
Appendix424

A Simulation Environment425

We develop our planar pushing simulation environment using NVIDIA Omniverse Isaac Sim due426

to its GPU parallelization capabilities, which significantly accelerate the training and data collec-427

tion process. Fig. 5 shows a visualization of the simulation environment. The rectangular planar428

workspace has dimensions 0.6m × 0.3m. Note that we designed this workspace based on the max-429

imum reachability in our robotic hardware set-up. For the manipulated object, we use a cuboid of430

size 0.12m × 0.1m × 0.07m, and for the pusher we use a sphere of radius 0.013m. We enforce431

the workspace boundaries with respect to the centroids of the pusher and the object. During policy432

training and data collection, we randomize the dynamics of the environment, including the mass of433

the manipulated object as well as friction and restitution coefficients of the table, the pusher, and the434

object. Table 3 summarizes the randomized dynamics parameters and their corresponding sampling435

distributions.436

Figure 5: Planar pushing simulation environment in Isaac Sim. The pusher is
shown in red, the manipulated object in dark blue, and the target pose in light
blue.

Parameter Distribution
Static friction U(0.3, 0.5)
Dynamic friction U(0.1, 0.3)
Restitution U(0.1, 0.7)
Object mass U(3.0, 3.5) kg

Table 3: Dynamics randomization parameters and corre-
sponding sampling distributions.

B Additional Training Details437

B.1 Reinforcement Learning Policies438

We process the RL observation by scaling each component to the range [−1, 1]. In particular, we439

scale the (x, y) coordinates using the workspace dimensions and for the object orientation θ we use440

sin(θ) and cos(θ). For the pusher force fe
t , we apply clip(fe

t ,−10, 10)/10 component-wise. In441

practice, this means that we limit the magnitude of the force reading along each axis to 10N. When442

providing the predicted uncertainty from the state estimator as an RL policy observation, we use the443

standard deviations, clipped to the range [0, 1]. Note that in these cases where the RL policy receives444

the predicted uncertainty, we keep the reward function unchanged.445

11



During RL policy training, we use a learning rate scheduler based on the KL divergence of the446

policy, as in [18]. The scheduler has a target KL divergence of 7 · 10−3, a minimum learning447

rate of 1.5 · 10−4 and a maximum learning rate of 10−2. For the policy function, we use a neural448

network architecture with the following layers and corresponding sizes: linear (128) + LSTM (256)449

+ linear (128) + linear (22), with tanh nonlinearities. The output consists of 22 logits that define450

the categorical distributions over the x and y velocities. For the value function, we use the same451

neural network architecture but replace the final linear (22) layer with a linear (1) layer that outputs452

the state value prediction. During training, when episodes reach the maximum horizon, thereby453

terminating, we use the value function prediction corresponding to the final observation to bootstrap454

the final reward. Table 4 summarizes the remaining RL hyperparameters for PPO [30] training.455

Finally, Fig. 6 shows the training performance of the privileged policy πpriv(st) in the occlusion-456

free environment.457

Hyperparameter Value
Rollout Steps 100

Parallel Environments 4000

Mini-batch Size 25000

Epochs 5
Clip Range (ϵ) 0.2
Discount Factor (γ) 0.993
GAE Parameter (λ) 0.95
Entropy Loss Coefficient 0.01
Value Loss Coefficient 1.0

Table 4: PPO hyperparameters.

Figure 6: Training performance of the privileged policy
πpriv(st). We report mean and standard deviation across
three random seeds.

B.2 State Estimator458

To train and evaluate the state estimators, we collect separate training, validation, and testing datasets459

containing 7.5 · 105, 1.5 · 105 and 1.5 · 105 trajectories respectively. We process the trajectories460

scaling the pose and force measurements to the range [−1, 1] as discussed for the RL training in Ap-461

pendix B.1. Additionally, Table 5 summarizes the training hyperparameters for the state estimator.462

12



Fig. 7 and Fig. 8 show the validation loss when training the state estimator with the likelihood loss463

and the MSE loss, respectively.464

Hyperparameter Value
Mini-batch Size 30000
Epochs 110
Learning Rate 10−3

Optimizer Adam
Sequence Length 300

Table 5: State estimator hyperparameters.

Figure 7: Estimator validation loss when training with the
likelihood loss.

Figure 8: Estimator validation loss when training with the
MSE loss.

B.3 Behavior Cloning Baseline465

To train the behavior cloning baseline discussed in Section 5.2, we collect new training and valida-466

tion datasets using the last privileged policy checkpoint to provide optimal trajectories. We do not467

use a testing dataset since we evaluate the baseline directly in the planar pushing simulation environ-468

ment. The training and validation datasets contain 7.5 ·105 and 1.5 ·105 trajectories respectively. We469

13



process the trajectories to scale the pose and force measurements, add sensory noise, and introduce470

occlusions using the same procedure as for the state estimator.471

The neural network architecture for the behavior cloning policy is the same as for the RL policy472

function, discussed in Appendix B.1. Hence, the output in both cases consists of 22 logits that473

define separate categorical distributions over the x and y velocities. We train the behavior cloning474

policy using a loss function defined as the sum of the cross-entropy between the predicted and target475

distributions for the x and y velocities. The training hyperparameters are the same as shown in476

Table 5. Finally, Fig. 9 shows the validation loss during training.477

Figure 9: Behavior cloning policy validation loss.

14


