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1 EVALUATION METRICS

To evaluate the performance of our proposed approach we used the following four standard error
measures (MAE, RMSE, Correlation, SNR), and we defined a new measure (Waveform MAE) to
measure the waveform dynamics.

Mean absolute error (MAE):

MAE=2L (1)
where NV is the total number of time windows, R; is the ground truth heart rate (HR) measured with

a contact sensor for each 30 second time window and R; is the estimated HR from the video.

Root Mean Square Error (RMSE):

2

Pearsons Correlation Coefficient (p): computed between HR estimates from each time window
R =[R)(1),..., R(N)] and the ground truth HR measurements R = [R(1), ..., R(N)].

Signal-to-noise ratio (SNR): calculated as the ratio of the area under the curve of the power spec-
trum around the first and the second harmonic of the ground truth HR frequency divided by the rest
of the power spectrum within the physiological range of 42 to 240 bpm De Haan & Jeanne|(2013)):
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where S is the power spectrum of the estimated iPPG signal, f is the frequency in beats per minute
(BPM) and U,(f) is equal to one for frequencies around the first and second harmonic of the ground
truth HR (HR-6 bpm to HR+6 bpm and 2*HR-6 bpm to 2*HR+6 bpm), and 0 everywhere else.

Waveform Mean Absolute Error (WMAE):

N
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where W; is the ground truth pulse waveform obtained with the contact sensor for each 30 second
time window and W; is the estimated pulse waveform from the video.
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2 BASELINE METHODS

We compared the performance of our proposed approach to state-of-the-art supervised method using
a convolutional attention network (CAN) and three unsupervised methods described below.

For the CHROM, ICA and POS methods face detection was first performed using MATLAB’s face
detection (vision.CascadeObjectDetector ()). This was fixed for all methods, to avoid
the influence of the face detector on performance. For the CAN method following the implementa-
tion in (Chen & McDuff} 2018) we did not use face detection but rather we passed the full frame to
the network after cropping the center portion to make the frame a square with W=H.

CHROM (De Haan & Jeannel 2013)). This method uses a linear combination of the chrominance
signals obtained from the RGB video. The [xR, xg, xp] signals are filtered using a zero-phase,
3rd-order Butterworth bandpass filter with pass-band frequencies of [0.7 2.5] Hz. Following this,
a moving window method of length 1.6 seconds (with overlapping windows and a step size of 0.8
seconds) is applied. Within each window the color signals are normalized by dividing by their mean
value to give [Z,, Z4, T3 ]. These signals are bandpass filtered using zero-phase forward and reverse
3rd-order Butterworth filters with pass-band frequencies of [0.7 2.5] Hz. The filtered signals [y,
Yg»> Yol are then used to calculate Sy,

« « 3
Swin = 3(1 - 5)% - 2(1 + E)yg + 7% (5)

Where « is the ratio of the standard deviations of the filtered versions of A and B:
A =3y, — 2y, (6)
B = 1.5y, +y4, — L5y 7

The resulting outputs are scaled using a Hanning Window and summed with the subsequent window
(with 50% overlap) to construct the final blood volume pulse (BVP) signal.

ICA (Poh et al.| 2010). This approach involves spatial averaging the pixels by color channel in the
region of interest (ROI) for each frame to form time varying signals [xg, Xg, Xg]. Following this,
the observation signals are detrended. A Z-transform is applied to each of the detrended signals.
The Independent Component Analysis (ICA) (JADE implementation) is applied to the normalized
color signals.

POS (Wang et al.l2017)). The intensity signals [z g, zg, 5] are computed. A moving window of
length 1.6 seconds (with overlapping windows and with a step size of one frame), is applied. For
each time window, the signal is divided by its mean to give [%,., &4, ©3]. Following this, X, and Y
are calculated where:

Xs =Ty — Ty ®)
Yy = 2%, + &, + Ty )
X, and Y, are then used to calculate S.,;,,, Where:
o(Xs)
Swin = Xs Y; 10
+— A (10)

The resulting outputs of the window-based analysis are used to construct the final BVP signal in an
overlap add fashion.

CAN (Chen & McDuff},2018)) Supervised convolutional attention neural network described in detail
in the main text (Chen & McDuft] |2018). Following the implementation in that paper we did not
use face detection but rather we pass the full frame to the network after cropping the center portion
to make the frame a square with W=H.

Signal Pre-processing. We bandpass filtered the physiological signals and noise estimates to 0.7
Hz - 2.5 Hz range and detrended them (Tarvainen et al., 2002)) before feeding them into the LSTM.
We set the detrending parameter A for each dataset based on the video frame rate (A = 500 for
AFRL (Estepp et al., 2014) and A = 50 for MMSE-HR (Zhang et al., 2016) and MR-NIRP (Nowara
et al., 2018)).). We normalized the signals and noise estimates with AC/DC normalization by sub-
tracting the temporal mean and dividing by the temporal standard deviation computed for each video.
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We additionally normalized the amplitude range of the signals, noise estimates and the ground truth
signals to -1 and 1. Finally, we resampled all sequences to 30 fps.

Statistical Significance. We computed F-tests to verify that our errors had significantly lower vari-
ance (spread) than the baselines. For AFRL and MR-NIRP which had longer videos, we computed
the error metrics for each video, and for the shorter MMSE-HR, we computed them for all time
windows in the dataset. In addition to lower mean errors, for all datasets our approach led to signifi-
cantly lower spread in the MAE and RMSE. AFRL (300 videos): MAE: F =0.54, p < 0.01, RMSE:
F =0.56, p < 0.01, MMSE-HR (131 windows): MAE: F = 0.26, p < 0.01, RMSE: F =392 p <
0.01, MR-NIRP (15 videos): MAE F =7.94 p < 0.01, RMSE F = 6.63, p < 0.01.

3  COMPARISON OF NOISE ESTIMATION

Noise Signal Definition. We compared the performance of our proposed denoising framework with
noise channels computed from a single red, green or blue camera channel to using all three R, G, B
channels. We hypothesized that the blue channel might be the best one for the noise representation
for the physiological signals because the hemoglobin present in blood has the lowest absorption in
the blue light spectrum and its intensity variations would be least related to blood flow. Conversely,
the green channel could also be a useful noise representation, because it would contain information
most similar to the physiological signals since the hemoglobin has the largest absorption in the green
spectrum. However, we found that there is not a large difference between using any one of the single
channels or all three channels. We report the detailed results in Table[Tjon the AFRL dataset (Estepp!
et al.,[2014).

Inverse Mask Definition. We also compared computing noise using a binary and a continuous
inverse attention mask. The continuous mask was computed as a matrix of continuous values in
which each element of the inverse mask M, M; ;, was 1 - A; ; where A is the attention mask weights
normalized from O to 1. The binary mask was computed by thresholding these values, where A g
=1,if A; ; >T, where T is a threshold from 0 to 1. We found that we obtained comparable results
with the binary and continuous masks as shown in Table[I]

Table 1: Participant independent performance of pulse measurement on AFRL (Estepp et al.l[2014).
There was no systematic benefit of using R, G, B or RGB inputs or using the binary vs. continuous

mask. We used the binary mask with RGB inputs for the results shown in the main paper.
AFRL (All Tasks) (Estepp et al.,|2014)
Method |MAE RMSE SNR p  WMAE

Ours (LSTM RGB binary mask) 225 568 644 087 021
Ours (LSTM Red Binary Mask) 209 519 670 089 0.21

Ours (LSTM Green Binary Mask) 204 511 6.84 089 0.21
Ours (LSTM Blue Binary Mask) 2.18 527 659 088 0.21
Ours (LSTM RGB Continuous Mask) 2.10 561 7.1 087 0.20

Different Distraction Regions. We compared separately using noise estimates from distraction
regions closer to the face (“Center” of the frames) and further from the face (“Edges” of the frames).
We used an LSTM model trained on all ignored regions for this experiment. When motion was
small, all regions contributed similarly to denoising. But when there was large head motion, regions
close to the head (center of the frames) helped the most. See Table[2]

Table 2: Different Distraction Regions on AFRL (Estepp et al., 2014)
MAE BVP SNR
Method‘123456[1 2 3 4 5 6

Edges ‘1.07 210 192 2.10 2.68 8.74‘10.52 723 859 6.04 3.07 -583

Center |1.08 2.11 175 2.00 243 6.53|10.50 7.28 8.72 6.33 3.89 -4.47

Effect of Glasses. We compared the performance of our denoising approach and the baseline CAN
method on subjects with and without glasses. We found that our method offers largest improvements
on subjects with glasses, as shown in Table However, the attention masks output by CAN on
subjects with and without glasses were comparable, as shown in Figure[I] Nine of the 25 subjects in
the AFRL dataset were wearing glasses. No subjects in the MMSE-HR or MR-NIRP datasets were
wearing glasses.
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Figure 1: Comparison of attention masks and inverse attention masks on a video with and without
glasses.

Table 3: Effect of Glasses on AFRL (Estepp et al.,[2014)
Method |MAE RMSE SNR p WMAE

Ours (LSTM) with Glasses 217 455 733 0.87 0.21
CAN with Glasses 333 656 380 0.76 0.24

Ours (LSTM) no Glasses 255 579 468 059 0.20
CAN no Glasses 257 513 250 0.66 022
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