
Under review as a conference paper at ICLR 2024

A ALGORITHM

A.1 GENERATION ALGORITHM

In the process of graph generation, we employ an iterative approach to construct the adjacency
matrix. During each iteration, a random set of query edges, counting a proportion denoted by �, is
drawn without repetition from all edges until the entire matrix is populated. It is worth noting that
when � does not evenly divide 1, the last iteration may result in a different number of query edges.
To maintain consistency in the number of query edges, we adopt a strategy in such cases: we utilize
the last � percent of edges from the dataset. This suggests that a small portion of edges will be
repeatedly sampled during generation, but given that their predicted distribution should remain the
same, this strategy will not change any mathematical formulation behind it. Besides, the nodes are
only sampled once across all iterations. To enhance clarity and facilitate understanding, we provide
Algorithm 2 as the following.

Algorithm 2: Sampling from SparseDiff
Sample the number of nodes n from the training data distribution
Sample G

T ⇠ qX(n)⇥ qY (n) // Random graph

for t = T to 1 do

Permute E(n) // Permuted list of all pairs between n nodes

Partition E(n) to Ep = [E1, ...,E1/�] // Ei has equal length

Create the empty graph G
t�1

for i = 1 to 1/� do

Obtain the query graph Gq from Ep // Gq contains edges in Ep[i]
z f(Gt

, t) // Optional: structural and spectral encoding

p̂
X
, p̂

Y
q �✓(Gt

, Gq, z) // Sparse forward pass

Sample query edge labels Y q according to p̂
Y
q

Add Y q
new and Eq

new to G
t�1 // Only add ”existing type” edges

if i==0 then

Sample node labels X according to p̂
X

Update X to G
t�1 // Update nodes only once

end

end

end

return G
0

A.2 SPARSE NOISE MODEL

We design a special algorithm to apply noise to graph data in a sparse manner. The fundamental idea
behind this algorithm is to treat separately ”existing” type and ”no edge” (i.e. non-existing) type
edges. In sparse graphs, the number of edges typically scales sub-quadratically with the number
of nodes, denoted as n, while the quadratic space complexity mainly stems from the ”no edge”
type edges. As a step-by-step description has been provided in 3.1, the most challenging aspect
of this algorithm is to randomly attribute new edges to the set of non-occupied node pairs without
introducing the quadratic adjacency matrix. Given its seeming simplicity, the challenge is mainly
due to the need to: i) avoid loops for computational efficiency, ii) respect the batching mechanism of
PyTorch geometric, which does not use an extra batch size dimension in the tensors, and iii) handle
graphs of varying sizes. Due to the algorithm’s complexity and the technical intricacies involved,
a more detailed description of our algorithm is discussed later in Appendix A.3, and the technical
details are provided in our code base.

A.3 UNIFORM SAMPLING FOR NON-EXISTING EDGES

When sampling non-existing edges, a common approach is to use the adjacency matrix, which can
be problematic for large graphs due to its quadratic size. The same challenge arises in the final step
of sampling sparse noise.

14

Under review as a conference paper at ICLR 2024

Consider a graph with 5 nodes, featuring 4 existing edges and 6 pairs of nodes that are not connected.
The condensed indices of the existing edges are 0, 3, 4, and 6. If the objective is to sample 2 non-
existing edges, you can start by randomly selecting two indices from the range [0, ..., 5], which
corresponds to the 6 non-existing edges. For example, if indices [2, 3] are randomly chosen, where
2 denotes the position of the third non-existing edge, and 3 represents the fourth non-existing edge.
These condensed indices are then inserted in the list of non-existing edges. Upon amalgamation with
the existing edges, the final set of edges will become [5, 7]. This approach allows us to efficiently
sample non-existing edges while ensuring the proper placement of existing edges within the sampled
set. Please refer to our codes for more implementation details.

B PROOF OF LEMMA 3.1

The lemma for a noisy graph with guaranteed sparsity comes directly from the proposition regarding
the tail behavior of a binomial distribution (Desolneux et al., 2008) as follows:
Proposition B.1. (Tail behavior of a binomial distribution)

Let Xi, i = 1, ...l be independent Bernoulli random variables with parameter 0 < p <
1
4 and let

Sl =
Pl

i=1 Xi. Consider a constant p < r < 1 or a real function p < r(l) < 1. Then according to

the Hoeffding inequality, B(l, k, p) = P[Sl � k] satisfies:

� 1

l
logP[Sl � rl] � rlog

r

p
+ (1� p)log

1� r

1� p
(2)

For sparse graphs, the edge ratio k is clearly smaller than 1
4 . Consider then Bernoulli random

variables with parameter k and a constant k < r < 1 with n(n� 1)/2 (i.e. number of all node pairs
in an undirected graph) draws, and note sampled existing edge number Sn(n�1)/2 as mt, we have:

log(P[mt

n(n� 1)/2
� r]) �n(n� 1)

2
[rlog

r

k
+ (1� k)log

1� r

1� k
] (3)

C MODEL ARCHITECTURE

We introduce the FiLM layer and the PNA layer inside the model architecture to enhance its perfor-
mance. Precisely, the FiLM layer is used to combine features at different scales, such as node and
edge features. Specifically, given two features M1 and M2, and trainable parameters W1 and W2,
the FiLM layer output is calculated as FiLM(M1,M2) = M1W1 + (M1W2) �M2 +M2. As
an illustration, within the convolutional layer, the graph feature M2 is integrated with edge features
M1 to enhance predictions. While PNA layer is used as a specialized pooling layer to obtain infor-
mation from different dimensions of a specific feature. Given the feature X and trainable parameter
W , PNA(X) = cat(max(X),min(X),mean(X), std(X)) W . For example, node features X
are forwarded to a PNA layer for extracting global information across different scales, which is
subsequently added to the graph feature to enhance its representation.

D STRUCTURAL AND POSITIONAL ENCODINGS

During training, we augment model expressiveness with additional encodings. To make things clear,
we divide them into encodings for edges, nodes, and for graphs.

Encoding for graphs We first incorporate graph eigenvalues, known for their critical structural
insights, and cycle counts, addressing message-passing neural networks’ inability to detect cycles
(Chen et al., 2020). The first requires n

3 operations for matrix decomposition, the second n
2 for

matrix multiplication, but both are optional in our model and do not significantly limit scalability
even with graphs up to size 500. In addition to the previously mentioned structural encodings, we in-
tegrate the degree distribution to enhance the positional information within the graph input, which is
particularly advantageous for graphs with central nodes or multiple communities. Furthermore, for

15

Under review as a conference paper at ICLR 2024

graphs featuring attributed nodes and edges, the inclusion of node type and edge type distributions
also provides valuable benefits.

Encoding for nodes At the node level, we utilize graph eigenvectors, which are fundamental in
graph theory, offering valuable insights into centrality, connectivity, and diverse graph properties.

Encoding for edges To aid in edge label prediction, we introduce auxiliary structural encodings
related to edges. These include the shortest distance between nodes and the Adamic-Adar index.
The former enhances node interactions, while the latter focuses on local neighborhood information.
Due to computational constraints, we consider information within a 10-hop radius, categorizing it
as local positional information.

Molecular information In molecular datasets, we augment node features by incorporating edge
valency and atom weights. Additionally, formal charge information is included as an additional
node label for diffusion and denoising during training, as formal charges have been experimentally
validated as valuable information (Vignac et al., 2023b).

E ADDITIONAL EXPERIMENTS

E.1 MMD METRICS

In our research, we carefully select specific metrics tailored to each dataset, with a primary focus
on four widely recognized Maximum Mean Discrepancy (MMD) metrics. These metrics utilize the
total variation (TV) distance, as detailed in (Martinkus et al., 2022). They encompass node degree
(Deg), clustering coefficient (Clus), orbit count (Orb), and graph spectra (Spec). The first three local
metrics compare the degree distributions, clustering coefficient distributions, and the occurrence
of all 4-node orbits within graphs between the generated and training samples. Additionally, we
extend our analysis to include the comparison of graph spectra by computing the eigenvalues of
the normalized graph Laplacian, providing complementary insights into the global properties of the
graphs.

E.2 STATISTICS OF THE DATASETS

To provide a more comprehensive overview of the various scales found in existing graph datasets,
we present here key statistics for them. These statistics encompass the number of graphs, the range
of node numbers, the range of edge numbers, the edge fraction for existing edges, and the query
edge proportion � used for training, i.e. the proportion of existing edges among all node pairs. In
our consideration, we focus on undirected graphs. Therefore, when counting edges between nodes i
and j, we include the edge in both directions.

Table 5: Statistics for the datasets employed in our experiments.
Name Graph number Node range Edge range Edge Fraction (%) � (%)

QM9 133,885 [2,9] [2, 28] [20, 56] 50
QM9(H) 133,885 [3, 29] [4, 56] [7.7, 44] 50
Moses 1,936,962 [8, 27] [14, 62] [8.0, 22] 50
Planar 200 [64, 64] [346, 362] [8.4, 8.8] 50

SBM 200 [44, 187] [258, 2258] [6.0, 17] 25
Ego 757 [50, 399] [112, 2124] [1.2, 11] 10
Protein 918 [100, 500] [372, 3150] [8.9, 6.7] 10

E.3 QM9 WITH EXPLICIT HYDROGENS

We additionally report the results for QM9 with explicit hydrogens in Table 6. Having explicit
hydrogens makes the problem more complex because the resulting graphs are larger. We observe
that SparseDiff achieves better validity than DiGress and has comparable results on other metrics
when both are utilizing charges.

16

Under review as a conference paper at ICLR 2024

Table 6: Unconditional generation on QM9 with explicit hydrogens. On small graphs such as QM9,
sparse models are not beneficial, but SparseDiff still achieves very good performance.

Model Connected Valid" Unique" Atom stable" Mol stable"
DiGress – 95.4 97.6 98.1 79.8
DiGress + charges 98.6 97.7 96.9 99.8 97.0
SparseDiff 98.1 97.9 96.9 99.7 95.7

Table 7: Mean and standard deviation across 5 samplings on the MOSES benchmark. SparseDiff
has a similar performance to DiGress, despite a shorter training time.

Model Connected " Valid (%) " Unique (%) " Novel (%) " Filters (%) "
GraphINVENT – 96.4 99.8 – 95.0
DiGress – 85.7 100.0 95.0 97.1
SparseDiff 98.2±.0 86.7±.2 100.0±.0 96.3±.1 96.7±.1

Model FCD # SNN (%) " Scaf (%) " Frag (%) " IntDiv (%) "
GraphINVENT 1.22 53.9 12.7 98.6 85.7
DiGress 1.19 52.2 14.8 99.6 85.3
SparseDiff 1.35±.02 51.0±.0 14.2±1.7 99.6±.0 85.5±.0

Model Filters (%) " logP (e�2) # SA # QED (e�3) # Weight (%) #
GraphINVENT 95.0 0.67 4.5 0.25 16.1
DiGress 97.1 3.4 3.6 2.91 1.42
SparseDiff 96.7±.1 8.0±.4 7.9±.3 4.17±.33 1.25±.1

E.4 MOSES BENCHMARK EVALUATION

Moses is an extensive molecular dataset with larger molecular graphs than QM9, offering a much
more comprehensive set of metrics. While autoregressive models such as GraphINVENT are recog-
nized for achieving higher validity on this dataset, both SparseDiff and DiGress exhibit advantages
across most other metrics. Notably, SparseDiff closely aligns with the results achieved by DiGress,
affirming the robustness of our method on complex datasets.

E.5 RAW RESULTS

To ease comparison with other methods, Table 8 provides the raw numbers (not presented as ratios)
for the SBM, Planar, Ego, and Protein datasets. Not that this table contains the FID metrics from
(Thompson et al., 2022), which we did not include in the main text. The reason is that we found this
metric to be very brittle, with some evaluations giving a very large value that would dominate the
mean results.

Table 8: Raw results on the SBM, Planar, Protein, and Ego datasets.

Model Deg (e-3)# Clus (e-2)# Orb (e-2)# Spec (e-3)# FID# RBF MMD (e-2)#
SBM

Training set 0.8 3.32 2.55 5.2 16.83 3.13
SparseDiff 1.6±1.3 4.97±0.04 3.46±0.04 4.3±0.7 5.71±7.01 5.04±0.21

Planar

Training set 0.2 3.10 0.05 6.3 0.19 3.20
SparseDiff 0.7±0.4 4.47±1.38 0.17±0.06 6.8±0.8 4.51±1.76 5.27±0.50

Protein

Training set 0.3 0.68 0.32 0.9 5.74 0.68
SparseDiff 3.1±0.0 2.28±0.10 4.82±.64 1.4±.1 4.83±1.48 2.29±.48

Ego

Training set 0.2 1.0 1.20 1.4 1.21 1.23
SparseDiff 1.9±0.7 5.37±0.24 2.99±.17 5.0±1.5 16.15±12.86 4.83±1.18

17

Under review as a conference paper at ICLR 2024

Table 9: Influence of including edges features for edge prediction.

Model Deg # Clus # Orb# Spec# FID# RBF MMD#
Link Pred 0.0043 0.0721 0.0275 0.0344 1.51e6 0.0315

SparseDiff 0.0019±.00 0.0537±.00 0.0299±.00 0.0050±.00 16.1±12.9 0.0483±.01

Table 10: Influence of edge loss distribution on EGO dataset.

Loss based on Deg # Clus # Orb# Spec# FID# RBF MMD#
Comp graph 0.0021 0.0566 0.0270 0.0100 28.2 0.0396
Query graph 0.0019±.00 0.0537±.00 0.0299±.00 0.0050±.00 16.1±12.9 0.0483±.01

E.6 ABLATIONS

This part presents 2 ablation experiments that motivate our approach. SparseDiff builds upon an
experimental observation and a hypothesis. Firstly, our experiments demonstrate that relying solely
on node features for link prediction yields unsatisfactory results. This observation encouraged us to
design the computational graph that contains all edges to be predicted (i.e. query edges) as the input
graph. Secondly, we hypothesized that preserving the same distribution of edge types as observed
in dense graphs for loss calculation is advantageous for training. This hypothesis requires only
calculating losses on uniformly sampled query edges.

E.6.1 LINK PREDICTION

In this experiment, we intentionally avoided using easily learnable molecular datasets that come with
rich supplementary encodings. Instead, we chose to conduct the experiments on a large dataset,
namely Ego, to assess their performance. In Table 9, a model that does not specifically include
edge features for edge prediction performs much worse on all metrics except on RBF MMD and
orbit. This observation shows that, despite that a model can also leverage the information of existing
edges into node features, the lack of non-existing edges participating directly in training still ruins
its performance.

E.6.2 QUERY EDGES WITH PROPER DISTRIBUTION

In order to emphasize the importance of preserving the edge distribution when computing losses,
we conduct an experiment where we assess the performance of a model trained using all computa-
tional edges as opposed to solely using query edges. The former results in an increased emphasis
on existing edges during training compared to SparseDiff. Similarly, we use the Ego dataset for
initial experiments. Table 10 shows that using edges of the computational graph Gc results in worse
performance on most of the metrics, which indicates the importance of keeping a balanced edge
distribution for loss calculation.

F VISUALIZATION

18

Under review as a conference paper at ICLR 2024

(a) Training graphs.

(b) Generated graphs.
Figure 5: Visualization for Moses dataset.

19

Under review as a conference paper at ICLR 2024

(a) Training graphs.

(b) Generated graphs.
Figure 6: Visualization for Planar dataset.

(a) Training graphs.

(b) Generated graphs.
Figure 7: Visualization for SBM dataset.

20

Under review as a conference paper at ICLR 2024

(a) Training graphs.

(b) Generated graphs.
Figure 8: Visualization for Ego dataset.

(a) Training graphs.

(b) Generated graphs.
Figure 9: Visualization for Protein dataset.

21

	Introduction
	Related Work
	Denoising diffusion models for graphs
	Scalable Graph Generation

	SparseDiff: Sparse Denoising Diffusion for Large Graph Generation
	Sparsity-preserving noise model
	Sparsity-Preserving Loss Function
	Sparse Message-Passing Transformer
	Edge Embedding Module Design
	Model Architecture

	Iterative Sparse Sampling

	Experiments
	Molecule generation
	Large graph generation

	Conclusion
	Algorithm
	Generation Algorithm
	Sparse noise model
	Uniform Sampling for non-existing edges

	Proof of Lemma 3.1
	Model Architecture
	Structural and Positional Encodings
	Additional Experiments
	MMD metrics
	Statistics of the datasets
	QM9 with explicit hydrogens
	MOSES benchmark evaluation
	Raw results
	Ablations
	Link Prediction
	Query edges with proper distribution

	Visualization

