
Learning to Explore in POMDPs with Informational Rewards

Annie Xie 1 Logan Mondal Bhamidipaty 1 Evan Zheran Liu 2 Joey Hong 3 Sergey Levine 3 Chelsea Finn 1

Abstract

Standard exploration methods typically rely on
random coverage of the state space or coverage-
promoting exploration bonuses. However, in par-
tially observed settings, the biggest exploration
challenge is often posed by the need to discover
information-gathering strategies—e.g., an agent
that has to navigate to a location in traffic might
learn to first check traffic conditions and then
choose a route. In this work, we design a POMDP
agent that gathers information about the hidden
state, using ideas from the meta-exploration litera-
ture. Our approach provides an exploration bonus
that rewards the agent for gathering information
about the state that is relevant for completing the
task. While this requires the agent to know what
this information is during training, it can obtained
in several ways: in the most general case, off-
policy algorithms can leverage knowledge about
the entire trajectory to determine such information
in hindsight, but the user can also provide prior
knowledge (e.g., privileged information) to help
inform the training process. Through experiments
in several partially-observed environments, we
find that our approach is competitive with prior
methods when minimal exploration is needed, but
substantially outperforms them when more com-
plex strategies are required. Our algorithm also
shows the ability to learn without any privileged
information, by reasoning about the entire trajec-
tory in hindsight and and effectively using any
information it reveals about the hidden state.

1. Introduction
In many realistic decision-making problems, the agent lacks
full information about the environment state, which makes
learning to act optimally challenging. For example, learning

1Stanford University 2Imbue 3UC Berkeley. Correspondence
to: Annie Xie <anniexie@stanford.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

to drive to work in the shortest amount of time is difficult if
information about traffic and road blockages is unknown. A
common way to simplify learning under such partial observ-
ability is to provide the learner with privileged information
at training time, such as the full underlying states. Prior
approaches leverage this privileged information to train an
omniscient expert, which then supervises a policy without
such information (Levine et al., 2016; Pan et al., 2017; Pinto
et al., 2017; Chen et al., 2020; Baisero & Amato, 2021;
Lambrechts et al., 2023). While the expert supervision is
useful for solving the task, it leaves a critical aspect unad-
dressed: how to explore and actually gather the information
used by the expert.

To better understand this issue, consider the naı̈ve approach
of training a policy without privileged information to di-
rectly imitate an expert with access to such information.
Applied to our example of efficiently driving to work, an
omniscient person with knowledge of the road and traffic
conditions can directly take the optimal route. However,
people do not typically know the exact conditions a priori
and instead must initially rely on traffic reports and ob-
servable cues on the road to make their decision. In other
words, the optimal policy without omniscient information is
gather information, and simply imitating the omniscient ex-
pert does not yield this exploration or information-gathering
strategy. Initial attempts to address this issue combine ex-
pert imitation with a standard reinforcement learning (RL)
objective to maximize the reward in the hopes of learning
behaviors beyond those of the privileged expert (Baisero &
Amato, 2021; Weihs et al., 2021; Nguyen et al., 2022; Wals-
man et al., 2022; Shenfeld et al., 2023; Wang et al., 2023).
However, such approaches can struggle because learning
complex information-gathering strategies from the generic
RL objective can be challenging.

More generally, optimally behaving in a partially-observable
Markov decision process (POMDP) (Kaelbling et al., 1998)
requires both exploiting known information to solve the
task, and exploring to reduce uncertainty; and many exist-
ing POMDP methods that leverage privileged information
do not address the latter. On the other hand, the meta-RL
literature has carefully studied such exploration for a special
case of POMDPs, known as hidden parameter Markov deci-
sion processes (Doshi-Velez & Konidaris, 2016), where the
unobserved component of the state is fixed throughout an

1

Learning to Explore in POMDPs with Informational Rewards

episode. These approaches induce effective exploration with
objectives that incentivize gathering information that help
infer the unobserved state. In our work, we aim to extend
these ideas to the general POMDP setting, where the unob-
served state may change at any point. Whereas meta-RL
solutions can first explore to gather all necessary informa-
tion and then use this information solve the task (Liu et al.,
2021; Norman & Clune, 2023) because the unobserved state
does not change within an episode, general POMDPs re-
quire gathering new information whenever task-relevant
changes occur in the unobserved state. Hence, we aim to
design an agent that decides when to explore and effectively
interleaves exploration with exploitation.

From a high level, we leverage access to privileged infor-
mation like prior works. We aim to improve exploration by
crafting a reward bonus to recover the privileged informa-
tion. However, the bonus should only incentivize gathering
information that helps solve the task, and not other arbitrary
information that the privileged information may hold. To
achieve this, we extend the DREAM algorithm (Liu et al.,
2021), which already designs such an exploration objec-
tive for the meta-RL setting. Specifically, we first apply
an information bottleneck on the privileged information,
which yields a necessary and sufficient representation of the
privileged information for solving the task. Then, we add
an exploration bonus derived from maximizing the mutual
information between the explored observations and this rep-
resentation of the privileged information. Importantly, this
approach enables us to leverage flexible forms of privileged
information beyond just traditional access to the unobserved
state, such as transitions from future time-steps.

Overall, our main contribution is a new algorithm, which
we call Privileged information-based exploration (PROBE),
that can learn targeted information-gathering strategies in
POMDPs. PROBE contrasts existing POMDP algorithms
that leverage privileged information, but are not designed
to discover information-gathering strategies. Additionally,
motivated by Humplik et al. (2019), we design PROBE to
operate from arbitrary forms of privileged information, ex-
tending beyond just the full unobserved state. We also
provide guarantees on the regret of our algorithm, and show
that access to privileged information allows sample-efficient
learning. In our experiments, PROBE successfully learns
complex strategies in POMDPs with various exploration
challenges, while remaining competitive on existing bench-
mark tasks that do not require sophisticated exploration.
Further, PROBE can scale to POMDPs with egocentric pixel
observations that require complex intra-episode exploration.

2. Related Work
The POMDP is a general framework for sequential decision-
making given incomplete observations. There are no

tractable exact methods as the agent’s state space or action
space grows (Kaelbling et al., 1998). However, there are
approximate solutions that use recurrent neural networks to
process histories of observations and actions (Hausknecht &
Stone, 2015; Foerster et al., 2016; Zhu et al., 2017). To im-
prove sample efficiency, more recent work leverages deep
learning methods, such as those for representation learn-
ing (Kingma & Welling, 2013), to learn latent-space dynam-
ics models of general POMDPs, including those with contin-
uous state and action spaces (Watter et al., 2015; Wahlström
et al., 2015; Karl et al., 2016; Igl et al., 2018; Han et al.,
2019) and with high-dimensional image observations (Kap-
turowski et al., 2018; Hafner et al., 2019; Lee et al., 2020a).

Many works relax the POMDP by accessing privileged in-
formation at training time. Common to many algorithms is
either an omniscient expert (Levine et al., 2016; Pan et al.,
2017; Chen et al., 2020; Lee et al., 2020b; Warrington et al.,
2021; Weihs et al., 2021; Kumar et al., 2021; Walsman et al.,
2022; Shenfeld et al., 2023) or critic (Pinto et al., 2017; Bais-
ero & Amato, 2021), or a learned dynamics model (Wang
et al., 2023) that accesses latent state information at train-
ing time. These models facilitate the training of a separate
policy, which operates without privileged information only
from the observed state so that it can be deployed at test
time. Theoretically, learning in tabular POMDPs with train-
time latent state information is sample-efficient (Lee et al.,
2023; Guo et al., 2023). However, while these existing meth-
ods use the privileged information to make solving the task
easier, they either fail to address the issue of exploration
(i.e., how to gather the information used by these models)
or can only learn simple exploration strategies afforded by
a general RL objective. Our work also leverages privileged
information during training, but we explicitly address the
issue of exploration to enable learning complex information-
gathering policies.

There is a rich literature on such exploration in a special
case of POMDPs studied in meta-RL (Wang et al., 2016;
Humplik et al., 2019). The meta-RL setting typically con-
siders a distribution over different tasks, represented by
the latent part of the state, and the goal is to do well in a
new task after only a few episodes of interaction. Many
works therefore consider how to best leverage these few
episodes to explore and gather information, known as the
meta-exploration problem (Duan et al., 2016; Wang et al.,
2016; Mishra et al., 2017; Gupta et al., 2018; Stadie et al.,
2018; Zintgraf et al., 2019; Humplik et al., 2019; Kamienny
et al., 2020; Liu et al., 2021; Zintgraf et al., 2021; Liu et al.,
2022; Norman & Clune, 2023). Our work connects the
meta-exploration problem with the general problem of ex-
ploring in POMDPs and proposes to generalize an existing
meta-RL algorithm DREAM to learn from any form of priv-
ileged information in general POMDPs. Specifically, we
leverage the mutual information objective from DREAM to

2

Learning to Explore in POMDPs with Informational Rewards

learn to gather task-relevant information. everal prior works
maximize mutual information objectives for RL exploration
in fully-observable MDPs (Storck et al., 1995; Sun et al.,
2011; Still & Precup, 2012; Houthooft et al., 2016), and for
unsupervised skill learning (Gregor et al., 2016; Eysenbach
et al., 2018; Warde-Farley et al., 2018). There has also been
prior work that learns exploration policies to minimize er-
ror in the prediction of the learned dynamics model (Zhou
et al., 2019) or the predicted privileged state (Margolis et al.,
2023). Different from these objectives, our work learns to
explore only with respect to task-relevant features, by apply-
ing an information bottleneck on the learned representation
of the privileged state.

Leveraging hindsight information, e.g., by learning a future-
conditioned value function, can accelerate reinforcement
learning in an unknown environment (Harutyunyan et al.,
2019; Schmidhuber, 2019; Guez et al., 2020; Mesnard et al.,
2020; Venuto et al., 2021; Nota et al., 2021). Unlike these
prior works, our algorithm incorporates the future trajectory
through an exploration bonus. Many of the constraints
introduced to reduce hindsight bias (Mesnard et al., 2020;
Venuto et al., 2021) can also be readily combined with our
proposed bonus.

3. Preliminaries and Problem Setup
Formally, a partially observable Markov decision process
⟨S,A, p, r,O, f⟩ consists of a state space S , action space A,
dynamics p(s′ | a, s), reward function r(s, a), observation
space O and observation function f(o | s). The goal is to
learn a policy π(at | ht) that produces actions at ∈ A con-
ditioned on its history of observations, actions, and rewards
ht = {o1, a1, r1, . . . , ot} maximizing the expected cumu-
lative rewards J (π) = Est∼p(·|at,st−1)

at∼π(·|ht)

[∑T
t=1 r(st, at)

]
.

Intuitively, the rewards and dynamics are controlled by the
state st, but the agent does not directly observe the state and
must instead make decisions based on its history ht.

3.1. DREAM: Decoupling Exploration and Exploitation
in Meta-Reinforcement Learning

Our work builds on the DREAM meta-RL algorithm (Liu
et al., 2021). Specifically, we leverage the key insight that
information-gathering exploration behavior can be learned
from a weak form of privileged information in the meta-RL
setting. DREAM achieves this by assuming access to a task
identifier µ, which is a unique 1-hot identifier assigned to
each different unobserved state seen during training, i.e.,
each different task has dynamics pµ and rµ. From a high
level, DREAM consists of two stages: First, DREAM trains a
policy conditioned on this task identifier with an informa-
tion bottleneck, which yields a representation of the task
identifier encoding the task-relevant information and a pol-

icy that can solve tasks given this task-relevant information.
Second, since this task identifier representation contains all
the information the policy needs to solve each task, DREAM
learns to explore with an objective to obtain trajectories that
recover the information inside the task identifier.

This idea is implemented in four main components:

1. An encoder Fψ(z | µ) encodes the task identifier with
an information bottleneck.

2. An exploitation policy πtask
θ (a | o, z) is trained condi-

tioned on the task identifier encodings.
3. An exploration policy πexp

ϕ maximizes the mutual infor-
mation I(τ exp; z) between its collected trajectories τ exp

and z sampled from the encoder.
4. A decoder qω(z | τ exp) maps trajectories to encodings.

At test time, the exploration policy is first deployed to gather
information about the task, and the exploitation policy con-
ditions on the decoding of this trajectory to solve the task.

3.2. Learning with Privileged Information

We follow the formalism of the informed POMDP (Lam-
brechts et al., 2023) to leverage privileged information dur-
ing training. Specifically, we augment the POMDP with an
information space I and probability distribution g(i | s).
At each timestep t during training, the agent observes an
information vector it ∼ g(·|st). Our work studies different
forms of privileged information vectors, including (i) the un-
derlying state it = st; and (ii) future transitions it = τt+1:T

seen later in the episode. At test time, the agent interacts
with the original POMDP without privileged information.

4. Privileged Information-Based Exploration
We now introduce our approach called PROBE: Privileged
information-based exploration. Like prior works, we lever-
age privileged information to more easily learn the task.
However, unlike prior work, our key idea is to additionally
learn to explore and recover the privileged information. To
do this, we first propose a reward bonus that maximizes
the mutual information between the agent’s observation and
privileged information that is the hidden state (Section 4.1).
Then, we extend this bonus to handle multiple forms of
privileged information as well (Section 4.2). Finally, we
provide a concrete implementation (Section 4.3).

4.1. An Information-Based Exploration Bonus

Naı̈vely, we could directly incentivize any exploration that
recovers information about the hidden state s. However, the
hidden state may contain information irrelevant to solving
the task. For example, in our driving task, the state s may
contain information about all roads, while only information
about the roads leading to the destination matters. To discard

3

Learning to Explore in POMDPs with Informational Rewards

task-irrelevant information, we learn an encoder Fψ(z | i)
with an information bottleneck applied to z to eliminate
excess information that the policy does not need. That is,
we jointly train the encoder Fψ and a policy πθ, which
conditions on z and the history h, with:

max
ψ,θ

Est∼p(·|at,st−1)
zt∼Fψ(·|it)
at∼πθ(·|ht,zt)

[
T∑
t=1

r(st, at)− λI(zt; it)

]
, (1)

where I(zt; it) is the mutual information between zt and it.
Importantly, we will optimize both the policy πθ and the
encoder Fψ to maximize the expected cumulative rewards.
Alongside the information bottleneck, which only depends
on the encoder, this objective encourages Fψ to extract the
task-relevant information and to discard everything else.

Critically, the privileged information it and, therefore, the
embeddings zt are available only during training. At test
time, the agent no longer has access to this information.
Hence, it is critical that, at test time, the agent’s policy can
collect the same information that zt has, on its own. Put
differently, we want the policy πθ to develop exploration
strategies that allow it to discover information about zt. One
way to do so is by maximizing

∑T
t=1 I(hT ; zt), the mutual

information between the trajectory collected by the policy
and the sequence of hidden states z1:T . Following DREAM,
we can efficiently optimize a variational lower bound of the
mutual information (Barber & Agakov, 2004):

T∑
t=1

I(hT ; zt) =

T∑
t=1

H(zt)−
T∑
t=1

H(zt | hT)

≥
T∑
t=1

H(zt) +

T∑
t=1

Ezt∼Fψ [log qωt(zt | hT)]

=

T∑
t=1

H(zt) +

T∑
t=1

Ezt∼Fψ [log qωt(zt | o1)]

+
T∑
t=1

Ezt∼Fψ,
hT∼πθ

[
T−1∑
t′=1

log
qω(zt | ht′+1)

qω(zt | ht′)

]
where q is an arbitrary distribution with parameters ω. The
last line expands a telescoping series. We can now break
down this objective into a per-timestep reward, which can
then be optimized by any RL algorithm. Since the first
two terms do not depend on πθ, we can ignore them when
defining the reward bonus:

rPROBE
t =

T∑
t′=1

Ezt∼Fψ
[
log

qω(zt′ | ht+1)

qω(zt′ | ht)

]
. (2)

This reward measures the additional information gained
about the full sequence of hidden states z1, z2, . . . , zT from
the transition to the observed ot+1 and rt. While there are
many ways to combine the task and exploration rewards, we
will take their sum, scaled by a factor α: r̂t = rt + αrPROBE

t .

Algorithm 1 PROBE (single train episode)
Input: use privileged info
h1 = {o1}
for t = 1, 2, . . . , T do

if use privileged info then
Compute encoding of privileged info zt ∼ Fψ(· | it)

else
Sample zt ∼ qω(· | ht)

end if
Roll out policy at ∼ πθ(· | ht, zt)
Update history ht+1 = ht ∪ {at, ot+1, rt}

end for
Relabel rewards r̂t = rt + αrPROBE

t (defined in Eqn. 3)
Update πθ and Fψ to maximize Eqn. 1 with rewards r̂t
Update qω to minimize

∑T
t=1 Ez∼Fψ(it)

[
∥z − qω(h)∥22

]

4.2. General Forms of Privileged Information

In the previous section, we defined the encoder Fψ to rep-
resent the hidden state st, but in principle, this encoder can
represent any privileged information (PI) available during
training. The flexibility to leverage different forms of PI is
particularly powerful in situations where the ground-truth
hidden states cannot be accessed even during training. In
such cases, we can look to alternative, less presumptive
sources of information, such as expert demonstrations, or
even information that we can obtain at no additional cost,
such as transitions from future time-steps. Furthermore,
the information bottleneck that we apply to zt means that
even if the PI contains task-irrelevant features, they will
removed from the representation. Therefore, the PROBE re-
wards (1) will be robust to choices of PI that contain excess
features, and (2) can benefit from choices that contain more
information about the hidden states.

One particularly interesting form of information is the re-
mainder of a trajectory, it = τt+1:T . The full trajectory is
privileged in the sense that it is only available during train-
ing, after we have rolled out the policy for the full episode.
However, this information comes at no additional cost, un-
like hidden states or expert actions. Intuitively, the future
transitions from the same trajectory can sometimes contain
information about the current and past hidden states. For
instance, when driving down a road with traffic, we may not
discover whether the road is blocked until we have already
traveled a substantial part of the road. However, given this
full trajectory, we can in hindsight encourage exploration
strategies, e.g., reading nearby signs, that indicate whether
the road is blocked before even navigating down the road.

4.3. Practical Implementation

The components of PROBE are the privileged information en-
coder Fψ(z | i), decoder qω(z | h), and policy πθ(a | h, z).

4

Learning to Explore in POMDPs with Informational Rewards

The privileged information encoder Fψ(z | i) consists of
a deterministic encoder fψ(i) with Gaussian noise applied.
By setting the prior to be a Gaussian with the same vari-
ance, the information bottleneck then becomes an ℓ2 reg-
ularization on fψ(i). The decoder qω(z | h) is similarly
parameterized by a deterministic encoder gω(h), with Gaus-
sian noise of the same variance added. Therefore, max-
imizing Ez∼Fψ(i) [log qω(z | h)] is equivalent to minimiz-
ing Ez∼Fψ(i)

[
∥z − gω(h)∥22

]
, and the exploration reward

is equivalent to:

rPROBE
t =

T∑
t′=1

Ezt′∼Fψ [log qω(zt′ | ht+1)− log qω(zt′ | ht)]

=

T∑
t′=1

∥fψ(it′)− gω(ht)∥22 − ∥fψ(it′)− gω(ht+1)∥22 .

Temporal locality. This reward is currently a summation
of the information gain for all hidden states of the episode.
To ensure that the mutual information term is correctly esti-
mated, we would need a separate decoder for each timestep,
i.e., ω = (ωt)

T
t=1. Instead, we will simplify the reward

bonus with temporal locality. Specifically, we will design
the reward so that at time-step t, the bonus will only be
derived from the information gained about zt+1. This is a
reasonable simplification, because (1) conditioned on zt+1,
the past states z1:t will no longer matter for future decision-
making and (2) it is generally unlikely for the agent to learn
much about states in the distant future. The simplified bonus
can be expressed as

rPROBE
t = ∥fψ(it+1)−gω(ht)∥22−∥fψ(it+1)−gω(ht+1)∥22.

(3)

Finally, the policy πθ(a | h, z) takes in an encoding z,
which at test time, is sampled from the history encoder
qω(z | h). During training, we sample z from Fψ(z | i)
during every other episode to improve training efficiency.
We summarize the PROBE algorithm in Algorithm 1 and
illustrate all described components in Fig. 1.

When using the future transitions, we parameterize fψ as
a recurrent neural network to encode the full trajectory hT ,
and the embedding serves as the privileged information
at each timestep. We refer this version of our algorithm as
PROBE-FUTURE. An important hyperparameter that PROBE
introduces on top of DREAM is α, the scaling factor for the
exploration rewards. This factor controls the weight of the
exploration bonus relative to the task rewards. In principle,
the multiplier α can be annealed to zero over training so
that the final objective is unbiased, but in practice, we find
that a carefully selected constant is sufficient. See App. A
for more details about the implementation of PROBE.

Figure 1. PROBE learns an encoder Fψ which encodes the priv-
ileged information it to zt, and a decoder qω which maps the
history ht to ẑt and is trained to minimize the loss to zt. Finally, it
constructs the exploration bonus via Eqn. 3, and trains a policy πθ
to maximize the sum of the task and exploration rewards.

5. Theoretical Analysis of PROBE

In contrast to MDPs, finding a near-optimal policy in
POMDPs requires a number of samples at least exponential
in the horizon length T in the worst-case (Krishnamurthy
et al., 2016). This sample-inefficiency is largely attributed
to the fact that the agent may not observe any useful in-
formation about the true underlying state of the system,
reducing the problem to something like a blind tree search
in the worst case. However, we will show theoretically that
access to privileged information during training allows us
to circumvent this worst case and achieve sample-efficient
learning, providing a formal motivation for PROBE.

Notation. We consider the Bayesian regret incurred
over L episodes of interactions by a policies iteratively
learned via PROBE. As notation, denote by h̃ℓ,t =
(iℓ1, a

ℓ
1, r

ℓ
1, . . . , i

ℓ
t, a

ℓ
1, r

ℓ
t) the history of episode ℓ ∈ [L] un-

til timestep t ∈ [T] using the privileged information, which
in our setting is additionally observed during train time.

Let D̃ℓ = (h̃1,T , . . . , h̃ℓ−1,T) be the dataset of histories, and
let E consist of the parameters of the POMDP, specifically
the transition and reward functions. The cumulative regret
of an algorithm Π = {πℓ}Lℓ=1 that deploys policy πℓ during
episode L in environment E is defined as R(L,Π, E) =∑L
ℓ=1 J (π∗, E) − J (πℓ, E) . Finally, the Bayesian regret

takes an expectation over the prior distribution over environ-
ment E , such that BR(L,Π) = E[R(L,Π, E)].

Algorithm. We consider an oracle version of the PROBE
algorithm, where at episode L, we deploy a policy πℓ condi-

5

Learning to Explore in POMDPs with Informational Rewards

tioned on history that satisfies:

πℓ = argmax
π

E

[
T∑
t=1

r(st, at) + αI(h̃t−1; it) | D̃ℓ

]
(4)

where the expectation is taken over environment E and pol-
icy π. Recall that in practice, PROBE instead utilizes a vari-
ational approximation of I(ht−1; zt) as the reward bonus,
where zt is a learned embedding of information it, because
we do not have access to it during evaluation.

Regret bound. We show that our analyzed version of
PROBE enjoys polynomial regret under the following as-
sumption about the provided privileged information:

Assumption 5.1. The privileged information satisfies being
a deterministic function of hidden state such that: for any
timestep t ∈ [T], p(· | st, at) = p(· | it, at) for it = g(st).

This assumption means that the privileged information, in
conjunction with the observed history, is sufficient to predict
the next hidden state. Note that this is trivially true for i = s.
Using Assumption 5.1, we can prove the following Bayesian
regret bound for our algorithm.

For simplicity, we also assume that the reward function
rt = r(st, at) is deterministic. This assumption is only for
ease of algebra, and our derivation can be easily adapted to
include stochastic reward and observations.

Theorem 5.2. In a tabular POMDP, by choosing α =
Õ(

√
LT 2/|S|) in Equation (4), the Bayesian regret of our

algorithm can be bounded as:

BR(L,Π) ≤
√
8LT 4|S|2|A|2|I| log(LT |S|) .

We defer a full proof of Theorem 5.2 to Appendix D. Our
derivation leverages recent results in information-directed
sampling (Russo & Roy, 2014; Hao & Lattimore, 2022);
however, the algorithms considered in such work are for
MDPs and often intractable to implement in practice. In
contrast, PROBE is both practical and achieves comparable
regret bounds for POMDPs with privileged information.

6. Experiments
Our experiments aim to study whether PROBE can learn
effective exploration strategies across various POMDP prob-
lems with privileged state information at training time.
We also evaluate whether PROBE can learn from future
transitions, while remaining robust to suboptimal choices
of privileged information, such as task-irrelevant informa-
tion. Videos and code can be found at https://sites.
google.com/view/probe-explore-icml.

Light DarkTiger Door

Overcooked

Map

Construction

mapagent

bus goal

darkness

tiger

Figure 2. Environment visualizations. The Construction environ-
ment is depicted in the top-down view on the right for clarity, but
the agent only receives the first-person view on the left as state.

6.1. Experimental Setup

Environments. We begin our experiments with simple
partially observable problems studied by prior work. All
environments are visualized in Fig. 2.

• Tiger Door (Littman et al., 1995). This gridworld has a
goal and a trap cell at the end of two hallways. The posi-
tions of these cells are unknown but revealed by visiting
the map cell. The goal cell and trap cell give a reward of
+1 and −1 respectively, and terminate the episode.

• Light-Dark (Platt Jr et al., 2010). The agent is randomly
initialized in the “dark” part of a room, where the agent
receives an uninformative observation of its position (a
constant of (0, 0)). Its goal is to reach the goal at the
center. To observe its true position, the agent can visit the
“light” part, along the right side of the room.

• Map (Liu et al., 2021). The agent can reach the goal
cell more quickly by taking one of the four buses. The
configuration of bus source-destinations is unknown but
revealed by visiting a map cell.

We further introduce three new POMDP problems that re-
quire more complex exploration strategies.

• Non-stationary Map. A non-stationary version of Map,
in which the bus routes change every 2 to 3 time-steps. It
requires the agent 2 steps to take any of the buses from
the map state, therefore the agent will only successfully
reach its destination if the routes change after 3 steps.

• Overcooked (Carroll et al., 2019). The agent needs to pre-
pare two dishes with a second agent by placing the correct
ingredient in the pot and serving the finished dishes. The
correct ingredient is determined by the other ingredients
that the second agent has filled the pot with. The recipe
that the other agent is following is only known by visiting
the corner of the kitchen and reading the order.

6

https://sites.google.com/view/probe-explore-icml
https://sites.google.com/view/probe-explore-icml

Learning to Explore in POMDPs with Informational Rewards

• Construction. This vision-based environment, built on
top of Miniworld (Chevalier-Boisvert et al., 2023), has
two routes that take the agent to its goal destination. Each
route is either clear or blocked due to construction, which
is indicated by a sign near the start of the route and by
construction cones that are only in view at the end of the
route. The status of a route, i.e., whether it is clear or
blocked, can change during an episode.

Of these domains, Non-stationary Map is designed to test
the ability to learn exploration strategies that generalize
to new conditions not seen during training. See App. B
for more details about these environments, such as their
observation and action spaces.

Comparisons. For the first of our comparisons, we evaluate
a recurrent policy that takes an input the history and outputs
an action, trained via double deep Q-learning (Van Hasselt
et al., 2016). We also consider multiple baselines designed
for POMDPs and use some form of privileged information.

• IMPORT (Kamienny et al., 2020): POMDP algorithm that,
like PROBE, trains an encoder Fψ(z | s), decoder qω(z |
h), and policy π(a | h, z). IMPORT uses an auxiliary loss
function between the history embedding from the decoder
and the embedding from the encoder, which is optimized
only with respect to the parameters of the decoder.

• ELF (Walsman et al., 2022): POMDP algorithm that
uses action labels from an omniscient expert, which acts
optimally with respect to the underlying state. It trains
a follower policy, which is not privileged, to imitate the
omniscient expert, and uses the estimated value of this
policy to shape the rewards of an explorer policy.

• DREAM (Liu et al., 2021): Meta-RL algorithm that decou-
ples the exploration policy from the exploitation policy.
To adapt it to our setting, which does not have a separate
exploration episode, we augment the exploration policy
with an “end episode” action that will switch from the
exploration to the exploitation policy. Unlike PROBE, this
comparison performs one stage of exploration.

See App. A for more details about these methods.

6.2. Learning in Benchmark Environments

We first verify that it can learn strong policies in commonly-
studied POMDP problems. In Fig. 3 (top), we compare
the average performance of PROBE to prior methods after
training on 100K episodes, and find that PROBE achieves
similar or better performance than prior POMDP and meta-
RL algorithms. Because PROBE is able to learn a task-
relevant exploration strategy, the agent recovers the highest
achievable return in all tasks.

All comparisons, with the exception of the recurrent policy,
have access to some form of privileged information during
training. The DREAM and IMPORT agents have the task

identifier, while ELF has expert actions. However, DREAM
is the only comparison that also recovers the optimal return
across all three domains. We observe that the recurrent
agent eventually learns the optimal exploration behavior
but less efficiently than PROBE and DREAM. In contrast,
the IMPORT and ELF agents do not learn to gather informa-
tion and instead will directly try to solve the task without
it. However, in Tiger Door and Light Dark, this informa-
tion is critical to solving the task. Therefore, both IMPORT
and ELF agents, which make a random guess about the task,
will only be correct a fraction of the time. In Map, reading
the map and taking the correct bus is the optimal solution,
but the agent can still reach the goal by directly walking
to it, which takes longer. Both IMPORT and ELF agents
learn the latter behavior. Because ELF accesses the expert
actions, we also find that it learns quickly initially but fails
to explore reliably to identify the task.

6.3. More Complex Exploration Strategies

We now evaluate our method on the new POMDP problems
described in Section 6.1. In contrast to the problems in the
previous experiments, these necessitate multiple rounds of
information gathering, due to the dynamism of the task. In
Fig. 3 (bottom), we present the results from these domains.
In Nonstationary Map, PROBE exhibits the desired behavior
of alternating between reading the map and taking the bus
according to the present state of the environment, until it
successfully reaches its target destination. In Overcooked,
the agent correctly reads the placed order each time before
starting to place ingredients into the pot.

Due to its single exploration phase, we observe that the
DREAM exploration agent will either (1) switch control over
to the exploitation agent after exploring once or (2) never
stop exploration. With the former behavior, the exploitation
agent fails to produce the same exploration behavior once
the environment changes. With the latter, the agent demon-
strates the desired behavior of re-exploring as changes occur,
but never makes progress towards completing the task be-
cause it is not trained with task rewards, like PROBE. In
Overcooked, the other comparisons have similar failure
modes to those described in the benchmark problems. In
Non-stationary Map, IMPORT and ELF achieve final returns
of 0.33 and 0.29, which are close to PROBE’s return of 0.41,
but they achieve this by walking to the goal rather than
taking the buses, which on average is more efficient.

Scaling to image observations. Construction is a challeng-
ing 3D visual navigation task with sparse rewards, which we
use to evaluate the scalability of PROBE to high-dimensional
observations. In this domain, the agent must decide which
road to take by reading signs that indicate whether the road
is blocked due to construction. Because the status of the
road can change at any (unknown) point, the agent may be

7

Learning to Explore in POMDPs with Informational Rewards

Figure 3. Performance on all environments. PROBE and DREAM achieve optimal performance across all three benchmark domains.
Second row, third column: Using future transitions as the privileged information (PROBE (FUTURE)) results in similar performance as
PROBE. Our exploration bonus can be used even without privileged information. Error bars represent the standard error over 5 seeds.

required to change its route even after checking the sign.

The PROBE agent learns to read the signs, and even waits
at the beginning of the road if it is clear for a few extra
time-steps. The purpose of this behavior is to avoid walking
down the road too early in case the status of the road changes
soon after. If the status does change, the agent saves the few
time-steps that it would have taken to walk down the road
and turn around. On the other hand, the DREAM agent does
not learn this hedging behavior. Its exploration policy reads
the sign and immediately switches to the exploitation policy.
The second policy will then walk down the road, and if the
status changes, it will see the construction cones at the end
of the road after which it will turn around. We believe the
hedging behavior shown by PROBE is possible due to the
joint optimization of the exploration and task rewards. The
recurrent, ELF, and IMPORT agents do not reliably read the
signs and rely on the cones that appear at the end of the road
to decide whether to change routes.

6.4. Learning from Future Transitions

As discussed in Section 4.2, our method can in principle
learn from alternative forms of information. In this ex-
periment, we explore the use of future transitions from
an episode: it = τt+1:T , and we call this variant of our
algorithm PROBE (FUTURE). Because future transitions
are not truly privileged in that they are available to all on-
line algorithms, this variant can be applied to any decision-
making problem, regardless of whether it offers additional
information. Fig. 3 (second row, third column) compares
the performance of PROBE and PROBE (FUTURE) in the
Tiger Door domain. We see that the variant without privi-
leged information performs similarly to PROBE and even
slightly improves the learning efficiency. These results sug-

gest that PROBE (FUTURE) is a competitive algorithm that
can be applied to any POMDP problem with any additional
assumptions, and achieve results similar to algorithms that
use explicit privileged information.

6.5. Sensitivity Analysis

Next, we evaluate the robustness of our algorithm to dif-
ferent hyperparameters and types of privileged information.
Below, we study the choice of the weight on the PROBE
exploration bonus. In App. C, we study the sensitivity to
excess and noisy privileged information.

Weight on exploration bonus. The choice of α, which
determines the importance of the exploration bonus in the
overall objective, can impact the performance of the result-
ing PROBE policy. In this experiment, we evaluate PROBE
with α ∈ {0.0, 0.1, 0.5, 1.0, 2.0} in the Tiger Door do-
main, and report the results in Fig. 4. We find that the
choice of α can significantly impact the final performance
of the PROBE policy. When the multiplier is too small,
the scaled reward bonus may not be enough to incentivize
exploration. However, when it is too large, it may out-
weigh the task rewards and lead to unsuccessful policies.

Figure 4. PROBE with different
weights on the exploration bonus.

Therefore, we recom-
mend choosing the
largest possible α value
such that the total
scaled PROBE reward
does not exceed the
optimal task reward, i.e.,∑
t αr

PROBE
t <

∑
t rt.

We find these policies to
be the most successful in
our experiments, as this

8

Learning to Explore in POMDPs with Informational Rewards

ensures that the exploration and task rewards are weighted
roughly equally.

7. Discussion
Many partially-observable decision-making problems re-
quire complex information-gathering strategies to success-
fully complete the task. To approach these settings, we
designed an exploration bonus that rewards information
gathered about the hidden state, or more generally about any
privileged information available during training. In contrast,
prior algorithms leveraging similar privileged information
either only work in stationary meta-RL settings or fail to
recover the optimal exploration strategy. In experiments on
multiple partially-observed environments, our exploration
bonus leads to more efficient exploration strategies and as
a result, improved task rewards. We also proposed a more
general variant of our algorithm that does not need any
privileged information, and observed its efficacy.

Limitations and future work. There are limitations to our
work, which only studies partially-observable settings that
require the agent to gather new information whenever the
hidden component of the state changes. In some scenarios,
the state may shift in a structured way that can be predicted
with high accuracy, and exploration is unnecessary in such
cases. In principle, PROBE can handle this type of non-
stationarity by modifying the design of the decoder. Our
experiments also focused on domains with finite hidden state
spaces, so extending PROBE to more diverse environments
with larger or continuous state spaces would be an exciting
avenue to explore in future work.

Impact Statement
Our algorithm requires access to privileged information
specified by the algorithm designer. This means that, if mis-
specified, certain features may be overlooked while other
features may be overemphasized. While we designed an
information-bottlenecked representation to prevent overem-
phasis of task-irrelevant features, missing features may re-
sult in policies with undesirable behaviors. An example of
this is a recommendation system that interacts with diverse
users. Failure to include critical features, e.g., demographic
information of the users, in the design of the privileged in-
formation can lead to potentially negative or harmful user
interactions.

References
Baisero, A. and Amato, C. Unbiased asymmetric actor-critic

for partially observable reinforcement learning. arXiv
preprint arXiv:2105.11674, 2021.

Barber, D. and Agakov, F. The im algorithm: a variational

approach to information maximization. Advances in neu-
ral information processing systems, 16(320):201, 2004.

Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S.,
Abbeel, P., and Dragan, A. On the utility of learning
about humans for human-ai coordination. Advances in
neural information processing systems, 32, 2019.

Chen, D., Zhou, B., Koltun, V., and Krähenbühl, P. Learning
by cheating. In Conference on Robot Learning, pp. 66–75.
PMLR, 2020.

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano,
R., Willems, L., Lahlou, S., Pal, S., Castro, P. S., and
Terry, J. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented
tasks. arXiv preprint arXiv:2306.13831, 2023.

Doshi-Velez, F. and Konidaris, G. Hidden parameter markov
decision processes: A semiparametric regression ap-
proach for discovering latent task parametrizations. In
IJCAI: proceedings of the conference, volume 2016, pp.
1432. NIH Public Access, 2016.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
arXiv preprint arXiv:1802.06070, 2018.

Foerster, J., Assael, I. A., De Freitas, N., and Whiteson,
S. Learning to communicate with deep multi-agent re-
inforcement learning. Advances in neural information
processing systems, 29, 2016.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

Guez, A., Viola, F., Weber, T., Buesing, L., Kapturowski,
S., Precup, D., Silver, D., and Heess, N. Value-driven
hindsight modelling. Advances in Neural Information
Processing Systems, 33:12499–12509, 2020.

Guo, J., Chen, M., Wang, H., Xiong, C., Wang, M., and Bai,
Y. Sample-efficient learning of pomdps with multiple ob-
servations in hindsight. arXiv preprint arXiv:2307.02884,
2023.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine,
S. Meta-reinforcement learning of structured exploration
strategies. Advances in neural information processing
systems, 31, 2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for

9

Learning to Explore in POMDPs with Informational Rewards

planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Han, D., Doya, K., and Tani, J. Variational recurrent mod-
els for solving partially observable control tasks. arXiv
preprint arXiv:1912.10703, 2019.

Hao, B. and Lattimore, T. Regret bounds for information-
directed reinforcement learning. In Advances in neural
information processing systems, 2022.

Harutyunyan, A., Dabney, W., Mesnard, T., Ghesh-
laghi Azar, M., Piot, B., Heess, N., van Hasselt, H. P.,
Wayne, G., Singh, S., Precup, D., et al. Hindsight credit
assignment. Advances in neural information processing
systems, 32, 2019.

Hausknecht, M. and Stone, P. Deep recurrent q-learning for
partially observable mdps. In 2015 aaai fall symposium
series, 2015.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck,
F., and Abbeel, P. Vime: Variational information max-
imizing exploration. Advances in neural information
processing systems, 29, 2016.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A.,
Teh, Y. W., and Heess, N. Meta reinforcement learning as
task inference. arXiv preprint arXiv:1905.06424, 2019.

Igl, M., Zintgraf, L., Le, T. A., Wood, F., and Whiteson,
S. Deep variational reinforcement learning for pomdps.
In International Conference on Machine Learning, pp.
2117–2126. PMLR, 2018.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

Kamienny, P.-A., Pirotta, M., Lazaric, A., Lavril, T.,
Usunier, N., and Denoyer, L. Learning adap-
tive exploration strategies in dynamic environments
through informed policy regularization. arXiv preprint
arXiv:2005.02934, 2020.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International conference on
learning representations, 2018.

Karl, M., Soelch, M., Bayer, J., and Van der Smagt, P.
Deep variational bayes filters: Unsupervised learning
of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Krishnamurthy, A., Agarwal, A., and Langford, J.
Contextual-mdps for pac-reinforcement learning with
rich observations. In Advances in neural information
processing systems, volume 29, 2016.

Kumar, A., Fu, Z., Pathak, D., and Malik, J. Rma: Rapid
motor adaptation for legged robots. arXiv preprint
arXiv:2107.04034, 2021.

Lambrechts, G., Bolland, A., and Ernst, D. Informed
pomdp: Leveraging additional information in model-
based rl. arXiv preprint arXiv:2306.11488, 2023.

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine, S.
Stochastic latent actor-critic: Deep reinforcement learn-
ing with a latent variable model. Advances in Neural
Information Processing Systems, 33:741–752, 2020a.

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter,
M. Learning quadrupedal locomotion over challenging
terrain. Science robotics, 5(47):eabc5986, 2020b.

Lee, J., Agarwal, A., Dann, C., and Zhang, T. Learning in
pomdps is sample-efficient with hindsight observability.
In International Conference on Machine Learning, pp.
18733–18773. PMLR, 2023.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P.
Learning policies for partially observable environments:
Scaling up. In Machine Learning Proceedings 1995, pp.
362–370. Elsevier, 1995.

Liu, E., Stephan, M., Nie, A., Piech, C., Brunskill, E., and
Finn, C. Giving feedback on interactive student programs
with meta-exploration. Advances in Neural Information
Processing Systems, 35:36282–36294, 2022.

Liu, E. Z., Raghunathan, A., Liang, P., and Finn, C. Decou-
pling exploration and exploitation for meta-reinforcement
learning without sacrifices. In International conference
on machine learning, pp. 6925–6935. PMLR, 2021.

Margolis, G. B., Fu, X., Ji, Y., and Agrawal, P. Learning to
see physical properties with active sensing motor policies.
arXiv preprint arXiv:2311.01405, 2023.

Mesnard, T., Weber, T., Viola, F., Thakoor, S., Saade,
A., Harutyunyan, A., Dabney, W., Stepleton, T., Heess,
N., Guez, A., et al. Counterfactual credit assignment
in model-free reinforcement learning. arXiv preprint
arXiv:2011.09464, 2020.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P.
A simple neural attentive meta-learner. arXiv preprint
arXiv:1707.03141, 2017.

10

Learning to Explore in POMDPs with Informational Rewards

Nguyen, H., Baisero, A., Wang, D., Amato, C., and Platt, R.
Leveraging fully observable policies for learning under
partial observability. arXiv preprint arXiv:2211.01991,
2022.

Norman, B. and Clune, J. First-explore, then exploit:
Meta-learning intelligent exploration. arXiv preprint
arXiv:2307.02276, 2023.

Nota, C., Thomas, P., and Da Silva, B. C. Posterior value
functions: Hindsight baselines for policy gradient meth-
ods. In International Conference on Machine Learning,
pp. 8238–8247. PMLR, 2021.

Pan, Y., Cheng, C.-A., Saigol, K., Lee, K., Yan, X.,
Theodorou, E., and Boots, B. Agile autonomous driving
using end-to-end deep imitation learning. arXiv preprint
arXiv:1709.07174, 2017.

Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W.,
and Abbeel, P. Asymmetric actor critic for image-based
robot learning. arXiv preprint arXiv:1710.06542, 2017.

Platt Jr, R., Tedrake, R., Kaelbling, L., and Lozano-Perez,
T. Belief space planning assuming maximum likelihood
observations. 2010.

Russo, D. and Roy, B. V. Learning to optimize via informa-
tion directed sampling. CoRR, abs/1403.5556, 2014.

Schmidhuber, J. Reinforcement learning upside down:
Don’t predict rewards–just map them to actions. arXiv
preprint arXiv:1912.02875, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shenfeld, I., Hong, Z.-W., Tamar, A., and Agrawal, P.
Tgrl: Teacher guided reinforcement learning algorithm
for pomdps. In Workshop on Reincarnating Reinforce-
ment Learning at ICLR 2023, 2023.

Stadie, B. C., Yang, G., Houthooft, R., Chen, X., Duan, Y.,
Wu, Y., Abbeel, P., and Sutskever, I. Some considerations
on learning to explore via meta-reinforcement learning.
arXiv preprint arXiv:1803.01118, 2018.

Still, S. and Precup, D. An information-theoretic approach
to curiosity-driven reinforcement learning. Theory in
Biosciences, 131:139–148, 2012.

Storck, J., Hochreiter, S., Schmidhuber, J., et al. Reinforce-
ment driven information acquisition in non-deterministic
environments. In Proceedings of the international confer-
ence on artificial neural networks, Paris, volume 2, pp.
159–164, 1995.

Sun, Y., Gomez, F., and Schmidhuber, J. Planning to be
surprised: Optimal bayesian exploration in dynamic envi-
ronments. In Artificial General Intelligence: 4th Interna-
tional Conference, AGI 2011, Mountain View, CA, USA,
August 3-6, 2011. Proceedings 4, pp. 41–51. Springer,
2011.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Venuto, D., Lau, E., Precup, D., and Nachum, O. Pol-
icy gradients incorporating the future. arXiv preprint
arXiv:2108.02096, 2021.

Wahlström, N., Schön, T. B., and Deisenroth, M. P. From
pixels to torques: Policy learning with deep dynamical
models. arXiv preprint arXiv:1502.02251, 2015.

Walsman, A., Zhang, M., Choudhury, S., Fox, D., and
Farhadi, A. Impossibly good experts and how to fol-
low them. In The Eleventh International Conference on
Learning Representations, 2022.

Wang, A., Li, A. C., Klassen, T. Q., Icarte, R. T., and McIl-
raith, S. A. Learning belief representations for partially
observable deep rl. 2023.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Warde-Farley, D., Van de Wiele, T., Kulkarni, T., Ionescu,
C., Hansen, S., and Mnih, V. Unsupervised control
through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Warrington, A., Lavington, J. W., Scibior, A., Schmidt, M.,
and Wood, F. Robust asymmetric learning in pomdps.
In International Conference on Machine Learning, pp.
11013–11023. PMLR, 2021.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller,
M. Embed to control: A locally linear latent dynamics
model for control from raw images. Advances in neural
information processing systems, 28, 2015.

Weihs, L., Jain, U., Liu, I.-J., Salvador, J., Lazebnik, S.,
Kembhavi, A., and Schwing, A. Bridging the imitation
gap by adaptive insubordination. Advances in Neural
Information Processing Systems, 34:19134–19146, 2021.

Zhou, W., Pinto, L., and Gupta, A. Environment probing
interaction policies. arXiv preprint arXiv:1907.11740,
2019.

11

Learning to Explore in POMDPs with Informational Rewards

Zhu, P., Li, X., Poupart, P., and Miao, G. On improving
deep reinforcement learning for pomdps. arXiv preprint
arXiv:1704.07978, 2017.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hof-
mann, K., and Whiteson, S. Varibad: A very good method
for bayes-adaptive deep rl via meta-learning. arXiv
preprint arXiv:1910.08348, 2019.

Zintgraf, L. M., Feng, L., Lu, C., Igl, M., Hartikainen, K.,
Hofmann, K., and Whiteson, S. Exploration in approxi-
mate hyper-state space for meta reinforcement learning.
In International Conference on Machine Learning, pp.
12991–13001. PMLR, 2021.

12

Learning to Explore in POMDPs with Informational Rewards

A. Implementation Details
A.1. PROBE (Ours)

The PROBE policy πθ is parameterized as a recurrent
deep dueling double-Q network (Van Hasselt et al., 2016).
To train this policy along with the encoder Fψ and de-
coder qω, we sample from the replay buffer a tuple of
(ht, it, at, rt, ot+1, it+1) and define the following losses:

L(ψ) = E
[
min(∥fψ(i)∥22,K)

]
L(ω) = E

[
∥fψ(i)− gω(h)∥22

]
L(θ, ψ) = E

[
∥Q̂θ(h, fψ(i), a)− (r̂ + Q̂θ′(h

′, fψ(i
′), a′))∥22

]
,

where a′ = argmax
a

Q̂θ(h
′, fψ(i

′), a), r̂ = r + αrPROBE

L(θ, ω) = E
[
∥Q̂θ(h, gω(h), a)− (r̂ + Q̂θ′(h

′, gω(h
′), a′))∥22

]
where a′ = argmax

a
Q̂θ(h

′, gω(h
′), a), r̂ = r + αrPROBE

and where K is a hyperparameter and θ′ are the parameters
of the target network. For all of our experiments, we choose
K = 10 following DREAM. We minimize the sum of these
four losses, and periodically update the target network.

The privileged information and observations are embedded
in the same way, which is described next. Each dimension
of the privileged information/observation is embedded with
an embedding matrix to an output of dimension 32 and con-
catenated together. They are then passed through a 2-layer
MLP with dimensions 256 and 64. The history h is bro-
ken up into tuples of (at, rt, ot+1, dt), where dt represents
whether the episode is done at timestep t. The action at,
reward rt, and done flag dt are separately embedded to an
output of dimension of 16 each. The observation ot+1 is
embedded as previously described; then all components are
concatenated and passed through a linear layer with output
dimension 64. Each tuple is embedded following the above
scheme and passed into an LSTM with hidden dimension
64 to obtain the embedding of the overall history. In Con-
struction, the observations are images and are embedded by
a CNN with 3 layers, each with 32 features and stride of 2,
and with filter sizes of 5, 5, and 4. The output of the CNN
is 128-dimensional.

Clipped distances. The PROBE reward is defined in Eqn. 3
and reproduced below:

rPROBE
t = ∥fψ(it+1)−gω(ht)∥22−∥fψ(it+1)−gω(ht+1)∥22.

We clip this bonus before adding it to the task reward, so
that we can better set the weight α. Specifically, we clip
each distance term with D:

rPROBE,clipped
t = min

(
∥fψ(it+1)− gω(ht)∥22, D

)
−min

(
∥fψ(it+1)− gω(ht+1)∥22, D

)
,

where we choose D = 1.0 for all of our experiments.

A.2. Recurrent Policy

The recurrent policy πθ is also parameterized as a DDQN,
which is optimized with the following loss:

L(θ) = E
[
∥Q̂θ(h, a)− (r + Q̂θ′(h

′, a′))∥22
]

where a′ = argmax
a

Q̂θ(h
′, a).

Similar to PROBE, θ′ are the parameters of the target net-
work, which are periodically updated. The embedding
scheme is the same as that of PROBE.

A.3. IMPORT

The IMPORT policy πθ is also parameterized as a recurrent
DDQN. Like PROBE, there is an encoder Fψ and decoder
qω . The losses are:

L(ω) = E
[
∥fψ(i)− gω(h)∥22

]
L(θ, ψ) = E

[
∥Q̂θ(h, fψ(i), a)− (r + Q̂θ′(h

′, fψ(i
′), a′))∥22

]
,

where a′ = argmax
a

Q̂θ(h
′, fψ(i

′), a)

L(θ, ω) = E
[
∥Q̂θ(h, gω(h), a)− (r + Q̂θ′(h

′, gω(h
′), a′))∥22

]
where a′ = argmax

a
Q̂θ(h

′, gω(h
′), a).

Unlike PROBE, there is no exploration bonus. We use the
same embedding scheme as PROBE.

A.4. ELF

We use the ELF implementation from Walsman et al. avail-
able at https://github.com/aaronwalsman/
impossibly-good. ELF requires the use of action
labels from an omniscient expert π∗ (with access to
the underlying state), which we design by hand in our
experiments. It trains a follower policy πFψ that imitates
these actions via the cross entropy loss:

L(ψ) = −Ea∗∼π∗
[
log πFψ (a

∗ | o)
]
.

It also trains a value function for the follower V Fϕ via a
squared error:

L(ϕ) = E
[
(V Fϕ (h)− V (h))2

]
.

Finally, the explorer policy πEθ is trained via PPO (Schulman
et al., 2017) to maximize the rewards r̂ = r + V Fϕ (ht+1)−
V Fϕ (ht). We use the same embedding scheme as PROBE.

13

https://github.com/aaronwalsman/impossibly-good
https://github.com/aaronwalsman/impossibly-good

Learning to Explore in POMDPs with Informational Rewards

A.5. DREAM

DREAM learns an exploration policy πϕ and a separate ex-
ploration policy πθ. Both are parameterized as DDQNs.
Like PROBE, it also trains an encoder Fψ and decoder qω.
The losses are:

L(ψ) = Ei
[
min(∥fψ(i)∥22,K)

]
L(ω) = Eht

[∑
t

∥fψ(it)− gω(ht)∥22

]
L(ϕ) = E

[
∥Q̂exp

ϕ (h, a)− (rexp + γQ̂exp
ϕ′ (h

′, a′))∥22
]

where a′ = argmax
a

Q̂ϕ(h
′, a)

L(θ, ψ) = E
[
∥Q̂θ(h, fψ(i), a)− (r + Q̂θ′(h

′, fψ(i
′), a′))∥22

]
,

where a′ = argmax
a

Q̂θ(h
′, fψ(i

′), a)

L(θ, ω) = E
[
∥Q̂θ(h, gω(h), a)− (r + Q̂θ′(h

′, gω(h
′), a′))∥22

]
where a′ = argmax

a
Q̂θ(h

′, gω(h
′), a)

and rexp = ∥fψ(i′)−gω(ht)∥22−∥fψ(i′)−gω(ht+1)∥22−c
and c is a hyperparameter. For all of our experiments, we
choose c = 0.1 following the original work. The losses are
similar to PROBE except (1) there is an additional loss term
for the explicit exploration policy πϕ and (2) the exploitation
Q-network Q̂θ only trains on the task rewards.

B. Environment Details
B.1. Tiger Door

This problem has 2 possible configurations: either the goal
state is at the end of the top hallway or at the end of the
bottom hallway. The agent observes its own (x, y) position
and a default value of 0. If the agent is on the map cell,
the last component of the observation will reveal either
1 or 2, corresponding to the goal at the top and bottom,
respectively. The agent can move up, down, left, and right.
The agent’s reward is −0.1 at each timestep and +1 if at the
goal. Reaching either the goal or trap cell will terminate the
episode. The maximum number of steps is 20.

B.2. Light Dark

In this problem, the agent is randomly initialized in the
“dark” part of the room and needs to reach the goal which
is at the middle of the dark room. There are 19 possible
initial positions (the goal cell is not included). In the dark,
the agent observes (0, 0) and in the light, which is on the
far right side of the room, the agent observes its true (x, y)
position. The agent can move up, down, left, and right. The
agent’s reward is −0.1 at each timestep and +1 if at the
goal. Reaching the goal will terminate the episode. The

maximum number of steps is 20.

B.3. Map

There are four buses around the middle of the grid, and each
teleports the agent to one of the corners. Different config-
urations have different destinations for the buses, but the
destinations are fixed within each episode. Therefore, there
are 4! possible configurations. The observation includes the
agent’s current (x, y) position, and an extra component that
is by default 0. However, if the agent is at the map state,
the observation will reveal an integer corresponding to the
index of the current configuration. The agent can move up,
down, left, and right, and ride the bus if it is at a stop. The
reward is −0.1 at each time-step, and +1 if the agent is at
the goal. Reaching the goal will terminate the episode. The
maximum number of steps is 20.

B.4. Non-stationary Map

This problem builds on Map. Instead of a fixed configu-
ration, the destinations will change after 2 time-steps with
probability 0.25 and after 3 time-steps with probability 0.75.
Because it takes the agent 2 timesteps to take any bus from
the map state, there is a possibility that the destinations
change while the agent is taking the bus. In this case, the
ideal behavior is to ride the bus back to the middle and visit
the map state again. The agent can move up, down, left, and
right, and ride the bus if it is at a stop. The reward is −0.05
at each time-step, −0.1 for taking the bus, and +1 if the
agent is at the goal. Reaching the goal will terminate the
episode. The maximum number of steps is 20.

B.5. Overcooked

This problem builds on the Overcooked AI environment.
At each timestep, the agent needs to either cook onions
or cook tomatoes. The specific dish is determined by the
other agent but is unknown to the ego agent. After the first
dish is completed, the other agent may potentially choose a
new dish to cook. Since there are two possibilities (onion
or tomato) for the first and second dish, there are 4 total
configurations. The agent’s observation includes the current
(x, y) position, current direction (i.e., north, east, south,
west), type of object being held (can potentially not be
holding anything, which then defaults to 0), and an extra
component that is by default 0. If the agent visits the top
right corner to read the order, the last component of the
observation will reveal either 1 or 2, corresponding to the
current dish being prepared (onion or tomato). The agent
can move north, east, south, and west, and interact with parts
of the kitchen (ingredients, pot, dishes, serving station) that
it is directly facing. The reward is −0.01 at each timestep,
0.2 for cooking (this bonus is given even if the wrong dish
is cooked), and 1 whenever a dish is served. The ideal

14

Learning to Explore in POMDPs with Informational Rewards

Figure 5. Sensitivity analysis of PROBE. First: PROBE with different weights on the exploration bonus. Second: PROBE defaults to optimal
because when the MDP is fully observed. Response of PROBE to extra features (third plot) and to noise (fourth plot) introduced to the PI.

behavior is to first read the order before preparing each of
the two dishes. Serving the second dish will terminate the
episode. The maximum number of steps is 50.

B.6. Construction

This problem is a 3D visual navigation task. There are two
routes, and the agent is randomly initialized at the start of
one of these two routes. Each route can either be open or
closed for construction. If a route is closed, it will remain
closed for the rest of the episode. If a route is open, after
every 5 timesteps, there is a probability of 0.7 that the route
will close. There is at least one route that will be open
for the entire episode, which is unknown to the agent. The
agent’s observation is a 80×60 RGB image of its egocentric
view. Reading the signs at the beginning of each route will
indicate whether the route is currently open or closed. If
it is closed and the agent walks down the route, a row of
construction cones will appear. Either reaching the end of
the correct route or walking into the cones will terminate the
episode. The agent can turn left by 90 degrees, turn right by
90 degrees, and move forward. The reward is −0.05 at each
timestep, −1 for walking into the cones, and 1 for reaching
the end of the correct route. The maximum number of steps
is 30.

C. Experimental Results
C.1. Sensitivity Analysis

Full information. We next verify that PROBE defaults to
a good RL algorithm in the fully-observable setting. We
modify the observations of the Tiger Door domain so that
the task is fully known even without visiting the map state.
Here, we find that the PROBE agent learns the optimal policy
more quickly as information gathering is unnecessary (see
Fig. 5 (second plot)). Further, it does not need to visit the
map state to learn where the goal is, so it solves the task in
fewer steps ending with a higher reward.

Excess and noisy privileged information. In most of the
earlier experiments, the privileged information precisely
described the hidden state. Here, we add random extra-

neous features to the information vector. Because PROBE
applies an information bottleneck on the representation of
the privileged information, we find that PROBE is robust
to varying amounts of extra information added (see Fig. 5
(third plot)). We also introduce noise to the privileged infor-
mation and evaluate how PROBE responds to different noise
levels. Overall, we find that it is perfectly robust to extra
features added, but not as robust to noise, especially when
compared to PROBE (FUTURE). Hence, we recommend us-
ing the privileged information-free variant of our algorithm
when the provided information is suspected to be noisy.

C.2. Additional Results

Information-gathering strategy is expensive to follow. In
this experiment, we move the signs farther away from the
initial position of the agent, so that reading the signs first is
not advantageous to simply walking down the road to check
if the road is blocked. Here, the PROBE agent learns to walk
down the road to check if it is blocked, rather than reading
the signs (see video on the supplementary website).

D. Proof of Theorem 5.2
Our analysis relies on the notion of information ratio intro-
duced in Russo & Roy (2014). We adapt it to our setting by
defining the information ratio for policy π at episode ℓ as:

Γℓ(π) :=
(Eℓ [J (π∗, E)− J (π, E)])2

Iℓ(h̃T,ℓ; E)
,

where we use Eℓ = E[·|D̃ℓ] and Iℓ = I(·|D̃ℓ) as shorthand.

We utilize the following lemma originally proposed by
Russo & Roy (2014):

Lemma D.1. Let algorithm Π = {πℓ}Lℓ=1 deploy policy πℓ

for episode ℓ ∈ [L] satisfying

πℓ = argmin
π

Γℓ(π) .

Then the Bayesian regret bound for the algorithm is

BR(L,Π) ≤
√
E[Γ∗]I(D̃L+1; E)L ,

15

Learning to Explore in POMDPs with Informational Rewards

where Γ∗ is the worst-case information ratio such that
Γℓ(π

ℓ) ≤ Γ∗ for any episode ℓ ∈ [L].

Proof. The proof follows from Theorem 3.1 in Hao & Lat-
timore (2022).

For our setting of tabular POMDP with privileged informa-
tion, we can bound E[Γ∗] and I(D̃L+1; E) separately.

Lemma D.2. Under Assumption 5.1, in a tabular POMDP
with privileged information, the worst-case information ra-
tio is bounded as

E[Γ∗] ≤ 2T 3|S||A| .

Proof. The proof mostly follows from Lemma 3.2 in Hao
& Lattimore (2022). However, since we do not have access
to the hidden state sℓt at time t and episode ℓ, we instead
replace the POMDP transition dynamics P E(· | sℓh, aℓh)
under environment E with P E(· | iℓh, aℓh) using the privi-
leged information. Since under Assumption 5.1, the two are
equivalent, the rest of the proof is unchanged.

Next, we bound the mutual information:

Lemma D.3. Under Assumption 5.1, in a tabular POMDP
with privileged information, the mutual information can be
bounded as

I(D̃L+1; E) ≤ 2T |S||I||A| log(LT |S|)

Proof. Again, the proof follows from Lemma 3.3 in Hao
& Lattimore (2022). The primary difference is that when
constructing a partition such that

DKL

(
P E(· | i, a)||P E′

(· | i, a)
)
≤ ε ,

for any environments E , E ′, and any i, a, t, we construct a
covering over i, a, t instead of s, a, t in the original proof.

Combining the above lemmas shows that the algorithm that
minimizes the information ratio achieves the desired Bayes
regret bound. However, the version PROBE that we analyze
differs in two key aspects: (1) we consider mutual informa-
tion between history and the privileged information rather
than environment, and (2) we optimize a reward bonus rather
than the actual information ratio. We will show that both
those changes do not affect the final regret bound.

To handle (1), we will show that the following are equivalent
for any policy π:

Eℓ [J (π, E)] + αIℓ(h̃T ; E) =

EℓEπ

[
T∑
t=1

r(st, at) + αI(h̃t−1; it)

]

This is because using the chain rule of mutual information,
we can show

Iℓ(h̃T ; E) =
T∑
t=1

Eℓ [Iℓ((it, at, rt); E | ht−1)]

=

T∑
t=1

Eℓ [Iℓ(it; E | ht−1)]

+ Eℓ [Iℓ(at; E | it, ht−1)]

+ Eℓ [Iℓ(rt; E | it, at, ht−1)] .

As additional notation, let Ēℓ denote the mean environment
over the posterior over environments P(E = · | D̃ℓ), such
that Eℓ

[
P E(· | i, a)

]
= P Ēℓ(· | i, a). Then, we can rewrite

the first term as

Eℓ [Iℓ(it; E | ht−1)] =∑
(i,a)

PĒℓ
ℓ,π(it−1 = i, at−1 = a)

∫
DKL

(
P E(· | i, a)||P Ēℓ(· | i, a)

)
dPℓ(E)

=

∫
Eπ

[
DKL

(
P E(· | i, a)||P Ēℓ(· | i, a)

)]
dPℓ(E)

= EℓEπ
[
DKL

(
P E(· | i, a)||P Ēℓ(· | i, a)

)]
= EℓEπ

[
I(h̃t−1; it)

]
In addition, we see that the second and third terms are 0
because the action taken is purely a function of π and not
the underlying environment, and reward is deterministic.
This means that the desired equivalence holds.

Finally, what remains is tackling (2). Using the AM-GM
inequality for any policy π, we have

Eℓ [J (π∗, E)− J (π, E)]
√
αIℓ(h̃T,ℓ; E)√

αIℓ(h̃T,ℓ; E)
≤

(Eℓ [J (π∗, E)− J (π, E)])2

2αIℓ(h̃T,ℓ; E)
+
α

2
Iℓ(h̃T,ℓ; E) .

This means that

Eℓ [J (π∗, E)− J (π, E)]− α

2
Iℓ(h̃T,ℓ; E) ≤

Γℓ(π)

2α

Rearranging and choosing α =

√
6LE[Γ∗]/I(D̃L+1; E)

gives us the original regret bound, as desired.

16

