
A Proof of Theorem 5.3416

In this section we present the main proof to Theorem 5.3. We define εt = dt−∇F (xt) for simplicity.417

To prove the main theorem, we need two groups of lemmas to charctrize the behavior of the Algorithm418

Pullback-STORM.419

Next lemma provides the upper bound of εt.420

Lemma A.1. Set η ≤ σ/(2bL), r ≤ σ/(2bL) and D ≤ σ2/(4b2L2), a = 562 log(4/δ)/b, B =421

b2,a ≤ 1/4`thres , with probability at least 1− 2δ, for all t we have422

‖εt‖2 ≤
210 log(4/δ)σ

b
.

Furthermore, by the choice of b in Theorem 5.1 we have that ‖εt‖2 ≤ ε/2.423

Proof. See Appendix B.1.424

Lemma A.2. Suppose the event in Lemma A.1 holds and η ≤ ε/(2L), then for any s, we have425

F (xts)− F (xms) ≥ (ms − ts)ηε
8

.

Proof. The proof is the same as that of Lemma 6.2, with the fact ‖εt‖2 ≤ ε/2 from Lemma A.1.426

The choice of η in Theorem 5.3 further implies that the loss decrease by σε/(16bL) on average.427

Next lemma shows that if xms
is a saddle point, then with high probability, the algorithm will break428

during the Escape phase and set FIND←false. Thus, whenever xms
is not a local minimum, the429

algorithm cannot terminate.430

Lemma A.3. Under Assumptions 3.1 and 3.2, set r ≤ LηHεH/ρ, a ≤ ηHεH ,431

b ≥ max{16 log(4/δ)η−2H L−2ε−2H , 562 log(4/δ)a−1},`thres = 2 log(8εH
√
dρ−1δ−1r−1)/(ηHεH),432

ηH ≤ min{1/(10L log(8εHLρ
−1r−10 )), 1/(10L log(`thres))} and D < L2η2Hε

2
H/(ρ`

2
thres). Then for433

any s, when λmin(∇2F (xms)) ≤ −εH , with probability at least 1 − 2δ algorithm breaks in the434

Escape phase.435

Proof. See Appendix B.2.436

Next lemma shows that Pullback-STORM decreases when it breaks.437

Lemma A.4 (localization). Suppose the event in Lemma A.1 holds, and r ≤438

min
{

log(4/δ)2ηHσ
2/(4b2ε),

√
2 log(4/δ)2ηHσ2/(b2L)

}
, ηH ≤ 1/

(
212L log(4/δ)

)
,439

D = σ2/(4b2L2). Then for any s, when Pullback-STORM breaks, then xms satisfies440

F (xms
)− F (xts+1

) ≥ (ts+1 −ms)
log(4/δ)2ηHσ

2

b2
. (A.1)

Proof. See Appendix B.3.441

With all above lemmas, we prove Theorem 5.3.442

Proof of Theorem 5.3. Under the choice of parameter in Theorem 5.3, we have Lemma A.1 to443

A.4 hold. Now for GD phase, we know that the function value F decreases by σε/(16bL) on444

average. For Escape phase, we know that the F decreases by log(4/δ)2ηHσ
2/b2 on average. So445

Pullback-STORM can find (ε, εH)-approximate local minima within Õ(bL∆σ−1ε−1 + b2L∆σ−2)446

iterations (we use the fact that ηH = Õ(L−1)). Then the total number of stochastic gradient447

evaluations is bounded by Õ(B + b2L∆σ−1ε−1 + b3L∆σ−2). Plugging in the choice of b =448

Õ(σε−1 + σρε−2H ) in Theorem 5.3, we have the total sample complexity449

Õ

(
σL∆

ε3
+
σρ2L∆

εε4H
+
σρ3L∆

ε6H

)
.

The proof finishes by using Young’s inequality.450
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B Proof of Lemmas in Section A451

In this section we prove lemmas in Section A. Let filtration Ft,b denote the all history before sample452

ξt,b at time t ∈ {0, · · · , T}, then it is obvious that F0,1 ⊆ F0,b ⊆ · · · ⊆ F1,1 ⊆ · · · ⊆ FT,1 ⊆ · · · ⊆453

FT,b.454

We also need the following fact:455

Proposition B.1. For any t, we have the following equation:456

εt+1

(1− a)t+1
− εt

(1− a)t
=

1

(1− a)t+1

∑
i≤b

εt,i,

where457

εt,i =
a

b
[∇f(xt+1; ξit+1)−∇F (xt+1)]

+
1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξit+1)].

Proof. Following the update rule in Pullback-STORM, we could have the update rule of ε described458

as459

εt+1 =
1− a
b

∑
i≤b

[
dt −∇f(xt; ξ

i
t+1)

]
+

1

b

∑
i≤b

[
∇f(xt+1; ξit+1)−∇F (xt+1)

]
=
a

b

∑
i≤b

[∇f(xt+1; ξit+1)−∇F (xt+1)] + (1− a)(dt −∇F (xt))

+
1− a
b

∑
i≤b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξit+1)

]
=
a

b

∑
i≤b

[∇f(xt+1; ξit+1)−∇F (xt+1)] + (1− a)εt

+
1− a
b

∑
i≤b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξit+1)

]
,

where the last equation is by definition εt := dt −∇F (xt). Thus we have460

εt+1

(1− a)t+1
− εt

(1− a)t

=
1

(1− a)t+1

(a
b

∑
i≤b

[∇f(xt+1; ξit+1)−∇F (xt+1)]

+
1− a
b

∑
i≤b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξit+1)

])
,

=
1

(1− a)t+1

∑
i≤b

εt,i.

461

B.1 Proof of Lemma A.1462

Proposition B.2. For two positive sequences {ai}ni=1 and {bi}ni=1. Suppose C =463

maxi,j∈[n]{|ai/aj |}, b̄ =
∑n
i=1 bi/n. Then we have,464

n∑
i=1

aibi ≤ max
i
ai · n · b̄ ≤ C

n∑
i=1

aib̄.

Proof of Lemma A.1. By Proposition B.1 we have465

εt+1

(1− a)t+1
− εt

(1− a)t
=

1

(1− a)t+1

∑
i≤b

εt,i.
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It is easy to verify that {εt,i} forms a martingale difference sequence and466

‖εt,i‖22 ≤ 2

∥∥∥∥ab [∇f(xt+1; ξit+1)−∇F (xt+1)]

∥∥∥∥2
2

+ 2

∥∥∥∥1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξit+1)

]∥∥∥∥2
2

≤ 2a2σ2 + 8(1− a)2L2‖xt+1 − xi‖22
b2

,

where the first inequality holds due to triangle inequality, the second inequality holds due to As-467

sumptions 3.1 and 3.2. Therefore, by Azuma-Hoeffding inequality (See Lemma D.1 for detail), with468

probability at least 1− δ, we have that for any t > 0,469 ∥∥∥∥ εt
(1− a)t

− ε0
(1− a)0

∥∥∥∥2
2

≤ 4 log(4/δ)

t−1∑
i=0

b · 2a2σ2 + 8(1− a)2L2‖xi+1 − xi‖22
(1− a)2i+2b2

= 8 log(4/δ)

t−1∑
i=0

a2σ2 + 4(1− a)2L2‖xi+1 − xi‖22
(1− a)2i+2b

.

Therefore, we have470

‖εt‖22 ≤ 2(1− a)2t
∥∥∥∥ εt

(1− a)t
− ε0

∥∥∥∥2
2

+ 2(1− a)2t‖ε0‖22

≤ log(4/δ)

[
64L2

b

t−1∑
i=0

(1− a)2t−2i‖xi+1 − xi‖22 +
16aσ2

b

]
+ 2(1− a)2t‖ε0‖22. (B.1)

By Azuma-Hoeffding Inequality, we have with probability 1− δ,471

‖ε0‖22 =

∥∥∥∥ 1

B

∑
1≤i≤B

[
∇f(x0; ξi0)−∇F (x0)

]∥∥∥∥2
2

≤ 4 log(4/δ)σ2

B
.

Therefore, with probability 1− 2δ, we have472

‖εt‖22 ≤ log(4/δ)

[
64L2

b

t−1∑
i=0

(1− a)2t−2i−2‖xi+1 − xi‖22 +
16aσ2

b
+

32(1− a)2tσ2

B

]

=
64L2 log(4/δ)

b

t−1∑
i=0

(1− a)2t−2i−2‖xi+1 − xi‖22︸ ︷︷ ︸
I

+
16aσ2 log(4/δ)

b
(B.2)

+
32(1− a)2t log(4/δ)σ2

B
. (B.3)

We now bound I . Denote S1 = {i ∈ [t − 1]|∃j, tj ≤ i < mj}, S2 = {i ∈ [t − 1]|∃j, i = mj},473

S3 = {i ∈ [t− 1]|∃j,mj < i < tj+1}, We can divide I into three part,474

I =
∑
i∈S1

(1− a)2t−2i−2‖xi+1 − xi‖22︸ ︷︷ ︸
I1

+
∑
i∈S2

(1− a)2t−2i−2‖xi+1 − xi‖22︸ ︷︷ ︸
I2

+

t−1∑
i∈S3

(1− a)2t−2i−2‖xi+1 − xi‖22︸ ︷︷ ︸
I3

. (B.4)

Because ‖xi+1 − xi‖2 = ηt‖di‖2 = η, we can bound I1 as follows,475

I1 = η2
∑
i∈S1

(1− a)2t−2i−2 ≤ η2
∞∑
i=0

(1− a)i =
η2

a
. (B.5)
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Because the perturbation radius is r, we can bound I2 as follows,476

I2 =
∑
i∈S2

(1− a)2t−2i−2‖xi+1 − xi‖22 ≤ r2
∑
i∈S2

(1− a)2t−2i−2 ≤ r2

a
. (B.6)

To bound I3, we have477

I3 =

t−1∑
i∈S3

(1− a)2t−2i−2‖xi+1 − xi‖22

=

S∑
s=1

min{t−1,ts+1−1}∑
i=ms+1

(1− a)2t−2i−2‖xi+1 − xi‖22

≤
S∑
s=1

(1− a)−2`thres

min{t−1,ts+1−1}∑
i=ms+1

(1− a)2t−2i−2D

= (1− a)−2`thres

t−1∑
i∈S3

(1− a)2t−2i−2D

≤ D(1− a)−2`thres

a
, (B.7)

where S satisfies mS < t − 1 < tS+1. The first inequality holds due to Proposition B.2 with the478

fact that the average of ‖xi+1 − xi‖22 is bounded by D̄, according to the Pullback scheme, and479

ts+1 −ms < `thres, the last one holds trivially. Substituting (B.5), (B.6), (B.7) into (B.4), we have480

I ≤ η2 + r2 + (1− a)2`thresD

a
.

Therefore (B.3) can further bounded by481

‖εt‖22 ≤
64L2 log(4/δ)

b

η2 + r2 + (1− a)2`thresD

a
+

16aσ2 log(4/δ)

b
+

32(1− a)2t log(4/δ)σ2

B
.

(B.8)

By the selection of η ≤ σ/(2bL), r ≤ σ/(2bL) and D ≤ σ2/(4b2L2), a = 562 log(4/δ)/b,482

B = b2,a ≤ 1/4`thres, it’s easy to verify that483

64L2 log(4/δ)

b

η2 + r2 + 2D

a
≤ σ2

b2
(B.9)

(1− a)2`thres ≥ 1− 2a`thres ≥
1

2
(B.10)

16aσ2 log(4/δ)

b
≤ 2242σ2 log(4/δ)2

b2
(B.11)

32 log(4/δ)σ2

B
≤ 32 log(4/δ)σ2

b2
. (B.12)

Plugging (B.9) to (B.12) into (B.8) gives,484

‖εt‖2 ≤
210 log(4/δ)σ

b
.

485

B.2 Proof of Lemma A.3486

Lemma B.3 (Small stuck region). Suppose −γ = λmin(∇2F (xms
)) ≤ −εH . Set ` =487

2 log(8εHρ
−1r−10 )/(ηHγ), ηH ≤ min{1/(10L log(8εHLρ

−1r−10 )), 1/(10L log(`))}, a ≤ ηHγ,488

r ≤ LηHεH/ρ. Let {xt}, {x′t} be two coupled sequences by running Pullback-STORM from489

xms+1,x
′
ms+1 with wms+1 = xms+1 − x′ms+1 = r0e1, where xms+1,x

′
ms+1 ∈ Bxms

(r),490
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r0 = δr/
√
d and e1 denotes the smallest eigenvector direction of Hessian ∇2F (xms). Moreover, let491

batch size b ≥ max{16 log(4/δ)η−2H L−2γ−2, 562 log(4/δ)a−1}, then with probability 1 − 2δ we492

have493

∃T ≤ `,max{‖xT − x0‖2, ‖x′T − x′0‖2} ≥
ηHεHL

ρ
.

Proof. See Appendix C.1.494

Proof of Lemma A.3. We assume λmin(∇2F (xms
)) < −εH and prove our statement by contradic-495

tion. Lemma B.3 shows that, in the random perturbation ball at least one of two points in the e1496

direction will escape the saddle point if their distance is larger than r0 = δr√
d

. Thus, the probability497

of the starting point xms+1 ∼ Bxms
(r) located in the stuck region uniformly is less than δ. Then498

with probability at least 1− 2δ,499

∃ms < t < ms + `thres, ‖xt − xms
‖2 ≥

LηHεH
ρ

. (B.13)

Suppose Pullback-STORM does not break, then for any ms < t < ms + `thres,500

‖xt − xms
‖2 ≤

t−1∑
i=ms

‖xi+1 − xi‖2 ≤

√√√√(t−ms)

t−1∑
i=ms

‖xi+1 − xi‖22 ≤ (t−ms)
√
D,

where the first inequality is due to the triangle inequality and the second inequality is due to Cauchy-501

Schwarz inequality. Thus, by the selection of D, we have502

‖xt − xms‖2 ≤ (t−ms)
√
D ≤ `thres

√
D <

LηHεH
ρ

,

which contradicts (B.13). Therefore, we know that with probability at least 1 − 2δ,503

λmin(∇2F (xms)) ≥ −εH .504

B.3 Proof of Lemma A.4505

Proof of Lemma A.4. Suppose ms < i < ts+1. Then with probability at least 1− δ, then by Lemma506

D.2 we have507

F (xi+1) ≤ F (xi) +
ηi
2
‖εi‖22 −

(
1

2ηi
− L

2

)
‖xi+1 − xi‖22

≤ F (xi) +
ηH
2

220 log(4/δ)2σ2

b2
− 1

4ηH
‖xi+1 − xi‖22 (B.14)

where the the second inequality holds due to Lemma A.1 and the fact that for any ms < i < ts+1,508

ηi ≤ ηH ≤ 1/(2L). Taking summation of (B.14) from i = ms + 1 to t− 1, we have509

F (xt) ≤ F (xms+1) + 219ηH log(4/δ)2(t−ms − 1)
σ2

b2
− 1

4ηH

t−1∑
i=ms+1

‖xi+1 − xi‖22. (B.15)

Finally, we have510

F (xms+1)− F (xts+1) ≥
ts+1−1∑
i=ms+1

‖xi+1 − xi‖22
4ηH

− 219 log(4/δ)2(t−ms − 1)ηH
σ2

b2

= (ts+1 −ms − 1)

(
D

4ηH
− 219 log(4/δ)2ηHσ

2

b2

)
= (ts+1 −ms − 1)

(
σ2

16ηHb2L2
− 219 log(4/δ)2ηHσ

2

b2

)
≥ (ts+1 −ms − 1)

4 log(4/δ)2ηHσ
2

b2
, (B.16)
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where the last inequality is by the selection of ηH ≤ 1/
(
212L log(4/δ)

)
. For i = ms, by Lemma511

D.2 we have512

F (xms+1) ≤ F (xt) + (2‖dt‖2 + 2‖εt‖2 + Lr/2)r

≤ F (xms
) + (4ε+ Lr/2)r

≤ F (xms) +
2 log(4/δ)2ηHσ

2

b2
, (B.17)

where the last inequality is by the selection, r ≤ min
{

log(4/δ)2ηHσ
2/(4b2ε),

√
2 log(4/δ)2ηHσ2/(b2L)

}
.513

Combining (B.16) and (B.17) we have that514

F (xms
)− F (xts+1

) = F (xms
)− F (xms+1) + F (xms+1)− F (xts+1

)

≥ (ts+1 −ms − 1)
4 log(4/δ)2ηHσ

2

b2
− 2 log(4/δ)2ηHσ

2

b2

≥ (ts+1 −ms)
log(4/δ)2ηHσ

2

b2
,

where we use the fact that ts+1 −ms ≥ 2.515

C Proof of Lemmas in Section B516

C.1 Proof of Lemma B.3517

Define wt := xt − x′t as the distance between the two coupled sequences. By the construction, we518

have that w0 = r0e1, where e1 is the smallest eigenvector direction of HessianH := ∇2F (xms
).519

wt = wt−1 − η(dt−1 − d′t−1)

= wt−1 − η(∇F (xt−1)−∇F (x′t−1) + dt−1 − F (xt−1)− d′t−1 +∇F (x′t−1))

= wt−1 − η
[
(xt−1 − x′t−1)

∫ 1

0

∇2F (x′t−1 + θ(xt−1 − x′t−1))dθ

+ dt−1 − F (xt−1)− d′t−1 + F (x′t−1)

]
= (1− ηH)wt−1 − η(∆t−1wt−1 + yt−1),

where520

∆t−1 :=

∫ 1

0

(
∇2F (x′t−1 + θ(xt−1 − x′t−1))−H

)
dθ,

yt−1 := dt−1 −∇F (xt−1)− d′t−1 +∇F (x′t−1) = εt−1 − ε′t−1.

Recursively applying the above equation, we get521

wt = (1− ηH)t−ms−1wms+1 − η
t−1∑

τ=ms+1

(1− ηH)t−1−τ (∆τwτ + yτ ). (C.1)

We want to show that the first term of (C.1) dominates the second term. Next Lemma is essential for522

the proof of Lemma B.3, which bounds the norm of yt.523

Lemma C.1. Under Assumption 3.1, we have following inequality holds,524

‖yt‖2 ≤ 2
√

log(4/δ)b−1/2a−1/2
(

2L max
ms<τ<t

‖wτ+1 −wτ‖2

+ max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2
)

+ 4
√

log(4/δ)b−1/2Lr0, (C.2)

where Dτ = max{‖xτ − xms
‖2, ‖x′τ − xms

‖2}.525

Proof of Lemma C.1. By Proposition B.1, we have that526

yt+1

(1− a)t+1
− yt

(1− a)t
=

εt+1

(1− a)t+1
− εt

(1− a)t
−

ε′t+1

(1− a)t+1
+

ε′t
(1− a)t
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=
1

(1− a)t+1

∑
i≤b

[εt,i − ε′t,i],

where εt,i is the same as that in Proposition B.1:527

εt,i =
a

b
[∇f(xt+1; ξit+1)−∇F (xt+1)]

+
1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξit+1)]

=
1

b
[∇f(xt+1; ξit+1)−∇F (xt+1)] +

1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)], (C.3)

where we rewrite εt,i as (C.3) because now we want bound the εt − ε′t by the distance between two528

sequence. ε′t,i is defined similarly as follows529

ε′t,i =
1

b
[∇f(xt+1; ξit+1)−∇F (xt+1)] +

1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)].

It is easy to verify that {εt,i − ε′t,i} forms a martingale difference sequence. We now bound530

‖εt,i − εt,i′‖22. DenoteHt+1,i = ∇2f(xms
; ξit+1), then we introduce two terms531

∆t+1,i :=

∫ 1

0

(
∇2f(x′t+1 + θ(xt+1 − x′t+1); ξit+1)−Ht+1,i

)
dθ

∆̂t+1,i :=

∫ 1

0

(
∇2f(x′t + θ(xt − x′t); ξ

i
t+1)−Ht+1,i

)
dθ,

By Assumption 3.1, we have ‖∆t+1,i‖2 ≤ ρmaxθ∈[0,1] ‖x′t+1 + θ(xt+1 − x′t+1) − xms+1‖2 ≤532

ρDt+1, similarly we have ‖∆̂t+1,i‖2 ≤ ρDt and ∆t+1 ≤ ρDt+1.533

Now we bound εt,i − ε′t,i,534

b(εt,i − ε′t,i) =
(

[∇f(xt+1; ξit+1)−∇F (xt+1)] + (1− a)
[
∇F (xt)−∇f(xt; ξ

i
t+1)

])
−
(

[∇f(x′t+1; ξit+1)−∇F (x′t+1)]− (1− a)
[
∇F (x′t)−∇f(x′t; ξ

i
t+1)

])
=
(
Ht+1,iwt+1 + ∆t+1,iwt+1 −Hwt+1 −∆t+1wt+1 + (1− a)Hwt

+ (1− a)∆twt − (1− a)Ht+1,iwt − (1− a)∆̂t+1,iwt

)
=
(
Ht+1,i −H

)(
wt+1 − (1− a)wt

)
+
(
∆t+1,i −∆t+1

)
wt+1

+ (1− a)
(
∆t − ∆̂t+1,i)wt. (C.4)

This implies the LHS of (C.4) has the following bound.535

‖b(εt,i − ε′t,i)‖2 ≤ 2L‖wt+1 − (1− a)wt‖2 + 2ρDx
t+1‖wt+1‖2 + 2ρDx

t ‖wt‖2
≤ 2L‖wt+1 −wt‖2 + 2ρDx

t+1‖wt+1‖2 + (2aL+ 2ρDx
t )‖wt‖2

≤ 2L max
ms<τ<t

‖wτ+1 −wτ‖2 + max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2︸ ︷︷ ︸
M

where the first inequality is by the gradient Lipschitz Assumption and Hessian Lipschitz Assump-536

tion 3.1, the second inequality is by triangle inequality. Therefore we have537

‖εt,i − ε′t,i‖22 ≤
M2

b2

Furthermore, by Azuma Hoeffding inequality(See Lemma D.1 for detail), with probability at least538

1− δ, we have that for any t > 0,539 ∥∥∥∥ yt
(1− a)t

− yms+1

(1− a)ms+1

∥∥∥∥2
2

=

∥∥∥∥ t−1∑
τ=ms+1

(
yτ+1

(1− a)τ+1
− yτ

(1− a)τ

)∥∥∥∥2
2
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=

∥∥∥∥ t−1∑
τ=ms+1

(
1

(1− a)τ+1

∑
i≤b

[ετ,i − ε′τ,i]

)∥∥∥∥2
2

≤ 4 log(4/δ)

( t−1∑
i=ms+1

b · M2

(1− a)2τ+2b2

)
.

Multiply (1− a)2t on both side, we get540

‖yt − (1− a)t−ms−1yms+1‖22 ≤ 4b−1 log(4/δ)

t−1∑
τ=ms+1

(1− a)2t−2τ−2M2

≤ 4 log(4/δ)b−1a−1M2,

where the last inequality is by
∑t−1
i=0(1− a)2t−2i−2 ≤ a−1. Furthermore, by triangle inequality we541

have542

‖yt‖2 ≤ 2
√
log(4/δ)b−1/2a−1/2M + (1− a)t−ms−1‖yms+1‖2. (C.5)

‖∇f(xms+1; ξims+1) − ∇F (x′ms+1) − ∇f(x′ms+1; ξims+1) +∇F (x′ms+1)‖2 ≤ 2Lr0 due to As-543

sumption 3.1. Then by Azuma Inequality(See Lemma D.1), we have with probability at least544

1− δ,545

‖yms+1‖22 = ‖dms+1 −∇F (xms+1)− d′ms+1 +∇F (x′ms+1)‖22

=

∥∥∥∥1

b

∑
i≤b

[∇f(xms+1; ξims+1)−∇F (x′ms+1)−∇f(x′ms+1; ξims+1) +∇F (x′ms+1)]

∥∥∥∥2
2

≤ 4 log(4/δ)4L2r20
b

. (C.6)

Plugging (C.6) into (C.5) gives546

‖yt‖2 ≤ 2
√

log(4/δ)b−1/2a−1/2
(

2L max
ms<τ<t

‖wτ+1 −wτ‖2

+ max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2
)

+ 4
√

log(4/δ)b−1/2Lr0.

547

Now we can give a proof of Lemma B.3.548

Proof of Lemma B.3. We proof it by induction that549

1. 1
2 (1 + ηHγ)t−ms−1r0 ≤ ‖wt‖2 ≤ 3

2 (1 + ηHγ)t−ms−1r0.550

2. ‖yt‖2 ≤ 2ηHγL(1 + ηHγ)t−ms−1r0.551

First for t = ms + 1, we have ‖wms+1‖2 = r0, ‖yms+1‖2 ≤
√

16b−1 log(4/δ)L2r20 ≤552

2ηHγLr0(See (C.6)), where b ≥ 2η−2H γ−2
√

log(4/δ). Assume they hold for all ms < τ < t,553

we now prove they hold for t. We bound wt first, we only need to show that second term of (C.1) is554

bounded by 1
2 (1 + ηHγ)tr0.555 ∥∥∥∥ηH t−1∑

τ=ms+1

(1− ηHH)t−1−τ (∆τwτ + yτ )

∥∥∥∥
2

≤ ηH
t−1∑

τ=ms+1

(1 + ηHγ)t−1−τ (‖∆τ‖2‖wτ‖2 + ‖yτ‖2)
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≤ ηH
t−1∑

τ=ms+1

(1 + ηHγ)t−ms−2r0(
3

2
‖∆τ‖2 + 2ηHγL)

≤ ηH
t−1∑

τ=ms+1

(1 + ηHγ)t−ms−2r0(3ηHεHL+ 2ηHγL)

= ηH`(1 + ηHγ)t−ms−2r0 · 5ηHγL
≤ 10 log(8εHρ

−1r−10 )ηHL(1 + ηHγ)t−ms−2r0

≤ 1

2
(1 + ηHγ)t−ms−1r0,

where the first inequality is by the eigenvalue assumption over H, the second inequality is by the556

Induction hypothesis, the third inequality is by ‖∆τ‖2 ≤ ρDτ = ρmax{‖xτ − xms
‖2, ‖x′τ −557

xms
‖2} ≤ ηHεHL + rρ ≤ 2ηHεHL, the fourth inequality is by the choice of t −ms − 1 ≤ ` ≤558

2 log(8εHρ
−1r−10 )/(ηHγ), the last inequality is by the choice of ηH ≤ 1/(10 log(8εHρ

−1r−10 )L).559

Now we bound ‖yt‖2 by (C.2). We first get the bound for L‖wi+1 −wi‖2 as follows,560

L‖wt+1 −wt‖2

= L

∥∥∥∥− ηHH(I − ηHH)t−ms−2w0 − ηH
t−2∑

τ=ms+1

ηHH(I − ηHH)t−2−τ (∆τwτ + yτ )

+ ηH(∆t−1wt−1 + yt−1)

∥∥∥∥
2

(i)

≤ LηHγ(1 + ηHγ)t−ms−2r0 + LηH

∥∥∥∥ t−2∑
τ=ms+1

ηHH(I − ηHH)t−2−τ (∆τwτ + yτ )

∥∥∥∥
2

+ LηH

∥∥∥∥∆t−1wt−1 + yt−1

∥∥∥∥
2

(ii)

≤ LηHγ(1 + ηHγ)t−ms−2r0

+ LηH

[∥∥∥∥ t−2∑
τ=ms+1

ηHH(I − ηHH)t−2−τ
∥∥∥∥
2

+ 1

]
max

0≤τ≤t−1

∥∥∥∥∆τwτ + yτ

∥∥∥∥
2

(iii)

≤ LηHγ(1 + ηHγ)t−ms−2r0 + LηH

[ t−2∑
τ=ms+1

1

t− 1− τ
+ 1

]
max

0≤τ≤t−1

∥∥∥∥∆τwτ + yτ

∥∥∥∥
2

(iv)

≤ LηHγ(1 + ηHγ)t−ms−2r0 + LηH [log(t−ms − 1) + 1] · [5ηHγL(1 + ηHγ)t−ms−2r0]

(v)

≤ 6LηHγ(1 + ηHγ)t−ms−2r0 + 5 log(t−ms − 1)γη2HL
2(1 + ηHγ)t−ms−2r0, (C.7)

where (i) is by triangle inequality, (ii) is by the definition of max, (iii) is by ‖ηHH(I −561

ηHH)t−2−τ‖2 ≤ 1
t−1−τ , (iv) is due to ‖∆τ‖2 ≤ ρDτ ≤ ρ(ηHγL/ρ + r) ≤ 2γηHL, ‖wτ‖2 ≤562

3(1 + ηHγ)τ−ms−1r0/2 and ‖yτ‖2 ≤ 2ηHγL(1 + ηHγ)τ−ms−1r0, (v) is due to ηH ≤ 1/L.563

We next get the bound of maxms<τ≤t(2aL+ 4ρDτ ) ·maxms<τ≤t ‖wτ‖2 as follows564

max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2 ≤ (2aL+ 8γηHL)
3(1 + ηHγ)t−ms−1

2
r0

≤ 15γηHL(1 + ηHγ)t−ms−1r0. (C.8)

where the first inequality is by ρDt ≤ ρ(γηHL/ρ+ r) ≤ 2γηHL and the induction hypothesis, last565

inequality is by a ≤ γηH .566

Plugging (C.7) and (C.8) into (C.2) gives,567

‖yt‖2 ≤ 2
√

log(4/δ)b−1/2a−1/2
(

2L max
ms<τ<t

‖wτ+1 −wτ‖2
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+ max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2
)

+ 4
√

log(4/δ)b−1/2Lr0

≤ 2
√

log(4/δ)b−1/2a−1/2
(

10 log(`)γη2HL
2(1 + ηHγ)t−ms−1r0

+ 27γηHL(1 + ηHγ)t−ms−1r0

)
+ 4
√

log(4/δ)b−1/2Lr0

≤ 56
√

log(4/δ)b−1/2a−1/2ηHLγ(1 + ηHγ)t−ms−1r0︸ ︷︷ ︸
I1

+ 4
√

log(4/δ)b−1/2(1 + ηHγ)t−ms−1r0︸ ︷︷ ︸
I2

where the last inequality is by ηH ≤ 1/(10L log `). Now we bound I1 and I2 respectively.568

I1 = 56
√

log(4/δ)b−1/2a−1/2ηHLγ(1 + ηHγ)t−ms−1r0

= ηHγL(1 + ηHγ)t−ms−1r0,

where the inequality is applying b ≥ 562 log(4/δ)a−1. Now we bound I2 by applying b ≥569

16 log(4/δ)η−2H L−2γ−2,570

I2 ≤ ηHγL(1 + ηHγ)t−ms−1r0.

Then we obtain that571

‖yt‖2 ≤ 2ηHγL(1 + ηHγ)t−ms−1r0,

which finishes the induction. So we have ‖wt‖2 ≥ 1
2 (1 + ηHγ)t−ms−1r0. However, the triangle572

inequality give the bound573

‖wt‖2 ≤ ‖xt − xms+1
‖2 + ‖xms+1

− xms
‖2 + ‖x′t − x′ms+1‖2 + ‖x′ms+1 − x′ms

‖2

≤ 2r + 2
εHηHL

ρ

≤ 4
εHηHL

ρ
,

where the last inequality is due to r ≤ εHηHL/ρ. So we obtain that574

t ≤ log(8εHηHLρ
−1r−10 )

log(1 + ηHγ)
<

2 log(8εHρ
−1r−10 )

ηHγ
.

575

D Auxiliary Lemmas576

We start by providing the Azuma–Hoeffding inequality under the vector settings.577

Lemma D.1 (Theorem 3.5, [24]). Let ε1:k ∈ Rd be a vector-valued martingale difference sequence578

with respect to Fk, i.e., for each k ∈ [K], E[εk|Fk] = 0 and ‖εk‖2 ≤ Bk, then we have given579

δ ∈ (0, 1), w.p. 1− δ,580 ∥∥∥∥ K∑
i=1

εk

∥∥∥∥2
2

≤ 4 log(4/δ)

K∑
i=1

B2
k.

This lemma provides a dimension-free bound due to the fact that the Euclidean norm version of Rd is581

(2, 1) smooth, see also [15, 9]. Now, we are give a proof of Lemma 6.1.582

We have the following lemma:583

Lemma D.2. For any t 6= ms, we have584

F (xt+1) ≤ F (xt)−
ηt
2
‖dt‖22 +

ηt
2
‖εt‖22 +

L

2
‖xt+1 − xt‖22.

For t = ms, we have F (xt+1) ≤ F (xt) + (‖dt‖2 + ‖εt‖2 + Lr/2)r.585
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Proof of Lemma D.2. By Assumption 3.1, we have586

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖22. (D.1)

For the case t 6= ms, the update rule is xt+1 = xt − ηtdt, therefore587

F (xt+1) ≤ F (xt)− ηt〈∇F (xt),dt〉+
L

2
‖xt+1 − xt‖22

= F (xt)− ηt‖∇F (xt)‖22/2− ηt‖dt‖22/2 + ηt‖εt‖22/2 + L‖xt+1 − xt‖22/2

≤ F (xt)− ηt‖dt‖22/2 + ηt‖εt‖22/2 +
L

2
‖xt+1 − xt‖22,

where the first inequality on the first line is due to Assumption 3.1 and the second inequality holds588

trivially. For the case t = ms, since ‖∇F (xt)‖2 ≤ ‖dt‖2 + ‖εt‖2 we have589

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖22

≤ F (xt) + (‖dt‖2 + ‖εt‖2 + Lr/2)r.

590

Lemma D.3 (Lemma 6, [17]). Suppose −γ = λmin(∇2F (xms
)) ≤ −εH . Set r ≤591

LηHεH/(Cρ), `thres = 2 log(ηHεH
√
dLC−1ρ−1δ−1r−1)/(ηHεH) = Õ(η−1H ε−1H ), ηH ≤592

min{1/(16L log(ηHεH
√
dLC−1ρ−1δ−1r−1)), 1/(8CL log `thres)} = Õ(L−1), b = q =

√
B ≥593

16 log(4/δ)/(η2Hε
2
H). Let {xt}, {x′t} be two coupled sequences by running Pullback-SPIDER594

from xms+1,x
′
ms+1 with wms+1 = xms+1 − x′ms+1 = r0e1, where xms+1,x

′
ms+1 ∈ Bxms

(r),595

r0 = δr/
√
d and e1 denotes the smallest eigenvector direction of Hessian ∇2F (xms

). Then with596

probability at least 1− δ,597

max
ms<t<ms+`thres

{‖xt − xms‖2, ‖x0 − xms‖2} ≥
LηHεH
Cρ

, (D.2)

where C = O(log(d`thres/δ) = Õ(1).598
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