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A Proof of Theorem 5.3

In this section we present the main proof to Theorem 5.3. We define €, = d; — V F'(x;) for simplicity.

To prove the main theorem, we need two groups of lemmas to charctrize the behavior of the Algorithm
Pullback-STORM.
Next lemma provides the upper bound of e;.
Lemma A.1. Setn < o/(2bL), r < 0/(2bL) and D < 02 /(4b*L?), a = 562 log(4/8)/b, B =
ha<1 /4les , With probability at least 1 — 24, for all ¢ we have
210%10g(4/0)0
) .
Furthermore, by the choice of b in Theorem 5.1 we have that ||e:||2 < €/2.

et]]2 <

Proof. See Appendix B.1. [

Lemma A.2. Suppose the event in Lemma A.1 holds and n < ¢/(2L), then for any s, we have

s ts
Flx,) = Poxn,) 2 Tt

Proof. The proof is the same as that of Lemma 6.2, with the fact |2 < €/2 from Lemma A.1. O

The choice of 7 in Theorem 5.3 further implies that the loss decrease by oe/(16bL) on average.

Next lemma shows that if x,,, is a saddle point, then with high probability, the algorithm will break
during the Escape phase and set FIND<—false. Thus, whenever x,,,_ is not a local minimum, the
algorithm cannot terminate.

Lemma A.3. Under Assumptions 3.1 and 3.2, set r < Lngey/p, a < ngeq,
b > max{16log(4/0)n;; L2}, 562 log(4/8)a™ }bines = 2log(8enVdp™ 107 rY) /(nmen),
n < min{1/(10Llog(8¢xr Lp~ 1y ")), 1/(10L10g(¢res))} and D < L2n% €%, /(pl2 ) Then for

thres
any s, when Amin(V2F (X, )) < —eg, with probability at least 1 — 24 algorithm breaks in the
Escape phase.

Proof. See Appendix B.2. O

Next lemma shows that Pullback-STORM decreases when it breaks.
Lemma A.4 (localization). Suppose the event in Lemma A.l holds, and r <
min { log(4/0)*ngo?/(4b%€), \/21og(4/0)*nro?/(V2L)},  nu < 1/(2'2L1og(4/4)),
D = 0?/(4b*>L?). Then for any s, when Pullback-STORM breaks, then x,,,_ satisfies
log(4/6)*nr o

b2 '

F(xm,) = F(xt,,,) > (tsy1 —ms) (A.1)

Proof. See Appendix B.3. [
With all above lemmas, we prove Theorem 5.3.

Proof of Theorem 5.3. Under the choice of parameter in Theorem 5.3, we have Lemma A.l to
A.4 hold. Now for GD phase, we know that the function value F' decreases by oe/(16bL) on
average. For Escape phase, we know that the F' decreases by log(4/8)?*ngo?/b* on average. So

Pullback-STORM can find (e, €5 )-approximate local minima within O(bLAc~te™! + b?LAc—2)
iterations (we use the fact that ng = 5(L*1)). Then the total number of stochastic gradient
evaluations is bounded by O(B + b2 LAc—te~! + B3LAc~2). Plugging in the choice of b =
(5(06*1 + ope;f) in Theorem 5.3, we have the total sample complexity

~<0LA N op?’LA N ongA)'

(0]
J eery €%
The proof finishes by using Young’s inequality. O

€
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1 B Proof of Lemmas in Section A

452 In this section we prove lemmas in Section A. Let filtration F; ;, denote the all history before sample
453 & pattimet € {0,---, T}, then it is obvious that Fo; C Fop C--- CF11 C--- CFp1 C--- C
a4 Fp.
455 We also need the following fact:
456 Proposition B.1. For any ¢, we have the following equation:

€t+1 €t

1
(1 — a)t+1 N (1 — a)t = (1 _ a)Hl Zet,iy

i<b

457 where
a .
€0 = g[vf(xtﬂ;éiﬂ) — VF(x¢41)]
1—a
b

+ [VF(Xt) = Vf(xs; $§+1) = VF(x¢11) + Vf(Xt415 52}1)}-

458 Proof. Following the update rule in Pullback-STORM, we could have the update rule of € described
459 as

€1 = 1—a Z [dt - Vf(xa&iﬁ)] + %Z [Vf(xtﬂ;giﬂ) — VF(XtHﬂ
ish i<b
= % Z[Vf(xt+1§£z+1) - VF(Xt+1)] + (1 —a)(d; — VF(xy))
i<b
+ 1—-a Z [VF(Xt) - Vf(xﬁﬁzﬂ) — VF(x¢41) + Vf(XtH;ﬁiH)]

i<b
= %Z[Vf(xt+l7£z+1) - VF(xt+1)] =+ (1 — a)et
i<b
1-a

5 Z [VF(x;) — Vf(xe€040) — VF(xeq1) + vf(xt+1§£ti+1)]a

i<b

+

s60 where the last equation is by definition €; := d; — VF(x;). Thus we have

€141 _ €t
I-a)+  (1-a)

- ﬁ (% Z[vf(xt-H; 52_;_1) — VF(x¢41)]

i<b

1 ; ¢ [VE(x¢) — Vf(xt:€041) — VF(Xe41) + V (Xt 52+1)Da
i<b

1
= 7(1 — a)t-‘rl Zetﬂ;.

i<b

461 O

462 B.1 Proof of Lemma A.1

463 Proposition B.2. For two positive sequences {a;}7_; and {b;}}_;.  Suppose C
464 Max; jeipy{|ai/a;j|}, b= D21 bi/n. Then we have,

n n

a;b; <maxa; - n-b<C a;b.
z; ibi < maxa; < 2; i
1= 1=

465 Proof of Lemma A.1. By Proposition B.1 we have

€41 €t o 1 .
I—a)f*  (I—a)t (1—a)t'! ; et

14



ses It is easy to verify that {e; ;} forms a martingale difference sequence and
2

a i
el < 2|19 xss15610) — VP O]

2
2

l-a i i
5 [VE(xt) = Vf(xe:€i41) = VF(Xe11) + V(Xes13€141)]
2a%0? + 8(1 — a)?L?||x44+1 — xi|3
S b2 )
467 where the first inequality holds due to triangle inequality, the second inequality holds due to As-
468 sumptions 3.1 and 3.2. Therefore, by Azuma-Hoeffding inequality (See Lemma D.1 for detail), with
480 probability at least 1 — J, we have that for any ¢ > 0,

+

2

t—1

2 2.2 272 2
€ €0 2a%0% + 8(1 — a)*L?||x;4+1 — x5
- <4log(4/6) » b- :
H (1—a)t (1—a)l, v (1— a)%t2p?

=1 o 2 272 2

a’o® +4(1 — a)*L*||x;4+1 — x|

= 8log(4/4) E (1— a)2i+2bz+ =

i=0

470 Therefore, we have

2
€t 2t 2
leal <201 )| S —eq| 4201 - a)eoll
(1—a)t 2
6412 X o 16ac>
< 10g(4/0) | 25 301 - @i -l + 57| 420 - el 8D
=0

471 By Azuma-Hoeffding Inequality, we have with probability 1 — 6,

2 - Alog(4/8)0*

li= |5 3 [Tromen - vre] | < H25G

1<i<B

472 Therefore, with probability 1 — 24, we have

6412 X i 16ac®  32(1 — a)*o>
et < tog(4/9)| 2= 3001 - @22 — i+ 15 + 2
=0
6412 log(4/5) < i 16a0?log(4/6)
- ;(1 R T R e (B.2)
I
2(1 — a)* log(4/6)0?
32(1 —a) Bog( [8)o* B3)

473 We now bound I. Denote S1 = {i € [t — 1]|3j,t; < i < m;}, So = {i € [t —1]|3j,i = m;},
ara Sz = {i € [t—1]|3j,m; <i < t;41}, We can divide [ into three part,

I=> (1-a) " ?xips — x5+ Y (1 —a)* > |xi1 — xi3

1€S1 1€Sa
Il 12
t—1
+) (1= a)* 2 x g — xi3 (B.4)
i€S3
I3

475 Because ||x;41 — X;||2 = m¢||d;||]2 = 7, we can bound I; as follows,

0 2
L=7Y (1-a? %2 <Y (1-ai =", (B.5)

a
€S =0

15



476

477

478
479
480

481

482

484

485

486

487

489
490

Because the perturbation radius is , we can bound /5 as follows,
2
) ) r
I, = Z(l —a)? 2 x 0 — x| < ? Z(l —a)?TH < (B.6)
i€ So i€ So @
To bound I3, we have
t—1
Is=> (1—a)* 7 ?|xip — xi3
1€S3
S min{t—1,ts41—1}
= Z > (1—a)* " ?|xi1 — %3
i=ms+1
min{t—1,ts41—1}

S
Z 1 _ CL — 28 hres Z (1 _ a)2t72i725

1=mgs+1
t—1
_ (1 _ a)_%‘ms Z(l o a)?t—?i—QB
1€S3
D(1 — q) 2bmes

a

where S satisfies mg <t — 1 < tgy;. The first inequality holds due to Proposition B.2 with the
fact that the average of ||x; 1 — x;||3 is bounded by D, according to the Pullback scheme, and
ts+1 — Mg < lyres, the last one holds trivially. Substituting (B.5), (B.6), (B.7) into (B.4), we have

n2 + r2 + (1 _ a)2éthresﬁ
a .

I<
Therefore (B.3) can further bounded by

64L%log(4/0) n* + 1% + (1 — a)?%=D N 16a0? log(4/6) N 32(1 — a)* log(4/6)o?

2
<
el < === ; ;

(B.8)

By the selection of < o/(2bL), r < ¢/(2bL) and D < 02/(4b*L?), a = 562 log(4/9)/b,
B = b?,a < 1/4lyyes, it’s easy to verify that

64Llog(4/0) > +1* +2D _ o?

< B.9
b a b2 (B.9)
2 1
(1= a)*™ > 1 = 20l > 3 (B.10)
2 2 2 2
16ac?log(4/9) < 224°0*log(4/9) B.11)
b b2
32log(4/8)0? _ 32log(4/8)o?
< B.12
B = b2 (B.12)
Plugging (B.9) to (B.12) into (B.8) gives,
210%10g(4/8)0
el < 21807,
O

B.2 Proof of Lemma A.3

Lemma B.3 (Small stuck region). Suppose —y = Amin(VZF(x,,.)) < —ey. Set ¢ =

2log(8erp~tryt)/(mu7y)s nar < min{1/(10Llog(8exLp~'ryt)), 1/(10L10g( N} a < nav,
r < Lngemp/p. Let {x:}, {xt} be two coupled sequences by running Pullback STORM from

x!
Xms+1s Xmy+1 with Wme+1 = Xmga+1 — 7ns+1 = 7oe1, where Xmy+1,X ms—‘rl € meS(T),

16



491
492
493

494

495
496
497

498
499

500

501
502

503

505

506
507

508
509

510

ro = 6r/+/d and e; denotes the smallest eigenvector direction of Hessian V2 F(x,,, ). Moreover, let
batch size b > max{161log(4/8)n;>L~2y2,56% log(4/5)a~"'}, then with probability 1 — 26 we
have

e L
3T < £, maxc{||xz — Xo|s, [[X — xp||2} > =

Proof. See Appendix C.1. [

Proof of Lemma A.3. We assume Ayin(V2F(X,,,)) < —ey and prove our statement by contradic-
tion. Lemma B.3 shows that, in the random perturbation ball at least one of two points in the e;
direction will escape the saddle point if their distance is larger than ro = %. Thus, the probability
of the starting point X, y1 ~ By, (7) located in the stuck region uniformly is less than §. Then
with probability at least 1 — 24,

L HEH
Iy <t < My + lies, ||X¢ — X, [l2 > T’T. (B.13)
Suppose Pullback-STORM does not break, then for any ms < t < mg + Lypnres,
t—1 t—1
¢t = X, ll2 < D Ixis1 = xilla < | (E=m) D [xi1 —xi3 < (6 = m) VD,
i=mg i=mg

where the first inequality is due to the triangle inequality and the second inequality is due to Cauchy-
Schwarz inequality. Thus, by the selection of D, we have

— —  Lnge
15t — X, [l2 < (t = ms) VD < liyes VD < %

which contradicts (B.13). Therefore, we know that with probability at least 1 — 24,
)\min(v2F(Xms)) Z —€H. O

B.3 Proof of Lemma A.4

Proof of Lemma A.4. Suppose ms < i < tsy1. Then with probability at least 1 — 4, then by Lemma
D.2 we have

i 1 L
Foxinn) < ) + el = (5= 5 ) I = il3

nu 22 log(4/6)%0? 1
o, 4777H||Xi+1 - xil3 (B.14)
where the the second inequality holds due to Lemma A.1 and the fact that for any ms < @ < t541,
n; < ng < 1/(2L). Taking summation of (B.14) from ¢ = mgs + 1 to ¢t — 1, we have

0_2 1 t—1
F(x¢) < F(Xp,+1) + 205 log(4/6)*(t — m, — 1)b7 T Z %1 —xifl3. (B.15)
1=ms+1
Finally, we have
S i — xill3 o2
F(Xm, 1) = F(xe,4,) 2 Z WM —2"log(4/6)*(t —m, — 1)77Hb72
1=ms+1

D) 19 2 2
= (ts41 —ms — 1)( D 27log(4/0)"nuo >

4 v
o? 2910g(4/0)?ngo?
= (ts+1 —Mms — 1)<16T]Hb2L2 - b2 )
4log(4/0)*nwo*

> (teq1 —ms —1) (B.16)

b2 ’
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511 where the last inequality is by the selection of ng < 1/(2'2Llog(4/6)). For i = m, by Lemma
si2 D.2 we have

F(Xm, 1) < F(xe) + (2l dell2 + 2l[€cll2 + Lr/2)r

F
F(Xm,) + (de + Lr/2)r
< F(x

VANVAN

2log(4/6)*nr o’

ms) + 72 , (B.17)

513 where the last inequality is by the selection, r < min { log(4/6)*ngo?/(4b%), \/21og(4/6)?nuo?/(b2L)}.
514 Combining (B.16) and (B.17) we have that
FXm,) = F(xt,,) = F(Xm,) = F(Xm, 1) + F(Xm 1) = Fxt,,,)

4log(4/6)*nuo®  2log(4/8)*nro*

2 N b2
log(4/0)*nro?

b2 ’
515 where we use the fact thatt,; — mg > 2. O

2 (ts+1 —Mms — ]-)

Z (ts+1 - ms)

st C  Proof of Lemmas in Section B

517 C.1 Proof of Lemma B.3

st Define w; := x; — x; as the distance between the two coupled sequences. By the construction, we
519 have that wy = rge;, where e; is the smallest eigenvector direction of Hessian H := V2F (X, )-

wi=wi1 —n(di—1 —dj_;)
= w1 = (VEF(x¢-1) = VF(xj_y) + diy = F(x¢-1) —di_; + VF(x;_,))

1
—wiy =it = x ) [ VEFG Ot~ x1)d9

+dio1 — F(x¢—1) —dj_; + F(X;—l)}

=1 —=nH)wi1 — (A1 W1 +yi-1),

520 where

1
Ay = / (VPE(X)_q + 0(x¢—1 —x;_y)) — H)db,
0
Yt—1 = dt—l - VF(Xt_l) — d;,l + VF(X;?l) — €t—1 — 6271.

521 Recursively applying the above equation, we get

t—1
wi=(1—-nH)""™ w11 Z (1—nH) (AW, +y,). (C.1)

T=ms+1

522 We want to show that the first term of (C.1) dominates the second term. Next Lemma is essential for
523 the proof of Lemma B.3, which bounds the norm of y;.

s24 Lemma C.1. Under Assumption 3.1, we have following inequality holds,

Iyells < 2/1og(4/8)b /202 (21 max [[wr i1 — w2

ms<T
+ max t(ZaL +4pD.) - max ||W7-||2) + 4+/1og(4/8)b= /2 Lirg, (C2)

525 where D = max{||x; — X,

2}

526 Proof of Lemma C.1. By Proposition B.1, we have that

2, 1% = Xim,

/ /!
Yi+1 Yt €yl €& € €t

I-—a) (1-af (1-a (1-af (I-at  (I-a)

18



527

528
529

530
531

532

533

535

536
537

538
539

1 /

i<b
where €, ; is the same as that in Proposition B.1:
a .
€t = g[vf(XtH; &i1) — VE(x¢41)]

1—a

b
= (VS Geerti€i) — VFGe)] +  [VFx) = Vi i€l (€3)

+

[VF(XI‘/) - Vf(xt§€ti+1) - VF(Xt-H) + vf(Xt+1§ €i+1)]

where we rewrite €, ; as (C.3) because now we want bound the €, — € by the distance between two
sequence. €, ; is defined similarly as follows

€ = %[Vf(xt-‘rl;gti-&-l) = VEF(x41)] + I_Ta [VF(x¢) — V(xt:€141)]-

It is easy to verify that {€;; — eg7i} forms a martingale difference sequence. We now bound
ll€r,i — €t,i7]|3- Denote Hyp1,; = V2 f(Xm,; €L 1), then we introduce two terms

1
Appyi= / (V2f (%t + 0(xe41 — X1y 1) €041) — Heg1,i)dl
0

1
Apgr,= / (V2F(x; +0(xe —X1); &141) — Hogr,i) b,
0

By Assumption 3.1, we have [|Azi1ll2 < pmaxpe(o ) X1 + 0(xet1 — Xj 1) — X1 l2 <

pDyy 1, similarly we have ‘|£t+17i||2 < pDyand Ay 1 < pDyyy.

Now we bound €, ; — €} ,,

b€t — e;z) = ([Vf(XtJrl; 52}1) — VF(x¢41)] + (1 —a) [VF(Xt) - Vf(Xt;ﬁiﬂ)])

— (V£ 3€110) = VE(x )] = (1= @) [VE(x) = VF(xi:€041)])
= (Hig1,iWig1 + Dog1,iWep1 — Hwipr — Appiwigr + (1 — a)Hwy
+(1—a)Aw; — (1 — a)Hes1iwe — (1 — a)Ap i1 wy)
= (Hes1i —H) (Wir1 — (1 — a)we) + (Ap1 — Dvg1) Wipa
+(1—a)(Ar — Apy10)We. (C.4)
This implies the LHS of (C.4) has the following bound.
1b(eti — €.0)ll2 < 2Ll wegr — (1 = a)will2 + 20071 [[Wega |2 + 20D [ we |2
S 2L|wipr — will2 + 20DF [[Wegall2 + (2aL + 20D ) [we |2

<2L max |wWr;y1 —w.|2+ max (2aL+4pD.) - max |w,|2
me<T<t ms <1<t ms<T<t

M

where the first inequality is by the gradient Lipschitz Assumption and Hessian Lipschitz Assump-
tion 3.1, the second inequality is by triangle inequality. Therefore we have

M2
lleri —€;4ll5 < T

Furthermore, by Azuma Hoeffding inequality(See Lemma D.1 for detail), with probability at least
1 — 6, we have that for any ¢t > 0,

2 2

I—a)f ([1—a)m+

t—1
Y Ym,+1 Y41 yr
H 2 ((1 —a (1 a>7>

T=ms+1

2 2
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540

541
542

544
545

546

547

549

550

551

552

553
554
555

Z (1_a7+126”_ m‘)
T=mg i<b

2

2
t—1

M2
1=mg+1
Multiply (1 — @)?* on both side, we get
t—1
lye = (1= a)' ™™ ym a3 < 46" log(4/8) Y (1—a)* > 207
T=ms+1

< 4log(4/8)bta=t M2,

where the last inequality is by >2/_0 (1 — a)2~2~2 < g~ !. Furthermore, by triangle inequality we
have

Iyellz < 24/10g(4/8)b™2a™ 2 M + (1 = a) =™ |y 11]l2- (C5)

va(xms—kl;éfns-u) VF(x, X +1) Vf(x; X, +1v£ +1) + VF(X/ms+1)H2 < 2Lrg due to As-
sumption 3.1. Then by Azuma Inequallty(See Lemma D.1), we have with probability at least

1-96,
Hyms+1l|§ = Hdms-&-l - VF(Xms-H) - d;n5+1 + VF(x;ns+1)||§

1 )
= Hb Z[vf(xms—kl;gins—}-l) - VF(X/ ) Vf( X, +17€m +1) + VF( 1)}

2

i<b 2
< 410g(4/;5)4L2r3. C.6)
Plugging (C.6) into (C.5) gives
Iyellz < 2/log(4/8)b™/%a™1/2 (2L maxx [[wrs1 = will,
+ max (20l +4pD;)- max IIWTIIz) +4+/log(4/8)b™ "/ L.
O

Now we can give a proof of Lemma B.3.
Proof of Lemma B.3. We proof it by induction that

Log(L4nmy) ™™ ro < willa < 5(1+n57)" =" ro.

2. ||ytH2 < QT}H’yL(l + any)tfmsflro.

First for t = mg + 1, we have |[Wy y1lla = 70, [[Ym.41llz < /16b~1log(4/6)L2rZ <

2nzyLro(See (C.6)), where b > 2n;,°y~21/log(4/5). Assume they hold for all m, < 7 < t,
we now prove they hold for t. We bound w first, we only need to show that second term of (C.1) is
bounded by (1 + ngv)iro

t—1
I X ) Ay
T=ms+1
t—1
<nm Y, @+na) T (A2l wellz + [y -ll2)
T=ms+1

2
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556

558
559
560

561
562

563

564

565
566

t—1
. 3
<um Y, (L) Pro(Gl1A |2 + 20a7L)
T=ms+1
t—1
< ng Z (L+nuy)"™™ 2ro(3ngen L + 2ngyL)
T=ms+1
= nul(1 +nyy)' ™™ ?ro - SnuyL
< 1010g(8er*17'0_1)17HL(1 + nH'y)t*msfer

1 o
< (L amy) ™"t

To,

where the first inequality is by the eigenvalue assumption over H, the second inequality is by the
Induction hypothesis, the third inequality is by ||A;|l2 < pD; = pmax{||x; — xpm_||2, [|X} —
o} <nuepL + rp < 2ngep L, the fourth inequality is by the choice of t —ms; — 1 < £ <
2log(8exrptry )/ (nmy), the last inequality is by the choice of ng < 1/(10log(8emp~'rg *)L).
Now we bound ||y¢||2 by (C.2). We first get the bound for L||w;+1 — w;||2 as follows,

p

Llwirr — will2

t—2
= L‘ —na M —naH)' ™" wo — Ny Z naHI —ngH) T (AW, +yr)
T=ms+1
+ (A 1Wi—1 +yi-1)
2
(i) t—2
< Lngy(L+na7) ™™ Pro+ Lyg|| Y naMHI —naH)' 7 (Arw, +y7)
T=ms+1 2
=+ L77HHAt—1Wt—1 +Yi-1
2
(i3)
< Lyay (14 nay)' =™ 2
-2
_ t—2—71

col|| 3 e = e e, o ese]
(i) . ) t=2 1
< —m,—
< Lnay(1+nm7) ro + Lng [TmZH P 1} o Jnax Arw, 4y, )

(iv)
< Lngy(L+n57y)" "™ 2o + Lyg[log(t — ms — 1) + 1] - [bygyL(L 4+ nay)' ™™ " >ro)

(v)

< 6Lngy(1+nmy)'™™ 210 + 5log(t — my — 1)y L2 (1 +nmy)' ™™ 1o, (%))
where (i) is by triangle inequality, (ii) is by the definition of max, (iii) is by |[[ngH(I —
naH)' 2T < s (V) is due to [|Ar |l < pDr < p(nuyL/p + 1) < 2ynuL, [[well2 <
3(1+ngy) ™ trg/2and ||y, |2 < 205y L(1 + ngy)™ "™ "1rg, (v)is due to ng < 1/L.

We next get the bound of max,,,, «r<¢(2aL + 4pD;) - max,,, <r<¢

|w, |2 as follows

3(1 +77H'Y)t_ms_1
2
< 15y L(1 + ngy)' =" " 'ro. (C.8)

where the first inequality is by pD; < p(yng L/p + r) < 2yny L and the induction hypothesis, last
inequality is by a < yng.

Plugging (C.7) and (C.8) into (C.2) gives,

Iyells < 24/1og(4/8)b /202 (21 max [ wrir = w2

max_ (2aL + 4pD;) - max lwrll2 < (2aL + 8yny L) ro

ms<1<t

21



568

569

571
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574

575

576

577

578
579
580

581
582

583

584

585

+ max (2aL +4pD,) - max<t||w7||2)+4 Tog(4/8)b=1/2 Lirg
ms<T

ms<7T<

<2 10g(4/§)b—1/2a—1/2 (10 log(ﬁ)vnéL%l + 77H')’)t_m8_17'0
+ 27’)/77HL(1 + nH,Y)tfmsflq,,O) +4 10g(4/5)b71/2L7”0
< 561/log(4/6)b™2a™ Py Ly(1+ nuy)' =™ g

Iy
+4/loB /b 2(1 4+ 1)~

I

where the last inequality is by ng < 1/(10L log ¢). Now we bound I; and I5 respectively.

I = 561/log(4/0)b™"2a™ Py Ly (1 + nay)' ™™ " 'rg

= ngyL(1 +nav)" ™™ o,

where the inequality is applying b > 562 log(4/d)a~!.

161og(4/8)n" L=y 72,

Now we bound I> by applying b >

Iy < gy L(1+nuvy)=" .
Then we obtain that

)tfmsfl

lyelle < 2naYL(1 4+ nay 70,

which finishes the induction. So we have [|w¢||2 > 1(1 4+ ng7y)"~™"'ro. However, the triangle
inequality give the bound

IWellz < [t = Xm. i ll2 + %m0 = Xm 2 + 1% = X0 11 ll2 + X010 = %50, |l

eanuaL

<2r+2
eanuL

p )
where the last inequality is due to r < egng L/p. So we obtain that

<4

< log(8e g Lp~ry ") < 2log(8emptry ')
log(1 + nu7) Ny

D Auxiliary Lemmas

We start by providing the Azuma—Hoeffding inequality under the vector settings.

Lemma D.1 (Theorem 3.5, [24]). Let 1., € R? be a vector-valued martingale difference sequence
with respect to Fy, i.e., for each k € [K], Elex|Fi] = 0 and ||€x||2 < By, then we have given
0€(0,1),wp.1-9,

K

e

i=1

2

K
< 4log(4/6) > B}
2 i=1

This lemma provides a dimension-free bound due to the fact that the Euclidean norm version of R¢ is
(2,1) smooth, see also [15, 9]. Now, we are give a proof of Lemma 6.1.

We have the following lemma:
Lemma D.2. For any ¢t # my, we have

n n L
F(x¢41) < F(x¢) = 5t||dt||§ + §t||€t||§ + §||Xt+1 — x5

For t = my, we have F(x441) < F(x¢) + (||d¢l|2 + || €]l + Lr/2)r.
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Proof of Lemma D.2. By Assumption 3.1, we have
L
F(Xt+1) < F(Xt) + <VF(Xt),Xt+1 — Xt> + EHXt_A,_l — Xt||§~ (Dl)

For the case t # mg, the update rule is x; 1 = x; — 7¢d;, therefore

L
F(x¢41) < F(x) = mi(VF(x¢),de) + §||Xt+1 —x¢[|3
= F(x¢) = ml|VF(x¢)[13/2 — nel|de|3/2 + nell€cl|3/2 + Llixes1 — x[15/2
L
< F(xi) — melldell3/2 + mellecll3/2 + §||Xt+1 - x3,

where the first inequality on the first line is due to Assumption 3.1 and the second inequality holds
trivially. For the case t = mg, since ||VF(x¢)||2 < ||d¢]|2 + ||€t]|2 we have

L
F(x¢y1) < F(x¢) + (VF(xt), Xt 11 — X¢) + §||Xt+1 - x5
< F(x¢) + ([dell2 + [|€c][2 + Lr/2)r.

Lemma D.3 (Lemma 6, [17]). Suppose —y = Amin(VZF(X,,.)) < —em. Set r
Luen/(Cp)s lives = 2logueny/dLC™ p~1671r ) [(nuen) = Olny'ey'), nu
min{l/(lGLlog(nHeH\fLC"1 157171, 1/(8CLlog lipes)} = O(L™Y), b = ¢ = VB >
161og(4/8)/(n%e€%;). Let {x:}, {x,} be two coupled sequences by running Pullback SPIDER
from X, 41,X), 1 With Wy, 11 = X 41 — X}, = T0€1, Where X, 11,X), 1 € By, (),

INIA O

ro = 6r/+/d and e; denotes the smallest eigenvector direction of Hessian V> F (Xm. ). Then with
probability at least 1 — 4,

Lnpen
— — > - -
ms<tr£31§+é[hm{uxt X, l2: [[%0 — Xm, [[2} > Cp

where C' = O(log(dlyes/8) = O(1).

D.2)
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