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Figure 1: Performance comparison in three interleaved scenarios, including multi-image, multi-
frame (video), and multi-view (3D). Our LLaVA-Interleave model achieves SoTA performance
across a variety of evaluation benchmarks.

ABSTRACT

Visual instruction tuning has made considerable strides in enhancing the capa-
bilities of Large Multimodal Models (LMMs). However, existing open LMMs
largely focus on single-image tasks, their applications to multi-image scenarios
remains less explored. Additionally, prior LMM research separately tackles dif-
ferent scenarios, leaving it impossible to generalize cross scenarios with new
emerging capabilities. To this end, we introduce LLaVA-Interleave, which si-
multaneously tackles Multi-image, Multi-frame (video), Multi-view (3D), and
Multi-patch (single-image) scenarios in LMMs. To enable these capabilities, we
regard the interleaved data format as a general template and compile the M4-
Instruct dataset with 1,177.6k samples, spanning 4 primary domains with 14
tasks and 41 datasets. We also curate the LLaVA-Interleave Bench to compre-
hensively evaluate the multi-image performance of LMMs. Through extensive
experiments, LLaVA-Interleave achieves leading results in multi-image, video,
and 3D benchmarks, while maintaining the performance of single-image tasks.
Besides, our model also exhibits several emerging capabilities, e.g., transfer-
ring tasks across different settings and modalities. Code is available at https:
//github.com/LLaVA-VL/LLaVA-NeXT.

1 INTRODUCTION

Recent advancements in Large Multimodal Models (LMMs) (37; 26; 43; 12; 64; 11; 66) have show-
cased impressive capabilities in diverse multimodal contexts, advancing the pursuit of artificial gen-
eral intelligence. With extensive vision-language data (46; 47), they empower Large Language
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Figure 2: Tasks in our M4-Instruct. (a) showcases an example of interleaved multi-image scenarios
(visual story telling). (b), (c), and (d) indicate that video, 3D and single-image data can also be
organized as the interleaved data format for unified processing.

Models (LLMs) (52; 53; 8; 5) with visual modality by aligning vision encoders (44; 9; 45). This in-
tegration has propelled forward the field of AI, enabling complex image and language understanding
tasks to be performed with unprecedented accuracy.

However, most open-source LMMs (24; 11; 34; 36) have primarily focused on pushing the perfor-
mance limit of the single-image scenario, the more complex multi-image scenarios remain largely
less explored. This oversight is significant given that many real-world applications demand multi-
image capabilities, such as comprehensive multi-image analyses. Traditionally, researchers have
approached these challenges by training separate task-specific models for each application scenario,
e.g., multi-image (19; 27; 1), video (7; 29; 67), and 3D (14; 58; 15). This is both labor-intensive and
time-consuming, resulting in fragmented methodologies that are inefficient and often unscalable.
Considering the diverse range of computer vision settings and data formats, there is a pressing need
to develop a general framework for LMMs that can operate effectively across these varied contexts.

In this paper, we observe that the image-text interleaved format can naturally serve as a general
data template to unify different scenarios, e.g., single-image or multi-image as special cases, video
as multi-frames, and 3D as multi-views, as illustrated in Figure 2. Therefore, we present LLaVA-
Interleave, an all-around LMM that extends the model capabilities to various real-world settings
such as Multi-image, Multi-frame (videos), Multi-view (3D) while maintains the performance of the
Multi-patch (single-image) performance. We denote the four settings as M4.

The core innovation of our approach lies in the perspective to leverage an image-text interleaved
format as a universal data template capable of accommodating different scenarios, and construct the
related visual instruction-following data. This perspective not only simplifies the training process
across various domains, but also allow the model to emerge new capabilities due to cross-domain
task composition.

Our contributions are summarized as below:

• Interleave data format unifies different tasks. We convert multi-image, video, 3D, and
single-image data all into an interleaved training format, which unifies different tasks in a
single LMM.

• New dataset and benchmark. We compile a high-quality training dataset, M4-Instruct,
with 1177.6 samples to empower LMMs with the M4 capabilities, which spans 4 primary
domains (multi-image, video, 3D, and single-image) with 14 tasks and 41 datasets. We also
curate LLaVA-Interleave Bench, a diverse set of benchmarks to evaluate the multi-image
performance, including 7 newly collected and 13 existing in/out-domain benchmarks.

• SoTA performance. With a single model, LLaVA-Interleave can achieve leading results
across different multi-image tasks compared to the previous SoTA, while maintaining the
single-image performance, as exemplified in Figure 1.

• Emerging capabilities with cross-task transfer. By jointly training on a diverse set of
tasks, our model showcases emerging capabilities to transfer tasks across different settings
and modalities. e.g., from spotting differences between images to videos.
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2 RELATED WORK

Interleaved Image-text Training Data. As a more general format, interleaved image-text data
can enable LMMs with two distinctive capabilities: multimodal in-context learning (ICL) capability
and instruction-following capability in real-world multi-image application scenarios. The former
in-context scenarios interleave several image-text examples within the prompt as task demonstra-
tions, adapting LMMs to new tasks in the inference stage in a few-shot manner. Flamingo (1) is
first model to demonstrate this capability, and thus is considered as GPT-3 moment for multimodal
community. Typically, the multimodal ICL ability is emerged after pre-training on web-scale raw
interleaved image-text sequences. In the open-source community, MMC4 (68) introduces a public
101.2M interleaved dataset spanning everyday topics, OBELICS (22) also presents a filtered dataset
comprising 141M interleaved web pages. Kosmos-1 (18) curates a 71M multimodal corpora, in-
cluding arbitrarily interleaved documents. To explicitly enable the ICL capability, MIMIC-IT (25)
proposes an automatic pipeline to create 2.8M multimodal samples in the instruction-tuning stage.
On the other hand, the latter multi-image scenarios aim to tackle diverse real-world applications
scenarios that involve multi-images. The training data of VPG-C (27) collected 4 new datasets with
ChatGPT. Mantis-Instruct (19) compiles existing 11 interleaved datasets and creates 4 new datasets.
The proposed M4-Instruct (19) compiles existing 41 interleaved datasets and creates 6 new datasets,
covering a much higher scenarios diversity than Mantis-Instruct.

Interleaved LMMs. As representative closed-source LMMs, both GPT-4V (42) and Gemini (12)
support real-world multi-image application scenarios with leading performance. With various public
datasets aforementioned, the community has developed open-source LMMs equipped with remark-
able multi-image proficiency. The ICL performance is typically considered to evaluate multimodal
pre-training, which has been adopted in several known LMMs, such as OpenFlamingo (2), IDEFICS
series (22; 23), VILA (33) and MM1 (41), Emu2 (51). Otter (25) is initialized from OpenFlamingo,
and is fine-tuned on the MIMIC-IT dataset to further improve ICL ability with instruction-tuning.
In contrast, the use of instruction-tuning in LMMs for various real-world multi-image applications
has been less explored, despite of Mantis (19). The proposed LLaVA-Interleave not only broad-
ens the multi-image scenario itself as demonstrated by the improved experimental results, but also
generalize the settings to diverse scenarios with one model, e.g., video, 3D, and single-image. The
cross-scenario training leads to emerging capabilities, achieving zero-shot task composition in new
multi-image contexts.

Interleaved Benchmarks. To assess the interleaved multi-image capabilities of LMMs, there have
been several high-quality benchmarks in various scenarios. The ICL benchmarks (20; 49) for LMMs
comprehensively evaluate their interleaved skills from few-shot to many-shot settings. For the more
challenging multi-image scenarios, previous works mainly focus on a specific domain for evalua-
tion, including NLVR2 (50) for daily-life VQA, MMMU (61) for colleague-level problem-solving,
MathVerse-mv (65) and SciVerse-mv (13) for mathematical and scientific reasoning, BLINK (10) to
challenge LMMs, and Mantis-Eval (19) for multi-image understanding. To further evaluate LMMs
on a collection of multi-image scenarios, DEMON (27) is the first benchmark that compiles dozens
of datasets with 477K samples. With the large amount of data and high diversity, DEMON lays
a good foundation for multi-image research. Unfortunately, it also inherits a significant amount
of low-quality data samples from existing datasets. To facilitate evaluation, the proposed LLaVA-
Interleave Bench curate high-quality samples, comprising both specific (synthetic, mathematical,
low-level) and general (daily, real-world, text-rich) multi-image scenarios. With 9 newly curated and
13 existing datasets, we categorize them into in-domain (12.9K) and out-domain (4.1K) schemes.
Con-current multi-image evaluation benchmarks include MuirBench (54) and ReMI (21).

3 INTERLEAVED MULTI-IMAGE TASKS & DATA

3.1 TASK OVERVIEW

We observe different computer vision scenarios can be generally represented by the interleaved
multi-image format, such as video, 3D, and single-image data. Therefore, to endow LLaVA-
Interleave with diverse capabilities, as shown in Figure 2, we adopt the interleaved multi-image
format to unify the data input of the following four tasks:
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Figure 3: Task examples of M4-Instruct, containing diverse scenarios in multi-image, multi-frame
(video), and multi-view (3D).

Multi-image scenarios include visual instructions incorporating interleaved vision-language input
with multiple images. This setting covers 12 challenging real-world tasks included in our train-
ing data, such as spotting the difference, visual story telling, image editing instruction generation,
interleaved multi-image dialogue, multi-image puzzle, low-level multi-image assessment, etc.

Multi-frame scenarios refer to taking video as input data by sampling it into multiple frames,
preserving temporal visual cues across the multi-image sequence. We mainly focus on 2 tasks:
video detailed captioning and video VQA.

Multi-view scenarios depict 3D environments by multi-view images from different perspectives,
where the visual correspondence and disparity can indicate spatial information in the 3D world. For
3D perception, we include 2 tasks: embodied VQA (dialogue and planning), and 3D scene VQA
(captioning and grounding).

Multi-patch scenarios represent the conventional single-image tasks. With the design of ‘any
resolution’ in LLaVA-NeXT (36), we divide a high-resolution image into multiple low-resolution
patches for efficient visual encoding, compatible with our interleaved multi-image format.

3.2 M4-INSTRUCT

To empower all-round multi-image capabilities, we meticulously curate a comprehensive training
dataset including 1177.6K instances, termed M4-Instruct, widely spanning multi-image, multi-
frame, and multi-view scenarios with 14 tasks and 41 datasets, along with multi-patch data to pre-
serve basic single-image performance. We showcase different task examples in Figure 3.

We exhibit a data overview of M4-Instruct in Figure 4, and the detailed data statistics in Table 15. For
the multi-image data, most of the datasets are collected from previous public efforts and rigorously
converted into our unified format with task-specific instructions, some inspired by DEMON (27) and
Mantis (19). On top of that, we also utilize GPT-4V (43) to annotate 3 new tasks to enable more di-
verse capabilities, i.e., Real-world Difference, Synthetic Difference, and Twitter Post. For the video
data, we collect a 255K subset from LLaVA-Hound (63), including 240K video VQA and 15K video
detailed captioning. We also include NExT-QA (57) and STAR (55) to expand our video training
data. For the 3D data, we widely gather the training set from nuScenes QA (6), ALFRED (48),
ScanQA (3), and 3D-LLM (16), covering both outdoor and indoor scenarios. For the single-image
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Figure 4: M4-Instruct training data statistics. Figure 5: LLaVA-Interleave Bench statistics.

data, we randomly sample 40% of the stage-2 fine-tuning data from LLaVA-NeXT (24), which aims
to preserve the single-image capacity.

To comprehensively evaluate the interleaved multi-image performance, we introduce the LLaVA-
Interleave Bench for LMMs, consisting of 13 challenging tasks with 17K instances. We present a
data overview of the benchmark in Figure 3, and the detailed data statistics in Table 16. In detail,
we categorize multi-image tasks into two classes:

• In-domain Evaluation includes tasks that have been ‘seen’ during our training, designed to
verify the model performance within familiar scenarios. We adopt 5 newly curated multi-
image tasks corresponding to training datasets, and 2 existing benchmarks, Q-Bench (56)
and NLVR2 (50), with 12.9K in total.

• Out-domain Evaluation involves tasks that don’t overlap with training scenarios, aiming
to reveal the generalization capacity of LMMs. We construct 2 new tasks for multi-image
mathematical (MathVerse (65)) and scientific (SciVerse (13)) comprehension, and utilize 3
existing benchmarks, Mantis-Eval (19), BLINK (10), and MMMU (60), with 4.1K in total.

4 INTERLEAVED VISUAL INSTRUCTION TUNING

In this section, we introduce several key techniques during the interleaved visual instruction tuning
of LLaVA-Interleave. For architecture designs, we follow LLaVA-NeXT (24) to adopt the most
general framework, i.e., a vision encoder (62), an intermediate projector, and an LLM (4). Then, we
consider the following techniques to achieve improved multi-image performance.

Technique 1: Continue training from single-image models. The interleaved multi-image tasks
can be regarded as an extension of single-image scenarios, more flexible in formats and challenging
in reasoning. Therefore, to better leverage the pre-trained single-image proficiency, we adopt an
off-the-shelf LLaVA-NeXT-Image (24) as the base model, which has gone through a stage-1 image-
caption pre-training and a stage-2 single-image fine-tuning. On top of this model, we perform the
interleaved multi-image instruction tuning with our M4-Instruct dataset.

Technique 2: Mixed Interleaved data formats during training. We adopt two format choices
for the positions of image tokens during the interleaved multi-image training. The first is to place all
the image tokens in front of the prompt, while maintaining the placeholders ⟨image⟩ within the text,
denoted as ‘In-the-front format’. The second preserves the interleaved format to put image tokens in
the place they are originally in, i.e., the positions of ⟨image⟩, denoted as ‘interleaved format’. In this
way, LLaVA-Interleave supports more flexible inference modes, exhibiting robustness to different
input formats.
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Table 1: Results on our LLaVA-Interleave Bench. SD: Spot the Difference, IE: Image Edit In-
struction, VST: Visual Story Telling, TRVQA: Text-rich VQA, MIVQA: Multi-image VQA, QB:
Q-Bench, SQ: ScanQA, Math: MathVerse-mv, Sci: SciVerse-mv.

Model In-domain Evaluation Out-domain Evaluation

Avg SD IE VST TRVQA MIVQA Puzzle QB NLVR2 Avg Math Sci Mantis BLINK MMMU-mv

GPT-4V (43) 39.2 12.5 11.0 10.9 54.5 52.0 17.1 76.5 88.8 57.8 60.3 66.9 62.7 51.1 47.9
LLaVA-NeXT-Image (7B) (36) 32.4 12.9 13.2 10.1 59.6 39.4 9.0 51.0 68.0 29.4 13.5 12.2 46.1 41.8 33.5
VPG-C (7B) (28) 35.8 27.8 15.2 21.5 38.9 46.8 2.4 57.6 73.2 34.5 24.3 23.1 52.4 43.1 29.4
Mantis (7B) (19) 39.6 17.6 11.2 12.5 45.2 52.5 25.7 69.9 87.4 39.3 27.2 29.3 59.5 46.4 34.1

LLaVA-Interleave
0.5B 43.9 34.3 21.6 29.7 63.9 54.8 35.4 52.0 67.8 33.1 13.3 12.2 45.6 39.2 28.6
7B 58.6 37.1 24.3 33.1 76.1 87.5 48.7 74.2 88.8 42.8 32.8 31.6 62.7 52.6 34.5
14B 62.3 40.5 24.5 33.3 78.6 95.0 59.9 76.7 91.1 44.3 33.4 32.7 66.4 52.1 37.1

Technique 3: Combining different data scenarios improves individual task performance.
Most existing works conduct supervised fine-tuning with only one type of data source, e.g., multi-
image tuning of Mantis (19) and multi-frame tuning of LLaMA-VID (31). Instead, we utilize
the M4-Instruct to simultaneously conduct instruction tuning with four different tasks (multi-
image/frame/view/patch). With a unified interleaved format, distinct data scenarios have the po-
tential to provide complementary semantics and instruction-following capabilities.

5 EXPERIMENTS

In Section 5.1, we first introduce our evaluation schemes and implementation details. Then, in
Section 5.2, we report and analyze the quantitative results in four interleaved multi-image scenarios.

5.1 SETTINGS

Evaluation Schemes. We evaluate LLaVA-Interleave on four real-world interleaved scenarios,
i.e., multi-image, multi-frame (video), multi-view (3D), and multi-patch (single-image).

• For multi-image evaluation, we adopt the proposed LLaVA-Interleave Bench covering
comprehensive in-domain and out-domain tasks.

• For video evaluation, we utilize the existing NExT-QA (57), MVBench (30), Video De-
tailed Description (VDD) (67), and ActivityNet-QA (Act) (59). For ActivityNet-QA, we
present both the accuracy and GPT score (Acc/Score). We also evaluate on VideoChat-GPT
(VCG) (39) with five metrics: CI (Correctness of Information), DO (Detail Orientation),
CU (Context Understanding), TU (Temporal Understanding), and CO (Consistency).

• For 3D evaluation, we select ScanQA (3), two tasks from 3D-LLM (16), i.e., 3D-assisted
Dialogue and Task Decomposition, and also curate two new test set from nuScenes
VQA (6) and ALFRED (48).

Implementation Details. Following the same architecture in LLaVA-NeXT (24), our LLaVA-
Interleave adopts Qwen 1.5 (5) as the base LLM with 0.5B, 7B and 14B parameters, SigLIP-
400M (62) (384×384) as the vision encoder, and a two-layer MLP as the projection layer.

5.2 MAIN RESULTS

Multi-image Results. As reported in Table 1, the average multi-image performance of LLaVA-
Interleave surpasses previous open-source models in both in- and out-domain benchmarks. For in-
domain evaluation, our model demonstrates significant advantages across various tasks as expected,
due to the multi-image instruction tuning with M4-Instruct. For out-domain evaluation, LLaVA-
Interleave also showcases superior generalization capacity within novel scenarios, e.g., comparable
to GPT-4V on Mantis-Eval and BLINK.

Multi-frame (Video) Results. Compared with previous video-based LMMs under similar model
sizes, LLaVA-Interleave achieves superior results on many benchmarks in Table 2, though not
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Table 2: Results on multi-frame (video) benchmarks. VDD: Video Detailed Description. CI (Cor-
rectness of Information), DO (Detail Orientation), CU (Context Understanding), TU (Temporal Un-
derstanding), and CO (Consistency).

Model NExTQA MVBench ActivityNet-QA VDD VideoChat-GPT

CI DO CU TU CO

GPT-4V (43) - - - 4.00 4.09 3.88 4.37 3.94 4.02
VideoChatGPT (7B) (40) - - 35.2/2.70 - 2.40 2.52 2.62 1.98 2.37
Video-LLaVA (7B) (32) - - 45.3/3.30 - 2.87 2.94 3.44 2.45 2.51
VISTA-LLaMA (7B) (38) - - 48.3/3.30 - 2.44 2.31 2.64 3.18 2.26
VideoChat2 (7B) (29) 68.6 51.9 49.1/3.30 - 3.02 2.88 3.51 2.66 2.81
LLaMA-VID (7B) (31) - 50.2 47.4/3.30 2.84 3.01 2.97 3.54 2.53 2.60

LLaVA-NeXT-Video (7B) (67) - - 53.5/3.20 3.32 3.39 3.29 3.92 2.60 3.12
LLaVA-NeXT-Video-DPO (7B) - - 60.2/3.50 3.72 3.64 3.45 4.17 2.95 4.08
LLaVA-NeXT-Video-DPO (34B) - - 64.4/3.60 3.84 3.81 3.55 4.24 3.14 4.12

LLaVA-Interleave
0.5B 59.5 45.6 48.0/2.84 3.25 3.12 2.97 3.62 2.36 3.27
7B 78.2 53.1 55.3/3.13 3.57 3.51 3.28 3.89 2.77 3.68
14B 79.1 54.9 56.2/3.19 3.59 3.65 3.37 3.98 2.74 3.67
7B (DPO) 77.9 52.3 55.0/3.13 3.90 3.99 3.61 4.24 3.19 4.12

Table 3: Results on multi-view (3D) benchmarks. 3D-assisted Dialogue and Task Decomposition
are evaluation tasks from 3D-LLM.

Model Avg 3D-assisted Task ScanQA ALFRED nuScenes
Dialogue Decomposition (val) VQA

Flamingo (1) 20.5 27.9 33.2 31.1 5.3 4.9
GPT-4V (43) 34.6 31.2 35.4 32.6 10.3 63.7
Point-Bind & LLM (14) 22.5 38.3 35.8 34.6 0.6 3.3
3D-LLM (17) 22.9 39.3 37.8 35.7 1.4 0.4
Mantis (7B) (19) 18.7 2.60 14.7 16.1 14.0 46.2

LLaVA-Interleave
0.5B 53.0 67.2 48.5 29.3 57.0 62.8
7B 58.2 69.3 51.4 32.2 61.6 76.5
14B 59.2 70.6 52.2 34.5 62.0 76.7

specifically designed for video tasks. We also follow LLaVA-Hound to add DPO training after
our M4-Instruct tuning. After adding DPO, our 7B model attains SoTA performance on VDD
and VideoChat-GPT benchmarks, surpassing the previous LLaVA-NeXT-Video (34B). This demon-
strates the effective temporal understanding and reasoning capabilities of our model across sequen-
tial frames. Note that we calculate the average scores by multiplying a weight of 10 times by the
score of Video Detailed Description and VideoChat-GPT.

Multi-view (3D) Results. For 3D perception in Table 3, our model also obtains leading results
for both indoor and outdoor scenarios on five in-domain benchmarks. Compared to 3D-LLM and
Point-LLM with additional point clouds as input, LLaVA-Interleave only accepts multi-view images
to interpret the 3D world, attaining significantly higher scores in challenging 3D scenarios.

Multi-patch (single-image) Results. We also add 307k (40%) of original LLaVA-NeXT single-
image data, which makes our model capable of doing single-image tasks. We use the anyres training
for single-image data, which divides an image into multiple patches, forming another multi-image
setting. As shown in Table 5, we maintain the single-image performance of LLaVA-NeXT-Image.
As single-image data is of high quality and diversity, adding single-image data also improves the
instruction-following ability and enables task transfer from single-image to multi-image, which is
demonstrated in Section 6.
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Table 5: Results on multi-patch (single-image) benchmarks with different LLM sizes. ‘Single’ and
‘Interleave’ denote LLaVA-NeXT-Image and our model, respectively.

Model LLM Avg AI2D ChartQA DocVQA MME SciQA POPE

Single 0.5B 59.8 51.7 50.2 59.1 52.8 60.0 85.4
Interleave 60.5 52.2 52.2 59.2 52.0 60.6 86.8

Single 7B 72.3 72.7 66.3 75.6 61.0 71.1 86.9
Interleave 73.3 73.9 67.2 75.7 63.5 72.6 86.8

Single 14B 77.2 77.5 72.1 80.0 67.7 78.9 87.3
Interleave 76.4 76.5 71.2 78.9 66.2 77.4 87.9

Table 6: Ablation on whether to continue training from single-image models. QB: Q-Bench, Act:
ActivityNet-QA, MVB: MVBench, VDD: Video Detailed Description, MME*: Throughout our
paper, we convert MME’s score to accuracy by summing up the perception and cognition scores and
dividing 2800, SQA: Scienceqa-IMG.

Continue training Multi-image Multi-frame Multi-view Single-image

Mantis BLINK QB NLVR2 Act MVB VDD ScanQA AI2D ChartQA DocVQA MME* POPE SQA

From stage-1 pre-training 41.0 37.6 47.0 54.0 44.7/2.17 43.0 2.96 27.7 46.3 38.3 47.5 47.1 85.4 59.4
From single-image models 45.6 39.2 52.0 67.8 48.0/2.84 45.6 3.25 29.3 52.2 52.2 59.2 52.0 86.8 60.6

5.3 ABLATIONS OF PROPOSED TECHNIQUES

We study the effectiveness of the three proposed training techniques in Section 4 as below.

In Table 6, we compare training strategies. It is seen that initialization from a good single-image
model checkpoint (from Stage-2) can consistently enhance the interleaved multi-image performance,
than directly from a Stage-1 model checkpoint.

In Table 7, our mixed-format training can benefit the results of both two input formats.

In Table 8, we progressively incorporate single-image and multi-image data upon the video data.
The integration of more sources contributes to enhanced performance, compared with models from
individual visual scenarios.

6 EMERGING CAPABILITIES

In this section, we show some example to demonstrate the emerging capabilities of our model.
Emerging capabilities means the capabilities do not trained during training but demonstrated when
inference. We mainly showcase the emerging capabilities from three aspects:

1. Task Transfer from Single-image to Multi-image: The capability to reason over one
image and tell the funny part is initially observed in single-image models (35), and not in-
cluded in our multi-image training. As shown in Table 9, our model is capable of analyzing
the fun part within multiple images. This new task is probably emerged by the composition
of the single-image capability and multi-image VQA training.

2. Task Transfer from Image to Video: We only include the multi-image Twitter post task
in the M4-Instruct training, while our model can directly perform the witter post from a
video, as shown in Table 10. This new task is probably composed by the training data of
multi-image Twitter post and video VQA tasks.

3. Real-world Applications: In Tables 11 and 12, we showcase one real-world scenario that
is not explicitly contained in our interleaved training data, which are multi-image painting
style recognition and PPT summary & QA. This demonstrates our generalization potentials
to a broader spectrum of applications. More examples are in Appendix.
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Table 7: Ablation on mixed interleaved
data formats. We select several impor-
tant tasks within our LLaVA-Interleave
Bench for the ablation study.

Training
Setting

Inference
Setting Avg Spot the

Difference
Visual Story

Telling
Text-rich

VQA Q-Bench

In-the-front Interleaved 52.9 36.8 30.5 70.1 74.0
In-the-front 54.3 36.6 32.8 74.7 75.3

Interleaved Interleaved 55.4 37.8 32.9 76.2 76.0
In-the-front 52.4 36.1 29.0 72.9 71.8

Mixed Interleaved 57.0 38.3 32.5 78.1 76.9
In-the-front 56.6 37.9 32.5 78.4 76.3

Table 8: Ablation on the improvement of com-
bined data scenarios for video tasks. CI (Cor-
rectness of Information), DO (Detail Orienta-
tion), CU (Context Understanding), TU (Tem-
poral Understanding), and CO (Consistency).

Data NExT-QA VDD VideoChatGPT

CI DO CU TU CO

Video 42.6 3.46 3.47 3.27 3.87 2.74 3.61
Video + Single-image 67.7 3.49 3.46 3.30 3.85 2.71 3.60
Video + Multi-image 77.7 3.50 3.50 3.31 3.90 2.70 3.63
Video + Both 78.2 3.58 3.50 3.27 3.87 2.77 3.68

Table 9: An example of emerging capability: multi-image fun part analyze.

Task Transfer from Single-image to Multi-image

User What is fun about the images?

Ours The humor in these images comes from the anthropomorphized birds engaging in human-like activities and
conversations. In the first image, one bird is asking about going to get some fries on the pier, which is a human
activity. The second image shows a bird asking about the ”culminating result of consciousness,” which is a
philosophical question rather than a literal one. The third image has a bird expressing its desire to do something
with the fries on the pier, again referencing a human activity. The anthropomorphism of the birds adds a layer of
humor by attributing human thoughts and desires to animals.

7 CONCLUSION

In conclusion, our research highlights the transformative potential of LLaVA-Interleave in unifying
and advancing the capabilities of Large Multimodal Models (LMMs) across diverse visual tasks. By
leveraging the interleaved data format, we effectively integrate multi-image, video, 3D, and single-
image scenarios, offering a cohesive approach to handling thwoese varied challenges. The introduc-
tion of the comprehensive M4-Instruct dataset and the LLaVA-Interleave Bench provides a solid
foundation for training and evaluating LMMs, ensuring high-quality performance across multiple
domains. Our extensive experiments validate that LLaVA-Interleave not only sets new state-of-the-
art benchmarks in multi-image tasks but also maintains exceptional performance in single-image
tasks. Furthermore, the model exhibits promising emerging capabilities, such as cross-task transfer,
showcasing its versatility and potential for broader applications. This work sets a new precedent in
the field, paving the way for future advancements in multimodal AI and complex visual understand-
ing tasks.
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Table 10: An example of emerging capability: Twitter post for videos.

Task Transfer from Image to Video

User Help me write a twitter post to describe this video.

Ours ”Feeling the chill in the air, but the cherry blossoms are a sight to behold! Walking down the street, each person
bundled up against the winter chill. The snow-covered trees and market stalls add to the serene beauty of this
winter wonderland. #CherryBlossoms #WinterWalk #CityScenes”.

Table 11: An example of emerging capability: recognizing artists’ painting styles.

Real-World Applications

User Do you kown who draw these paintings?

Ours Yes, these paintings are by the renowned artist Vincent van Gogh. The first painting is his famous work ”The
Starry Night,” which depicts a swirling night sky with a bright crescent moon and stars. The second painting is
his self-portrait, which shows him smoking a pipe and wearing a hat. The third painting is also a self-portrait, but
it features a different expression and hairstyle. The fourth painting is by another artist, not Van Gogh, and depicts
a person seated with flowers in the background.

Table 12: An example of emerging capability: PPT summary & VQA.

Real-World Applications

User The images are the PPT of iPhone 15 review. can you summarize the main information?

Ours The PPT features a sleek design with a black background and includes text and images related to the iPhone 15.
It highlights the phone’s innovative features such as a custom dual glass back cover, a dynamic island display for
delivery tracking, and a USB-C compatible fast charging cable. The color options are showcased in a gradient
of pink, green, gray, and onyx. The presentation also emphasizes the phone’s powerful processors, including the
A16 Bionic chip and A17 Pro chip.

User What is the price of iPhone 15 plus?

Ours The price of iPhone 15 plus is Rs. 89,000 as mentioned in the PPT slide.

User Why the dynamic island useful?

Ours The dynamic island is useful for delivery tracking, as it allows the user to know when their order will arrive and if
there are any delays. It also provides a new way to interact with the phone’s interface, making it easier to navigate
and access various features.
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[23] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
vision-language models? arXiv preprint arXiv:2405.02246, 2024.

[24] Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang, Ziwei
Liu, and Chunyuan Li. Llava-next: Stronger llms supercharge multimodal capabilities in the
wild, May 2024.

[25] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang Yang, Chunyuan
Li, and Ziwei Liu. Mimic-it: Multi-modal in-context instruction tuning. arXiv preprint
arXiv:2306.05425, 2023.

[26] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In International Con-
ference on Machine Learning, pages 12888–12900. PMLR, 2022.

[27] Juncheng Li, Kaihang Pan, Zhiqi Ge, Minghe Gao, Wei Ji, Wenqiao Zhang, Tat-Seng Chua,
Siliang Tang, Hanwang Zhang, and Yueting Zhuang. Fine-tuning multimodal llms to follow
zero-shot demonstrative instructions. In The Twelfth International Conference on Learning
Representations, 2023.

[28] Juncheng Li, Kaihang Pan, Zhiqi Ge, Minghe Gao, Wei Ji, Wenqiao Zhang, Tat-Seng Chua,
Siliang Tang, Hanwang Zhang, and Yueting Zhuang. Fine-tuning multimodal llms to follow
zero-shot demonstrative instructions, 2024.

[29] KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang,
Limin Wang, and Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint
arXiv:2305.06355, 2023.

[30] Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo
Chen, Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding bench-
mark. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 22195–22206, 2024.

[31] Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large
language models. arXiv preprint arXiv:2311.17043, 2023.

[32] Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava:
Learning united visual representation by alignment before projection, 2023.

[33] Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila:
On pre-training for visual language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 26689–26699, 2024.

[34] Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin,
Wenqi Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embed-
dings for multi-modal large language models. arXiv preprint arXiv:2311.07575, 2023.

[35] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning, 2023.

[36] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024.

[37] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
NeurIPS, 2023.

[38] Fan Ma, Xiaojie Jin, Heng Wang, Yuchen Xian, Jiashi Feng, and Yi Yang. Vista-llama: Reli-
able video narrator via equal distance to visual tokens, 2023.

[39] Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), 2024.

[40] Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models, 2024.

12



Published as a conference paper at ICLR 2025

[41] Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp
Dufter, Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis
& insights from multimodal llm pre-training. arXiv preprint arXiv:2403.09611, 2024.

[42] OpenAI. Gpt-4 technical report, 2023.
[43] OpenAI. GPT-4V(ision) system card, 2023.
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A DATA STATISTICS

The detailed data statistics of M4-Instruct is shown in Table 15.

The detailed data statistics of LLaVA-Interleave Bench is shown in Table 16.

B ABLATION STUDY

B.1 POOL VS NOT POOL VISION TOKENS FOR VIDEO TASKS.

Similar to LLaVA-NEXT-Video, we adopt a ”Pooling to 1/4” strategy for which we pool the width
and heighs of feature maps to 1/2 therefore reducing the number to totals to 1/4. We study the im-
pact of image token pooling. We train and infer our model under two settings: pooling to 1/4 and
not pooling with ShareGPTVideo-Caption+QA(255K) data. Pooling to a 1/4 setting is similar to
LLaVA-NEXT-Video, which uses the pooling technique to trade-off between the number of image
tokens and the number of frames. In our experiment, we find that not pooling yields better perfor-
mance under similar #image tokens. During training, we sample 10 frames for videos. In this table,
we also observe that adding more frames (from 10 to 16) during inference improves performance.

B.2 IMPACT OF VIDEO DPO TRAINING ON OTHER TASKS.

In Table 14, we compare the results of doing video DPO on other tasks. Though DPO significantly
improves the video performance as shown in Table 2, it slightly impacts the performance of other
tasks.

Table 13: Ablation to compare pooling and not pooling.

Training Inference #frames # Image tokens Act Avg VDD VideoChatGPT

CI DO CU TU CO

Pooling 1/4 Pooling 1/4 40 40x729x1/4=10x729 52.8/3.53 3.35 3.38 3.46 3.25 3.87 2.59 3.57
Pooling 1/4 Pooling 1/4 64 64x729x1/4=16x729 52.7/3.53 3.33 3.38 3.45 3.23 3.86 2.49 3.55
Not Pooling Not Pooling 10 10x729 52.9/3.48 3.38 3.46 3.43 3.26 3.85 2.64 3.61
Not Pooling Not Pooling 16 16x729 54.4/3.51 3.41 3.46 3.48 3.28 3.87 2.74 3.62

Table 14: Ablation on the impact of video dpo on the performance of other tasks. QB: Q-Bench,
Act: ActivityNet-QA, MVB: MVBench, VDD: Video Detailed Description, MME*: Throughout
our paper, we convert MME’s score to accuracy by summing up the perception and cognition scores
and dividing 2800, SQA: Scienceqa-IMG.

Setting Multi-image Multi-view Single-image

Mantis BLINK QB NLVR2 ScanQA AI2D ChartQA DocVQA MME* POPE SQA

Before Video-DPO 62.7 52.7 73 89.1 32.2 73.9 67.2 75.7 63.5 85.4 72.6
After Video-DPO 60.8 51.7 86.8 87.7 25.5 72.2 56.1 73.1 62.6 86.6 71.7
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Table 15: M4-Instruct detailed datasets.

Task Dataset Scenario # Samples

Multi-image Scenarios
Spot the Difference(42.6K) Real-world Difference Realistic 6.7K

Synthetic Difference Synthetic 7.0K
Spot-the-Diff Surveilance 10.8K
Birds-to-Words Birds 14.2K
CLEVR-Change Solids 3.9K

Image Edit Instruction(67.7K) HQ-Edit Synthetic 50K
MagicBrush Realistic 14.2K
IEdit Realistic 3.5K

Visual Story Telling(67.5K) AESOP Cartoon 6.9K
FlintstonesSV Cartoon 22.3K
PororoSV Cartoon 12.3K
VIST Realistic 26K

Text-rich VQA(21.3K) WebQA Webpage 9.3K
TQA Textbook 8.2K
OCR-VQA OCR 1.9K
DocVQA Document 1.9K

Multi-image VQA(153.5K) NLVR2 Realistic 86.4K
MIT-States StateCoherence General 1.9K
MIT-States PropertyCoherence General 1.9K
RecipeQA ImageCoherence Recipe 8.7K
VISION Industrial 9.9K
Multi-VQA General 5K
IconQA General 34.6K

Low-level Comparison(65.9K) Coinstruct Low-level 50K
Dreamsim Low-level 15.9K

Image-caption Comprehension (41.8K) ImageCoDe General 16.6K
Contrast-Caption General 25.2K

Daily Scenarios (5.7K) MMChat Twitter Post General 5.7K

Multi-image Puzzle (35K) Raven Abstract 35K

Multi-frame (Video) Scenarios
Video QA(246.9K) NExT-QA General 3.9K

STAR General 3K
ShareGPTVideo-VQA General 240K

Video Detailed Captioning (15K) ShareGPTVideo-Caption General 15K

Multi-view (3D) Scenarios
Scene VQA(45.4K) Nuscenes Outdoor 9.8K

ScanQA Indoor Realistic 25.6k
3D-LLM-Scene Indoor Realistic 10K

Embodied VQA(62.5K) ALFRED Indoor Synthetic 22.6K
3D-LLM-Dialogue Indoor Realistic 20K
3D-LLM-Planning Indoor Realistic 19.9K

Single-image Scenarios
Single-image Tasks(307K) Randomly sampling 40% SFT data of LLaVA-NeXT General 307K
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Table 16: LLaVA-Interleave Bench detailed datasets.

Task Dataset Scenario # Samples

In-domain Evaluation - Newly Curated Benchmarks
Spot the Difference(0.3K) Spot-the-Diff Surveilance 0.1K

Birds-to-Words Birds 0.1K
CLEVR-Change Solids 0.1K

Image Edit Instruction(2K) HQ-Edit Sythentic 1K
MagicBrush Realistic 0.9K
IEdit Realistic 0.1K

Visual Story Telling(0.4K) AESOP Cartoon 0.1K
FlintstonesSV Cartoon 0.1K
PororoSV Cartoon 0.1K
VIST Realistic 0.1K

Text-rich VQA(0.4K) WebQA Webpage 0.1K
TQA Textbook 0.1K
OCR-VQA OCR 0.1K
DocVQA Document 0.1K

Multi-image VQA(0.4K) MIT-States StateCoherence General 0.1K
MIT-States PropertyCoherence General 0.1K
RecipeQA ImageCoherence Recipe 0.1K
VISION Industrial 0.1K

Puzzle (1.4K) Raven Abstract 1.4K

In-domain Evaluation - Existing Benchmarks
NLVR2 (7K) NLVR2 Realistic 7K
Q-Bench (1K) Q-Bench Low-level 1K

Out-domain Evaluation - Newly Curated Benchmarks
MathVerse-mv (0.8K) MathVerse (Vision Dominant) Math Diagram 0.8K
SciVerse-mv (0.4K) SciVerse (Vision Dominant) Scientific Diagram 0.4K

Out-domain Evaluation - Existing Benchmarks
Mantis-Eval (0.2K) Mantis-Eval General 0.2K
BLINK (1.9K) BLINK General 1.9k
MMMU-mv (test) (0.8K) MMMU Scientific Diagram 0.8K
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C MORE REAL-WORLD APPLICATIONS

Table 17: An example of emerging capability: multi-doc VQA.

Real-World Applications

User Hi, there are two candidates, can you provide a brief description for each of them for me?

Ours Certainly! Here’s a brief description of each candidate: 1. Oprah Winfrey: - Professional Experience:
Known for her talk show, ”The Oprah Winfrey Show,” and her work on ”COVID-19” as a presenter on
Apple TV. - Skills: Emphasized on emotional intelligence, interpersonal skills, and creativity. - Honors
& Awards: Notable achievements include the Golden Globe Award for Best Television Series and the
Golden Globe Award for Best Television Special. 2. Steve Jobs: - Professional Experience: Co-founder
of Apple Inc., where he led the development of iconic products like the iMac, iPod, and iPhone. - Skills:
Highlighted as a thinker with a focus on innovation and problem-solving. - Honors & Awards: Recognized
with numerous accolades, including the MacArthur Fellowship and the NeXT Computer Science Award.
Please note that these descriptions are based on the information provided in the images and do not include
any personal details or specific accomplishments mentioned in the images.

User Which of them better suits the role of the Congressman of the US? Why?

Ours The first resume, featuring Oprah Winfrey, would better suit the role of a Congressman because it highlights
skills and experiences that are relevant to political office, such as leadership, public speaking, and media ex-
perience. These qualities are essential for a politician to effectively represent their constituents and engage
in legislative processes. The second resume, while it could be suitable for a creative or entrepreneurial role,
does not specifically mention skills or experiences that align with the responsibilities of a Congressman.
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