest integer with the lowest
absolute value.

Nonlinear additive:

Uy (z1) = sin(xy) (28)
Uy (xa) = |xo] (29)
U3 (23) = 23 (30)
Uy (24) = €™ (31
Us(z5) =0 (32)

where floor() is a rounding function that rounds a real number to the nearest integer with lowest
absolute value.

18

40000 250000
60000
35000
50000 200000
30000
25000 40000 150000

20000 30000

15000 100000
20000
10000
50000
S000 10000 | ‘
0 2 a 6

04 o0 0

() (b) (©)

Figure 4: Label distribution of (a) Gaussian Linear, (b) Gaussian Nonlinear Additive, and (c) Gaussian
Piecewise Constant datasets. 1 million datapoints are generated for each dataset, and 120 equal sizedd
bins from -6 to 6 are used for discretizing the distribution.

G Higher dimensional experiments

Two factors limit experiments with high dimensional features: (/) SHAPR, BF-SHAP, and the
Shapley metrics evaluate a model ©(2%) times per datapoint, (2) ROAR-based metrics require
retraining models O(D) times which is computationally expensive. In Figures |§| and [7} we give
experiments in the same setting as in Section[3] on a synthetic dataset with 100 dimensions, for all
but the most computationally-intensive Shapley-based explainers.

H Additional results

In this section, we present additional results and experimental details.

Table 4: Time taken in seconds by explainers to explain 100 five-dimensional test datapoints from the
Gaussian piecewise constant dataset for a multilayer perceptron model.

Random SHAP SHAPR BF-SHAP MAPLE LIME L2X
Time (in seconds) 0.00009 39 323.8 0.2 3.2 28.0 6.5

Table [shows the time explainers take to generate explanations for 100 test datapoints. All of our
experiments were run on CPUs. We report mean and standard deviation across three runs for all
experiments except for Table[d All synthetic experiments have a training size of 1000, and test size
of 100.

The wine dataset contains 4898 datapoints. In Table[5} we give the mean squared error between
explanations for predictions of models trained on the real vs. simulated wine dataset described in
Section 3

We conclude by presenting the comprehensive results for ten different evaluation metrics, seven
different feature attribution algorithms, nine different datasets, and five different values of p.

Table 5: Mean squared error (MSE) between explanations for predictions of models trained on real
and simulated wine dataset. Random predictions are generated from standard Gaussian distribution for
every feature for each datapoint. Low MSE across ML models and explainers suggest the simulated
wine dataset is a good representation of the real dataset for explainability benchmarking.

Model SHAP LIME MAPLE L2X Random
Linear 0.028 £0.009 0.047 £0.016 0.027 £0.009 0.0009 4 0.0001

Tree 0.047 +£0.003 0.009 &£ 0.001 0.052 £0.012 0.0008 £ 0.0001 1.988+0.001
MLP 0.028 £0.003 0.037 +0.008 0.040 4+ 0.002 0.0008 £ 0.0001

19

Empirical feature covariance matrix

fixed acidity .—0.02 0.29 0.09 0.02 -0.05 0.09 0.27 -0.43-0.02-0.12
volatile acidity -0.02.-0.15 0.06 0.07 -0.10 0.09 0.03 -0.03-0.04 0.07
citric acid (74 -0.15. 0.09 0.11 0.09 0.12 0.15 -0.16 0.06 -0.08

residual sugar LSRN0 0.09.0.09 0.30 0.40 .—0.19—0.03—0.45
Il IR 0.02 0.07 0.11 0.09.0.10 0.20 0.26 -0.09 0.02 -0.36

free sulfur dioxide RO KOROR0E R0 R0 o) .0.62 0.29 -0.00 0.06 -0.25
total sulfur dioxide J{UNOIIOR0II 0 A 0710 0821 0) 0.62.0.53 0.00 0.13 -0.45
density ({7 N0HIE] 0.15.0.26 0.29 0.53.-0.09 0.07 -0.78
Jzl8-0.43-0.03-0.16-0.19-0.09-0.00 0.00 —0.09. 0.16 0.12

P iFR -0.02-0.04 0.06 -0.03 0.02 0.06 0.13 0.07 0.16 .-0.02

Elleeae]l-0.12 0.07 -0.08-0.45-0.36-0.25-0.45-0.78[0.12 -0.02.

Figure 5: Empirical covariance matrix of the wine dataset. Features are normalized to have unit
variance and zero mean.

linear regression decision tree multilayer perceptron
1.00 0.80F

0.80
0.60 -

0.60
0.40

0.40
0.40
020} i i
0.20 0.20

0.00 -

faith-

0.00 0.00 -

Rho } Rho :) Rho
—— RANDOM —— SHAP MAPLE ~—— LIME ~ —— L2X|

Figure 6: Results for faith- across ML models and ps on the Gaussian linear dataset with 100
dimensions. Note that the error regions for faith- are much smaller than the error regions for mono-

(Figure [7).

linear regression decision tree multilayer perceptron

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.4 0.2 0.4 0.6 0.8
Rho Rho Rho

—— RANDOM —— SHAP MAPLE ~ —— LIME —_— L2X]

Y
o

Figure 7: Results for mono- across ML models and ps on the Gaussian linear dataset with 100
dimensions.

LR DTREE MLP
Lo FT ! ! ! ! - ! ! : ! ! ! LooFT ! ! ! ! "
0.80 1 050 0.80F 1
%
g ool 1 060 0.60]
g
3
Z oaof 1 040 o040f]
Z
Z 020] [b
g 020 0.20
0.00
020p L L L L L L] L L L L L L 020 L L L L L |
0.0 0.2 0.1 0.6 08 10 0.0 02 0.1 0.6 0.8 10 0.0 0.2 0.4 0.6 08 1.0
Rho Rho Rho
Lo ! ! ! ! - ! ! ! ! ! ! LOOF ! ! ! ! -

0.60 - 1

040 F 1

gaussianNonLinearAdditive
s = =
E %
g B z
s o = o =
S 82 £ 2 =
s kB 5 2
S o = = 2 o
S 2 & & =2 =
¥ 2 kB 5 8 &

-0.20

1.00 100 1

=]
3

gaussianPiecewiseConstant

s s o o

5 =X 2 =z

g8 5 8 8

s o

s =

]

E s o 2 2

T B & &

8 5 8 8

0.40
0.20
0.00F 1 oo 0.00f]
020F] 020 b
0.0 0.2 0.4 0.6 0.8 [NY) 02 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 08 1.0
Rho Rho Rho
—— RANDOM —— SHAP ——— SHAPR —— BF-SHAP —— MAPLE —— LIME — L2X I

Figure 8: Results of faith- across ML models, dataset types, and ps.

21

=4
=
3

<4
2
=

0.20

gaussianLinear
=
<
=

0.00

gaussianNonLinearAdditive

-0.20

=4
=
3

<4
2
=

gaussianPiecewiseConstant
= =
= <
8 5

LR DTREE MLP
[< 4 0.80 0.80F b
[] 0.60 0.60 1
L q 0.40 040 1
F 1 0.20 0201 7]
b A 4 0.00 : :7‘< § N 0.00F —]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rho Rho Rho
0.80
[1 0.80 1
0.60
[1 0.601 1
0.40
b 4 0.40 E
]] 0.20 020k 1
 ———— " 000}]
n n n n n n -020 n n n n n n -0.20 £ n n n n |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rho Rho Rho
1.00 1.00F 1
r 1 0.80 080f]
r 1 0.60 0.60 F 4
b 4 0.40 040 1
L 4 0.20 020 q
i = oof]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rho Rho Rho
—— RANDOM —— SHAP ——— SHAPR —— BF-SHAP —— MAPLE —— LIME — L2X J

Figure 9: Results of faith+ across ML models, dataset types, and ps.

MLP

DTREE

LR

IeaurueIsSSNES

SATIIPPY TRSUITUO N URISSIES

JUR)STO)ISIMII JURISSTIRS

- e
® 4=
2 2
- 4=
s s
B
2
=
- 4=
2 2
al 42
2 2
= 1=
s s
PR) R S P
22 I 22 2383 8 2 8 8 2 =2 3 Z 2 2 3 3 38 2
2 22222 2 2 2 s 2 2 2 2 Z2 s 2 2 3 2 2 Z
1=
4=
z
qe
S
4=
2
qa
B
1=
S
z ¢ = = = %z =2 = = s s =2 2 = : s = 2 = =
Z g2 I 22 2 8 3 ¢ 2 8 2 2 2 7 2 3 5 2 3
2 s 2 32 3 2 3 2 2 s 2 2 3 3= 2 3 2 2 2
{= ® 4=
2 2 2
i = 4=
S S s
B B
2 2
= i
1= = 4=
3 3 3
4 al 4=
2 2 2
qi= = 4=
s s 2
STE e T e e e ER STETE e TS e e
5§ 3 $ 8 8 8 8 8§ g 8 5 = = 2 %25 5 5 2 83
s 3 s 32 2 2 3 2 s s 2 3 2 S 3 3 3 32 3 3 2

Rho

Rho

Rho

—_— L2x|

—— SHAP —— SHAPR —— BF-SHAP —— MAPLE —— LIME

RANDOM

Results of mono- across ML models, dataset types, and ps.

Figure 10

23

DTREE MLP

=

LR

1.0

0.6

0.4

0.2

0.0

Rho

1.0

08

0.6

0.4

0.2

0.0

0.72F
0.70F
0.68 F
0.65F

0.62F
0.60F
0.57F
0.55F
0.53
0.62}F
0.60F
0.58F
0.56
0.54F
0.52F
0.50F
0.48F

075
0.70
0.65
0.60
0.55

0.8

0.6

04

0.2

0.0

0.75
0.70

0.65
0.60
0.55
0.68
0.65
0.62
0.60
0.58
0.55
0.53
0.50

0.55

0.8

0.6

0.4

0.2

0.0

Rho

0.6

04

0.2

0.0

085F

701

=)
= ,
S o

080F

IeaurueIsSSNES

0.55F

=)
3
S

0.65F

SATYIPPY TRIUITUO N URTSSTIE!

JUR)STO)ISIMII JURISSTIRS

Rho

Rho

Rho

—_— L2x|

—— SHAP —— SHAPR —— BF-SHAP —— MAPLE —— LIME

RANDOM

Results of mono+ across ML models, dataset types, and ps.

Figure 11

24

gaussianLinear

NonLinearAdditive

gaussian.

gaussianPiecewiseConstant

0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

-0.10

0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15

-0.20

<4
2
=

I
=
S

I
I
3

o
3
3

&
=
&

-0.40

DTREE

MLP

0.50

0.30

0.20

0.00

-0.10

-0.10

0.8

-0.10

-0.20

-0.30

0.8

0.40

0.20

-0.20

-0.40

-0.20

s -0.40

—— RANDOM

—— SHAP

~——— SHAPR

—— BF-SHAP

0.8

—— MAPLE

0.0

—— LIME

—_— L2x|

Figure 12: Results of roar-faith- across ML models, dataset types, and ps.

25

=4
=
3

<4
2
=

0.20

gaussianLinear
=
<
=

0.00

gaussianNonLinearAdditive

-0.20

=4
=
3

<4
2
=

gaussianPiecewiseConstant
= =
= <
8 5

LR DTREE MLP
[< 4 0.80 0.80F b
[] 0.60 0.60 1
L q 0.40 040 1
F 1 0.20 0201 7]
b A 4 0.00 : :7‘< § N 0.00F —]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rho Rho Rho
0.80
[1 0.80 1
0.60
[1 0.601 1
0.40
b 4 0.40 E
]] 0.20 020k 1
 ———— " 000}]
n n n n n n -020 n n n n n n -0.20 £ n n n n |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rho Rho Rho
1.00 1.00F 1
r 1 0.80 080f]
r 1 0.60 0.60 F 4
b 4 0.40 040 1
L 4 0.20 020 q
i = oof]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rho Rho Rho
—— RANDOM —— SHAP ——— SHAPR —— BF-SHAP —— MAPLE —— LIME — L2X J

Figure 13: Results of roar-faith+ across ML models, dataset types, and ps.

gaussianNonLinearAdditive gaussianLinear

gaussianPiecewiseConstant

=4
&
3

I
=
S

4
@
8

0.80

0.70

0.60

0.50

0.40

0.70

0.60

0.50

0.40

LR DTREE

MLP

040

0.30

0

0.8

0

0.70

0.50

—— RANDOM —— SHAP —— SHAPR —— BF-SHAP

Rho

0.6

s 0.30

—— MAPLE

—— LIME

—_ szl

Figure 14: Results of roar-mono- across ML models, dataset types, and ps.

27

MLP

DTREE

LR

1.0

0.6

0.4

0.2

0.0

0.8

0.6

04

0.2

0.0

0.8

0.6

04

0.2

= 4i= 4
® J% 4
2 2
= 1= 4
S s
B B
2 2
~ =
- 1= 4
2 2
bl qa 4
2 2
= 1=]
S s
P STTTE T e Ty s SRS SIS T e e e s
2 2 £ E 8 8 8 8 g 8 8 2 38 =8 2 £ 2 8 3 8 8 % <
R - s s £ 2 2 2 £ 5 S 2 2 2 2 2 2
1= 4
4= 4
z
4 4
2
g
4= 4
2
qa 4
B
1= 4
2
A s x e . = N S x o2 oa s = omom
2R 23 g 2 R 232258 2
S 2 2 3 3 2 S 2 S 3 3 S 2 2 2
{= 4
2
= 4= 4
S S
B B
2 2
= i
- 1= 4
3 3
al 4= 4
2 2
= qi= 4
s s
S S STeTe TE TE Te E TS
g 2 £ g g g =z E & B %2 %2 B E & 8 8 8
P = = s 2 s = 2 S 33 3 S s 3 2

IeaurueIsSSNES

SATIIPPY TRSUITUO N URISSIES

JUR)STO)ISIMII JURISSTIRS

0.0

Rho

Rho

Rho

—_— L2x|

—— SHAP —— SHAPR —— BF-SHAP —— MAPLE —— LIME

RANDOM

Results of roar-mono+ across ML models, dataset types, and ps.

Figure 15

28

inear

gaussianNonLinearAdditive gaussianLi

gaussianPiecewiseConstant

1.20

1.00

0.80

=
3

I
=
S

0.20

0.00

o
S

2
S

z

=4
3
3

0.40

0.20

0.00

1.00

0.80

0.60

0.40

0.20

0.00

LR DTREE MLP
r \—_¥] - —__R Hor _—\]
[] 1.00 100 B
L 1 0.80 080]
L] 0.60 0.60F 1
L B 0.40 0.40F 1
s '\] 0.20 ; E 020 \ q
b —— 1 0.00 0.00F 1
0.0 0.2 0.1 0.6 0.8 1.0 0.0 02 0.1 0.6 0.8) 0.0 0.2 0.1 0.6 08 1.0
Rho Rho Rho
\——_ 120 ——_\ s /\ |
1.00 LooF q
0.80 0.80F q
b 1 0.60 0.60F B
[] 0.40 040]
L = 1 0.20 020 %]
A
t] 0.00 0.00F 1
0.0 0.2 0.4 06 0.8 1.0 0.0 02 0.1 0.6 0.8) 0.0 0.2 0.4 0.6 08 1.0
Rho Rho Rho
1.20F]
i —\] 120 \ ———————e—
Loof 1
1.00
[1 0.80F 1
0.80
[1 0.60 q
0.60
[1 0.40 0.40F 1
r 1 0.20 ; 0.20F 1
t g] 0.00 0.00F % 1
0.0 0.2 0.4 06 0.8 1.0 0.0 02 0.1 0.6 0.8) 0.0 0.2 0.4 0.6 08 1.0
Rho Rho Rho
—— RANDOM —— SHAP —— SHAPR —— BF-SHAP —— MAPLE —— LIME —— L2XJ

Figure 16: Results of shapley-mse across ML models, dataset types, and ps.

29

)
=
=]

gaussianLinear
s o
%) =
g 5

0.00

-0.20

2
8

gaussianNonLinearAdditive

=4 =
= 3
3 S

<4
Y
S

I
o
3

gaussianPiecewiseConstant
= =
= z
2 =

&
=
g

LR DTREE MLP
F 1 10 Loof]
b 1 om0 0.80F]
3 1 o 0.60F p
3 1 0w 0.40F]
L 1 om 0.20F]
[w 1 000 : = — o0or]
L] 0.20F]
-0.20
0.0 0.2 0.1 0.6 08 10 0.0 0.2 0.1 0.6 08 10 0.0 0.2 0.1 0.6 [0
Rho Rho Rho
r E 1.00 1.00 - E
L 1 om0 0.80F]
L 1 060 0.60F —~ p
L 1 0.40 040F 1
0.20 0.20 1
0.20 020k]
0.0 0.2 0.1 0.6 05 10 0 0.2 0.1 0.6 08 10 0.0 0.2 0.1 0.6 05 0
Rho Rho Rho
F 1 10 1oof]
I 1 0.80 0.80 4
[1 0.60 0.60]
L 4 0.40 040 B
0.20F]
3 1 02
0.00F Eﬁ]
r 1 000 —
0.20F]
t 1 020
0.0 02 0.1 06 05 10 0.0 0.2 0.1 06 08 10 0.0 0.2 0.1 0.6 05 0
Ro Rho Rho
—— RANDOM —— SHAP ——— SHAPR —— BF-SHAP —— MAPLE —— LIME — L2X]

Figure 17: Results of shapley-corr across ML models, dataset types, and ps.

	Introduction
	Related Work
	Benchmarking Explainability Techniques
	Explainability evaluation metrics

	Evaluation Metrics
	Preliminaries
	Metrics

	Synthetic Datasets
	The case for synthetic data
	Mutivariate Gaussian and mixture of Gaussians features
	Labels

	Experiments
	Feature attribution methods
	Parameterized synthetic data experiments
	Simulating the wine dataset
	Recommended usage

	Societal Impact
	Conclusions and Limitations
	Dataset Documentation and Intended Use
	Author responsibility
	Maintenance plan and contributing policy.
	Code of conduct

	Reproducibility Checklist
	Multivariate Gaussian distribution
	Mixture of Gaussian features
	Descriptions of Explainability Metrics and Explainers
	Metrics
	Local Feature Attribute Explainers
	SHAP
	SHAPR
	LIME
	MAPLE
	L2X
	RANDOM

	Dataset details
	Higher dimensional experiments
	Additional results

