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DCAFuse: Dual-Branch Diffusion-CNN Complementary Feature
Aggregation Network for Multi-Modality Image Fusion

Anonymous Authors

ABSTRACT
Multi-modality image fusion (MMIF) aims to integrate the comple-
mentary features of source images into the fused image, includ-
ing target saliency and texture specifics. Recently, image fusion
methods leveraging diffusion models have demonstrated commend-
able results. Despite their strengths, diffusion models reduce the
capability to perceive local features. Additionally, their inherent
working mechanism, introducing noise to the inputs, consequently
leads to a loss of original information. To overcome this problem,
we propose a novel Diffusion-CNN feature Aggregation Fusion
(DCAFuse) network that can extract complementary features from
the dual branches and aggregate them effectively. Specifically, we
utilize the denoising diffusion probabilistic model (DDPM) in the
diffusion-based branch to construct global information, and multi-
scale convolutional kernels in the CNN-based branch to extract
local detailed features. Afterward, we design a novel complemen-
tary feature aggregation module (CFAM). By constructing coordi-
nate attention maps for the concatenated features, CFAM captures
long-range dependencies in both horizontal and vertical directions,
thereby dynamically guiding the aggregation weights of branches.
In addition, to further improve the complementarity of dual-branch
features, we introduce a novel loss function based on cosine sim-
ilarity and a unique denoising timestep selection strategy. Exten-
sive experimental results show that our proposed DCAFuse out-
performs other state-of-the-art methods in multiple image fusion
tasks, including infrared and visible image fusion (IVF) and medical
image fusion (MIF). The source code will be publicly available at
https://xxx/xxx/xxx.

CCS CONCEPTS
• Computing methodologies→ Image processing.

KEYWORDS
Multi-modality image fusion, diffusion model, feature aggregation

1 INTRODUCTION
Multi-modality image fusion (MMIF) generates information-rich
fused images by integrating the complementary features of different
categories of source images [5, 83, 86, 91]. Infrared and Visible
Fusion (IVF) and Medical Image Fusion (MIF) are typical tasks in
MMIF. Specifically, IVF aims to integrate the saliency information in
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(a) Infrared (b) Visible

(c) Dif-Fusion (TIP’23) [79] (d) DCAFuse (Ours)

Figure 1: Visual comparisons of fusion results between (c)
the conventional diffusion-based method Dif-Fusion [79]
and (d) the proposed DCAFuse. Notably, DCAFuse showcases
clearer contour details and improved contrast compared to
the existing method.

0

0.2

0.4

0.6

0.8

1
SD

EN

VIF

AG

Qabf

SF SwinFusion [39]

 Dif-Fusion [79]

Dataset: RoadScene Dataset: MSRS

0

0.2

0.4

0.6

0.8

1
SD

EN

VIF

AG

Qabf

SF

 U2Fusion [72]

 (TPAMI'20)

 SDNet [80]

 (IJCV'21)

 SwinFusion [39]

 (JAS'22)

 TarDAL [32]

 (CVPR'22)

 CDDFuse [86]

 (CVPR'23)

 DDFM [87]

 (ICCV'23)

 Dif-Fusion [79]

 (TIP'23)

 DCAFuse

 (Ours)

𝑸𝑨𝑩/𝑭 𝑸𝑨𝑩/𝑭

Figure 2: Fusion evaluation metrics comparison on Road-
Scene [73] and MSRS [57] datasets.

infrared images and the texture details in visible images to produce
results with prominent targets and clear backgrounds [27, 38, 43],
which are widely used in fields such as autonomous driving [8, 77],
drone nighttime monitoring [53, 69], video surveillance [10, 25], etc.
On the other hand, MIF combines images obtained from various
medical imaging modalities [22, 31], such as MRI and CT, to assist
in medical diagnosis and treatment [17].

Numerous deep learning-based approaches have been developed
to tackle the challenges of MMIF, mainly encompassing methods
founded on Convolutional Neural Networks (CNNs) and generative
models [24, 54, 81]. CNN-based techniques, restrained to a limited

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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receptive field for feature extraction, fall short of sufficiently cap-
turing cross-modality information and long-range dependencies,
thereby undermining information fidelity [26, 27, 58]. Although
Generative Adversarial Networks (GANs), renowned generative
models, capably model source image distribution in alignment with
MMIF requirements [32, 42], their reliance on adversarial interac-
tions in the fusion process fosters modality imbalance and con-
vergence issues, hence diminishing fusion quality [40, 41]. Recent
developments in diffusion models, such as Denoising Diffusion
Probabilistic Models (DDPM) [18], exhibit outstanding global in-
formation modeling capabilities [20, 68] and outperform GANs
in image generation quality [9, 15]. Therefore, numerous studies
attempt to apply diffusion models to visual tasks such as MMIF
[6, 64, 87]. The common technique involves initially infusing noise
into source images, followed by extraction of latent features dur-
ing the denoising process for fusion, leading to the production of
visually impressive fused images [3, 4, 79].

However, existing diffusion-based fusion methods often com-
promise critical texture details in the source images [79, 87]. As
illustrated in Fig. 1(c), critical features such as the car’s logo and con-
tours in the Dif-Fusion fused image appear blurred. This deficiency
stems from inherent limitations in existing diffusion-based MMIF
methods: (i) Inability to extract local detailed features. Although
latent features extracted from the denoising network can represent
global information, they lack localized perception capabilities like
CNNs [12, 65]. (ii) Inherent degradation of original information. The
working mechanism of diffusion-based fusion methods necessitates
the introduction of noise to source images [18, 23, 52], inevitably
leading to the loss of original information. (iii) Insufficient explo-
ration of effective timestep combinations. Intermediate features at
diverse denoising timesteps exhibit distinct regional perceptions
[13], requiring a tailored design of selection strategy for effective
fusion. However, comprehensive explorations of this aspect are
lacking in existing works [79, 87].

To address the drawbacks mentioned above, we propose a novel
dual-branch Diffusion-CNN feature Aggregation Fusion (DCAFuse)
network, capable of extracting complementary features in terms of
perceptual range through CNN-based and diffusion-based branches,
and effectively aggregating the features based on their long-range
dependencies. Specifically, in the diffusion-based branch, we extract
the intermediate features at multiple timesteps of the DDPM to
construct global information. In the CNN-based branch, multi-scale
convolutional kernels are utilized to extract local detailed features.
Afterward, we propose a novel complementary feature aggregation
module (CFAM) to effectively aggregate the concatenated features.
By generating coordinate-aware attentionmaps, CFAM captures the
long-range dependencies in both horizontal and vertical directions
[19], thus dynamically guiding the aggregating weights, and then
the aggregated features are fed into the fusion head to output.
Moreover, to further enhance the complementarity of the features
extracted from each branch, we introduce a cosine divergence loss
function and an innovative denoising timestep selection strategy
different from the existing methods. Fig. 1(d) shows the fusion
result of DCAFuse, which exhibits much clearer contour details
and better contrast than the existing method. When compared with
state-of-the-art methods in various evaluation metrics, our method

also achieves leading performance, as shown in Fig. 2. Overall, our
contributions are summarized as follows:

• We propose DCAFuse, a dual-branch diffusion-CNN frame-
work for multi-modality image fusion, leveraging both the
global information modeling capability of DDPM and the
local detailed feature extraction capability of multi-scale
convolutional kernels.

• We propose a novel Complementary Feature Aggregation
Module (CFAM) based on the coordinate attention mech-
anism. It can perceive the long-range dependencies of the
dual-branch features in both horizontal and vertical direc-
tions, thus generating coordinate-aware attention maps to
dynamically guide feature aggregation.

• We introduce a cosine divergence loss function and a unique
denoising timestep selection strategy, effectively enhancing
the complementarity of the features extracted from each
branch.

• Experiments on multi-modality image fusion demonstrate
the superiority of our DCAFuse, improving the average gra-
dient (AG) and spatial frequency (SF) by an average of 20.11%
and 23.63% respectively, compared to the SOTA method.

2 RELATEDWORKS
2.1 Multi-Modality Image Fusion
In recent years, multiple deep learning-based methods have been
developed to address the challenges posed by MMIF and the most
commonly used networks are CNNs and GANs [2, 21, 24, 54, 81].

In CNN-based methods, various frameworks and loss functions
are designed for feature extraction, feature fusion, and image re-
construction [27, 58, 74, 88]. Li et al. applied dense connections to
extract features [26], and Wang et al. design multiple kernels to
extract multi-scale features [67]. Besides, contrastive learning has
been widely used to distinguish different modalities [33, 36, 90],
and Liu et al. and Xu et al. perform image or feature decomposition
before fusion [34, 75]. Moreover, multiple works combine CNNwith
transformers [29, 59, 60, 63]. For example, Ma et al. and Wang et
al. utilize SwinTransformer to improve fusion performance [39, 66].
Additionally, some methods use prior knowledge of downstream
tasks to assist in the loss function design. For example, Tang et
al. [56, 58] use semantic segmentation masks, and Liu et al. [33]
use salient masks to guide the training process.

GAN-based methods model the global information under unsu-
pervised conditions [32, 84, 89]. Ma et al. first introduces GAN to
fusion task [41]. Later, methods such as multi-classification GAN
[42] and guided filters [78] are introduced. To balance each modal-
ity, asymmetric generator-discriminator structures are proposed
[40, 85]. Moreover, Li et al. introduce the attention mechanism into
the GAN-based fusion network [28].

2.2 Diffusion Model
Diffusion models have demonstrated powerful capabilities in vari-
ous generation tasks [9, 18, 49, 52], including text-to-image [51, 82],
image-to-image [46, 50, 62], image inpainting [1, 35], etc.

In addition, some works have explored the application of dif-
fusion models, represented by DDPM [18], to high-level vision
tasks, such as semantic segmentation [70] and object detection
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Figure 3: The overall framework of the proposed dual-branch DCAFuse (IVF as an example). Following our proposed timestep
selection strategy, the diffusion-based branch models global information 𝐹𝐷 during the denoising process, while the CNN-based
branch extracts local detailed features 𝐹𝐶 . Subsequently, the proposed Complementary Feature Aggregation Module (CFAM)
effectively aggregates them.

[6, 14]. There are also some diffusion-based works focusing on
low-level vision tasks, such as image restoration [37, 71], image
super-resolution [64] and image fusion [30, 87]. In a framework for
the above tasks, a commonly used method is first to introduce noise
to source images, and then extract the latent features from the de-
noising U-Net for the following tasks [3, 4, 79]. Although diffusion
models can produce visually appealing fused images, their limited
local perception capabilities and inherent noise-adding mechanism
result in significant detailed information loss.

3 METHOD
3.1 Overview
The proposed DCAFuse utilizes a dual-branch diffusion-CNN frame-
work for comprehensive multi-modality image fusion. Taking the
IVF task for instance, the RGB-channel visible image𝑋𝑣𝑖𝑠 ∈ Rℎ×𝑤×3

are combined with the infrared image 𝑋𝑖𝑟 ∈ Rℎ×𝑤×1, forming the
original input denoted as 𝑋0 ∈ Rℎ×𝑤×4.

As shown in Fig. 3, DCAFuse consists of diffusion-based and
CNN-based branches. In the diffusion-based branch, we initially
introduce noise into 𝑋0 following our proposed timestep selec-
tion strategy, followed by intermediate feature extraction during
the denoising process for global information modeling (𝐹𝐷 ). In
the CNN branch, multi-scale convolutional kernels and attention
blocks are employed to extract and consolidate local detailed fea-
tures (𝐹𝐶 ). Subsequently, the Complementary Feature Aggregation
Model (CFAM), a novel component of our approach, generates

coordinate-aware attention maps to capture the long-range depen-
dencies between 𝐹𝐷 and 𝐹𝐶 , allowing for effective aggregation.
The aggregations are finally fed into the fusion head to obtain the
fusion result.

3.2 Global Information Modeling
Through the denoising process, DDPM can encapsulate global infor-
mation within intermediate features [20, 68]. In the diffusion-based
branch, we first obtain noisy image 𝑋𝑡 for specified timestep 𝑡

by introducing Gaussian Noise, denoted as 𝜖𝑡 , to 𝑋0 then extract
intermediate features from the denoising U-Net.

According to [18], instead of progressively adding noise, we can
derive 𝑋𝑡 directly from a single operation as detailed below:

𝑋𝑡 =
√
𝛼𝑡𝑋0 +

√
1 − 𝛼𝑡𝜖, (1)

where the noise 𝜖 ∼ N(0, 𝐼 ), and the variance 1 − 𝛼𝑡 is related to
the predefined variance schedule.

Subsequently, the noisy image 𝑋𝑡 is fed into the DDPM for a
single-step denoising (reverse diffusion) process as follows:

𝑋𝑡−1 =
1

√
𝛼𝑡

(𝑋𝑡 −
1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑋𝑡 , 𝑡)) + 𝜎𝑡𝑧, (2)

where 𝑧 ∼ N(0, 𝐼 ), 𝜖𝜃 (𝑋𝑡 , 𝑡) represents the predicted noise, and 𝜎𝑡
is related to the predefined variance schedule.

Eq. 1 and Eq. 2 are performed at 𝑁 timesteps (i.e. 𝑡1, 𝑡2, . . . , 𝑡𝑁 )
to comprehensively capture the original information [3, 79]. Then,
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Figure 4: The proposed Complementary Feature Aggregation
Module (CFAM). "XAP" and "YAP" represent average pooling
along the X-axis (horizontal) and Y-axis (vertical) directions,
respectively. 𝐹𝑅 denotes the aggregated features.

from 𝑀 distinct blocks in the denoising U-Net, we extract multi-
scale intermediate features denoted as 𝐹𝐷(𝑖, 𝑗 ) , with 𝑖 ∈ {1, 2, . . . , 𝑀},
𝑗 ∈ {1, 2, . . . , 𝑁 }.

As depicted in Fig. 3, multi-timestep features extracted from
Block 𝑖 (beginning from 𝑖 = 1) are concatenated as 𝐹𝐷

𝑖
. Subsequently,

the Cross-Timestep Feature Aggregator (CTFA) refines 𝐹𝐷
𝑖

using a
range of various convolutional and attention blocks. The refined
feature is then upsampled to the same size as 𝐹𝐷

𝑖+1, denoted as 𝐹𝐷
𝑖′ .

Finally, 𝐹𝐷
𝑖+1 = 𝐹𝐷

𝑖+1 + 𝐹
𝐷
𝑖′ is obtained and then fed into the CTFA for

the next iteration, continued until 𝑖 = 𝑀 . The concluding output
from the diffusion-based branch is represented as 𝐹𝐷 .

3.3 Local Detailed Feature Extraction
With superior local perception, CNN captures detailed features
that serve as an effective supplement to the global information
structured by DDPM [45, 55].

In the CNN-based branch, 3-stage convolutional layers along
with Mixed Attention Blocks (MABs) are utilized for the extraction
of multi-scale local detailed features, symbolized as 𝐹𝐶

𝑘
where 𝑘 ∈

{1, 2, 3}.
Subsequently, the Multi-Scale Feature Aggregator (MSFA) pro-

gressively merges 𝐹𝐶
𝑘
[58]. Initially, 𝐹𝐶

𝑘
is upscaled to match the

size of 𝐹𝐶
𝑘+1, following which the scaling factor 𝛾𝑘 and bias 𝛽𝑘 are

generated via MLPs to modulate 𝐹𝐶
𝑘+1 as follows:

𝐹𝐶
𝑘+1 = 𝐹𝐶

𝑘+1 ⊙ 𝛾𝑘 + 𝛽𝑘 , (3)

where ⊙ denotes element-wise multiplication operation. Through
Eq. 3, multi-scale local detailed features are fused into 𝐹𝐶 .

3.4 Complementary Feature Aggregation
Module

We design a novel Complementary Feature Aggregation Module
(CFAM) to effectively aggregate the global information 𝐹𝐷 ∈ Rℎ×𝑤×𝑐

and local detailed features 𝐹𝐶 ∈ Rℎ×𝑤×𝑐 .

(a) CNN (b) t=50 (c) t=100

(d) t=200 (e) t=400 (f) t=800

Figure 5: Visualization of features extracted from (a): CNN-
based branch and (b) - (f): Block 14 of DDPM at different
timesteps. Red represents stronger features, while Blue rep-
resents weaker features.

Specifically, by generating the coordinate-aware attention maps
of 𝐹𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹𝐶 , 𝐹𝐷 ) ∈ Rℎ×𝑤×2𝑐 , CFAM can capture its long-
range dependencies in multiple directions, thus dynamically adjust-
ing the aggregation weights.

Fig. 4 shows the specific workflow of the proposed CFAM. Ini-
tially, a 1 × 1 convolutional layer is utilized to adjust the number
of channels (i.e. 2𝑐 → 𝑐). Then, CFAM extracts direction-aware
feature maps 𝐹𝑥 ∈ Rℎ×1×𝑐 and 𝐹 𝑦 ∈ R1×𝑤×𝑐 by orthogonal 1-D
average pooling layers as follows:

𝐹𝑥 , 𝐹 𝑦 = 𝑋𝐴𝑃 (𝐹𝑐𝑎𝑡 ), 𝑌𝐴𝑃 (𝐹𝑐𝑎𝑡 ), (4)

where 𝑋𝐴𝑃 and 𝑌𝐴𝑃 represent performing average pooling along
the horizontal and vertical directions, respectively. Given that 𝐹𝑥
and 𝐹 𝑦 obtain the saliency information of features in correspond-
ing directions, we concatenate them in the vertical direction and
perform channel reduction by convolutional layer as:

𝐹𝑥𝑦 = 𝐶𝑜𝑛𝑐𝑎𝑡 ((𝐹𝑥 )𝑇 , 𝐹 𝑦) ∈ R1×(ℎ+𝑤 )× 𝑐
𝑟 , (5)

where 𝑇 denotes transposition operation, and 𝑟 represents the ra-
tio of channel reduction. Afterward, by convolutional layers and
nonlinear functions, 𝐹𝑥𝑦 are encoded into 1-D coordinate-aware
attention vectors 𝐹𝐶𝑑𝐴𝑥 ∈ Rℎ×1×𝑐 and 𝐹𝐶𝑑𝐴𝑦 ∈ R1×𝑤×𝑐 , which
capture the long-range dependencies of input 𝐹𝑐𝑎𝑡 along the corre-
sponding spatial direction [19].

Subsequently, 𝐹𝐶𝑑𝐴𝑥 and 𝐹𝐶𝑑𝐴𝑦 are broadcast into (𝐻,𝑊 ) and uti-
lized to perform element-wisemultiplication, resulting in coordinate-
aware attention map 𝐹𝐶𝑑𝐴 ∈ Rℎ×𝑤×𝑐 , which reflects long-range
dependencies in all directions. Then CFAM aggregates 𝐹𝐷 and 𝐹𝐶

as follows:

𝐹𝑅 = 𝐹𝐶𝑑𝐴 ⊙ 𝐹𝐷 + (1 − 𝐹𝐶𝑑𝐴) ⊙ 𝐹𝐶 , (6)

where 𝐹𝑅 denotes the aggregated features. According to coordinate-
aware attention map 𝐹𝐶𝑑𝐴 , CFAM fully encapsulates the comple-
mentary attributes of dual-branch features, thus effectively aggre-
gating the global information 𝐹𝐷 and local detailed features 𝐹𝐶 .
Finally, the aggregated features are fed into the fusion head to
generate the MMIF results.
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3.5 Timestep Selection Strategy
To discern the timestep selection strategy that effectively comple-
ments the denoising features and features extracted by the CNN-
based branch, we examine latent feature representations across
multiple timesteps. Fig. 5 (a) illustrates that the CNN-based branch
focuses more on salient targets and local details while paying lim-
ited attention to background information.

As shown in Fig. 5(b), although existing methods generally se-
lect early timesteps (approximately 𝑡 = 50) for feature extraction
[3, 79], aiming to diminish noise-induced distortion of the origi-
nal information, this approach fails to comprehensively portray
the whole global scene. Fig. 5 (c)-(d) demonstrates that, with the
progression of the sampling timestep, the diffusion model progres-
sively captures background features, resulting in effective modeling
of global information at 𝑡 = 200. Nevertheless, when the timestep
exceeds 800, the intense noise seriously precludes the extraction of
information within the denoising process.

Overall, existing methods conventionally utilize early denoising
timesteps for feature extraction, resulting in inadequate capture of
global information. Stemming from our case analysis, we propose
that features gathered at slightly late timesteps more effectively
incorporate global information, serving as a suitable supplement to
the local detailed features derived by CNN.

Following our proposed strategy, we execute ablation experi-
ments, revealing 𝑡 = [100, 200, 400] as the relatively preferable
denoising timesteps combination. Further specifics will be illus-
trated in the experiments.

3.6 Loss Function
The overall loss function consists of three components: intensity
loss 𝐿𝑖𝑛𝑡 , gradient loss 𝐿𝑔𝑟𝑎𝑑 , and the proposed cosine divergence
loss 𝐿𝐶𝐷 . It can be formulated as:

𝐿 = 𝐿𝑖𝑛𝑡 + 𝛼𝐿𝑔𝑟𝑎𝑑 + 𝛽𝐿𝐶𝐷 , (7)

where 𝛼 and 𝛽 denote the balancing factors of each loss term. Specif-
ically, 𝐿𝑖𝑛𝑡 calculates pixel-wise intensity loss between the fused
image 𝐼𝑓 𝑢𝑠𝑒𝑑 and input image 𝐼1, 𝐼2 (initial channel duplication will
be applied to the single-channel input), which can be defined as:

𝐿𝑖𝑛𝑡 =

3∑︁
𝑖=1

∥𝐼 𝑖
𝑓 𝑢𝑠𝑒𝑑

−𝑚𝑎𝑥 (𝐼 𝑖1, 𝐼
𝑖
2)∥1 . (8)

Similarly, 𝐿𝑔𝑟𝑎𝑑 to calculate the gradient loss can be defined as:

𝐿𝑔𝑟𝑎𝑑 =

3∑︁
𝑖=1

∥∇𝐼 𝑖
𝑓 𝑢𝑠𝑒𝑑

−𝑚𝑎𝑥 (∇|𝐼 𝑖1 |,∇|𝐼
𝑖
2 |) ∥1 . (9)

Furthermore, we introduce a cosine divergence loss 𝐿𝐶𝐷 ∈
[−1, 1], with 1 indicating complete similarity and -1 indicating
absolute dissimilarity, which can be defined as:

𝐿𝐶𝐷 =
𝐹𝐶 · 𝐹𝐷

𝑚𝑎𝑥 (∥𝐹𝐶 ∥2, 𝜖) ·𝑚𝑎𝑥 (∥𝐹𝐷 ∥2, 𝜖)
, (10)

where · symbolizes the vector dot product and 𝜖 denotes a mini-
mal constant to circumvent zero division. By minimizing the 𝐿𝐶𝐷
between 𝐹𝐶 and 𝐹𝐷 , DCAFuse is encouraged to better explore
the complementarity of these features, thus improving the fusion
performance.

4 EXPERIMENTS
In this section, we carry out extensive experiments for infrared and
visible image fusion (IVF) and medical image fusion (MIF) tasks.
First, we introduce the experimental configurations and details.
Subsequently, we undertake qualitative and quantitative compar-
isons of our proposed method with other state-of-the-art methods.
Finally, various ablation studies are conducted to demonstrate the
effectiveness of the proposed modules.

4.1 Setup
4.1.1 Datasets. The proposed DCAFusion is trained on the MSRS
[57] training set (1083 pairs). For the IVF task, we choose three
datasets for testing, i.e. RoadScene [73], MSRS [57] test set (361
pairs), and TNO [61]. As for the MIF task, we utilize three datasets
collected by [86] from [44] for testing, specifically MRI-CT, MRI-
PET, and MRI-SPECT. Notably, to measure the generalization per-
formance, no additional datasets are incorporated for validation or
fine-tuning.

4.1.2 Metrics. Six representative evaluation metrics are employed
to evaluate the fusion performance of methods quantitatively, in-
cluding standard deviation (SD) [47], entropy (EN) [48], visual
information fidelity (VIF) [16], average gradient (AG) [7], edge
information-based 𝑄𝐴𝐵/𝐹 [76] and spatial frequency (SF) [11]. A
higher score on these metrics indicates better fusion performance.

4.1.3 Implement Details. The total training process is divided into
two stages: in stage 1, we train the DDPM for noise prediction in
accordance with the training set described in [18]; in stage 2, we use
denoising timesteps 𝑡 = [100, 200, 400] to extract intermediate fea-
tures from the BLock 𝐵 = [2, 5, 8, 11, 14] of the frozen DDPM, which
are subsequently utilized to train other components in DCAFusion.
During the preprocessing stage, we crop images in the MSRS train-
ing set into patches sized 160×160 at random. In the training phase,
we adopt the Adam optimizer with an initial learning rate of 0.0001
and set the batch size to 16. The balancing factors in loss function
Eq. 7, namely 𝛼 and 𝛽 , are set to 1.00 and 0.05, respectively. All
experiments are conducted on NVIDIA GeForce RTX 4090 GPUs
and implemented on the PyTorch platform.

4.1.4 Comparison Approaches. We compare the proposed DCAFu-
sion with seven state-of-the-art image fusion methods, including
U2Fusion [72], SDNet [80], SwinFusion [39], TarDAL [32], CDDFuse
[86], DDFM [87] and Dif-Fusion [79]. Methods using prior knowl-
edge, such as [58] and [33], are not included in comparisons.

4.2 Infrared and Visible Image Fusion
On IVF datasets, we compare the fusion performance of DCAFusion
with SOTA methods, qualitatively and quantitatively.

4.2.1 Qualitative Comparisons. As exhibited in Fig. 6, methods
such as U2Fusion, SDNet, and DDFM appear to be under-exposed,
causing the people in the red box to fade into the obscurity of
the nighttime environment. In contrast, TarDAL tends to be over-
exposed. Of all the methods, ours distinctly outlines the shapes of
people and maximizes the traffic sign’s contrast in the green box,
improving its legibility. Moreover, as shown in Fig. 7, our approach
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Figure 6: Visual comparison of "00798N" on the MSRS IVF dataset [57].

Infrared Visible U2Fusion [72] SDNet [80] SwinFusion [39]

TarDAL [32] CDDFuse [86] DDFM [87] Dif-Fusion [79] DCAFuse (Ours)

Figure 7: Visual comparison of "meeting scene" on the TNO IVF dataset [61].

Table 1: Quantitative results of the IVF task on RoadScene [73], MSRS [57] and TNO [61] datasets. Red color and Blue color
indicate the best and second-best results, respectively.

Methods Dataset: RoadScene [73] Dataset: MSRS [57] Dataset: TNO [61]
SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF

U2F [72] 35.97 7.009 0.574 5.343 0.501 13.60 27.71 5.561 0.545 2.899 0.421 9.242 37.67 7.094 0.618 5.023 0.427 11.85
SDN [80] 40.33 7.136 0.595 5.612 0.500 14.28 17.32 5.255 0.489 2.707 0.370 8.691 33.78 6.695 0.577 4.630 0.427 11.64
SwinF [39] 45.32 7.053 0.672 4.345 0.498 11.68 42.98 6.622 0.990 3.564 0.642 11.08 39.39 6.881 0.749 4.195 0.521 10.64
TarD [32] 43.20 7.336 0.582 4.149 0.441 11.26 35.46 6.348 0.673 3.115 0.426 9.873 40.25 6.806 0.600 3.893 0.413 10.54
CDDF [86] 50.83 7.327 0.687 5.830 0.514 15.59 43.38 6.699 1.045 3.748 0.689 11.55 44.66 7.063 0.787 4.658 0.521 12.33
DDFM [87] 46.91 7.019 0.579 4.139 0.450 10.87 43.79 6.171 0.742 2.518 0.473 7.380 34.55 6.854 0.641 3.397 0.432 8.526
DIF [79] 44.22 7.142 0.588 5.518 0.516 14.06 41.90 6.660 0.827 3.889 0.583 11.63 38.77 6.916 0.597 4.306 0.465 10.77
Ours 53.71 7.348 0.716 7.082 0.563 19.06 52.42 6.929 1.062 5.245 0.621 16.01 48.75 7.217 0.836 6.164 0.523 16.23

retains the most intricate details, such as the textures of the door-
frames and leaves in the green box, and also distinctly separates
the thermal target (people) from the background. In summary, the
proposed DCAFuse effectively combines the thermal saliency in-
formation from the infrared image with the detailed texture from
the visible image, generating a fusion image with the finest visual
effect.

4.2.2 Quantitative Comparisons. Table. 1 displays the quantita-
tive comparisons using six evaluation metrics on the RoadScene,
MSRS test set, and TNO datasets. Compared with state-of-the-art
methods, our proposed DCAFuse stands out with superior per-
formance. Specifically, achieving the best performance in SD and
EN proves that our method is capable of integrating the richest
original information. With 𝑄𝐴𝐵/𝐹 maintaining a high level, our
technique efficiently preserves edge contours. Achieving the best
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Table 2: Quantitative results of the MIF task on MRI-CT, MRI-PET and MRI-SPECT datasets [44]. Red color and Blue color
indicate the best and second-best results, respectively.

Methods Dataset: MRI-CT [44] Dataset: MRI-PET [44] Dataset: MRI-SPECT [44]
SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF

U2F [72] 55.36 4.883 0.364 6.459 0.477 23.12 53.35 4.330 0.438 5.607 0.435 19.23 46.52 3.912 0.454 4.036 0.513 15.96
SDN [80] 46.54 5.163 0.373 7.367 0.508 26.97 45.58 4.639 0.474 6.260 0.573 20.52 43.53 4.274 0.570 4.602 0.651 16.42
SwinF [39] 82.03 4.828 0.566 7.262 0.584 30.88 74.34 4.547 0.660 6.747 0.645 22.19 59.57 4.078 0.628 4.199 0.615 16.11
TarD [32] 59.37 5.202 0.453 5.054 0.342 19.33 57.63 4.695 0.568 5.248 0.481 18.82 51.49 4.336 0.455 3.839 0.443 16.34
CDDF [86] 81.39 4.711 0.499 7.880 0.596 33.90 74.36 4.196 0.649 6.883 0.644 24.62 60.20 3.857 0.599 4.320 0.640 17.13
DDFM [87] 59.91 4.528 0.449 5.031 0.415 20.68 61.22 3.917 0.652 5.325 0.552 18.87 58.27 3.802 0.611 3.684 0.608 14.42
DIF [79] 79.80 5.347 0.505 7.732 0.608 30.02 70.70 5.115 0.565 6.473 0.589 20.71 59.88 4.595 0.558 4.723 0.621 17.21
Ours 82.31 5.353 0.583 8.436 0.641 35.80 74.86 4.978 0.668 7.825 0.699 28.57 63.76 4.652 0.691 5.708 0.728 22.13

MRI PET U2Fusion [72] SDNet [80] SwinFusion [39]

TarDAL [32] CDDFuse [86] DDFM [87] Dif-Fusion [79] DCAFuse (Ours)

Figure 8: Visual comparison on MRI-PET MIF dataset [44].

VIF underscores that our method delivers the most appealing visual
effects. Furthermore, the noticeable enhancements in AG and SF,
by average increments of 26.36% and 30.52% respectively across
the IVF datasets, validate that our results present the most detailed
texture characteristics. Quantitative results prove that the proposed
DCAFuse effectively integrates the saliency information in infrared
images and the texture details in visible images.

4.3 Medical Image Fusion
In this section, we evaluate the fusion performance on MIF datasets
without fine-tuning, aiming to assess the generalization perfor-
mance of the methods.

4.3.1 Qualitative Comparisons. As demonstrated in Fig. 8, U2Fusion,
SDNet, and DDFM are deficient in preserving the brightness infor-
mation, leading to the distortion of significant color information
originating from PET, while SwinFusion, TarDAL, CDDFuse, and
Dif-Fusion tend to lose texture detail information from MRI, espe-
cially as emphasized in the red box. Serving as an exemplar, our
proposed DCAFuse effectively leverages the abundant color infor-
mation from PET while simultaneously maintaining distinct texture
details from MRI, thus delivering the most appealing fusion effect.

4.3.2 Quantitative Comparisons. As illustrated in Table 2, the pro-
posed DCAFuse yields the best or second-best performance across
all metrics. Significantly, our method delivers average improve-
ments of 13.87%, 16.74%, and 8.54% in AG, SF, and 𝑄𝐴𝐵/𝐹 respec-
tively, reflecting the capability of DCAFuse to exhibit the most
distinct brain structures. Furthermore, DCAFuse posts outstand-
ing scores in SD and EN, proving the full preservation of original
information. Additionally, superior VIF underscores the fidelity

(a) w/o DB (b) w/o CB

(c) 3→1 stage (d) Ours

Figure 9: Visual ablation comparisons of the framework. "DB"
and "CB" denote the diffusion-based branch and the CNN-
based branch correspondingly. "3→1 stage" indicates single-
scale feature extraction in the CNN-based branch.

of the visual information in our fused images, thereby providing
effective assistance in medical diagnosis. Without fine-tuning, DCA-
Fuse outperforms the state-of-the-art methods, demonstrating its
remarkable generalization performance in diverse multi-modality
image fusion tasks. Overall, quantitative evaluations demonstrate
the superior performance of the proposed DCAFuse in integrating
information procured from a myriad of medical imaging modalities.

4.4 Ablation Study
We conduct ablation experiments about the proposed dual-branch
framework, CFAM, cosine divergence loss, and denoising timesteps,
using the MSRS dataset for both training and testing procedures.

4.4.1 Dual-branch Framework. We first remove the diffusion-based
branch and CNN-based branch independently, followed by sub-
stituting the 3-stage multi-scale feature extraction blocks with a
single-scale block in the CNN-based branch. The qualitative and
quantitative results are shown in Fig. 9 and Table. 3, respectively.
As illustrated in Fig. 9(a), without the diffusion-based branch, the
fused image loses saliency information from the infrared image,
causing the person to lose the highlight. This matches the observed
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Table 3: Quantitative ablation results of the framework. "DB",
"CB", and "3→1 stage" denote the diffusion-based branch,
the CNN-based branch, and single-scale feature extraction
correspondingly. Red color and Blue color indicate the best
and second-best results, respectively.

Methods SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF
w/o DB 48.38 6.792 1.009 5.097 0.612 15.52
w/o CB 41.77 6.854 0.820 3.813 0.582 11.39

3→1 stage 42.05 6.665 1.027 3.840 0.613 11.69
Ours 52.42 6.929 1.062 5.245 0.621 16.01

Table 4: Quantitative ablation results of the proposed CFAM.
"CdA", "Conv", and "CSA" denote coordinate attention, con-
volution, and channel-spatial hybrid attention, respectively.
Red color and Blue color indicate the best and second-best
results, respectively.

Methods SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF
CdA→Conv 45.48 6.788 1.041 4.572 0.566 13.80
CdA→CSA 41.74 6.804 0.595 3.611 0.446 11.15

Ours 52.42 6.929 1.062 5.245 0.621 16.01

Table 5: Quantitative ablation results of the loss function.
"𝐿𝑁𝑀𝑆𝐸" represents the Negative Mean Squared Error (NMSE)
loss. Red color and Blue color indicate the best and second-
best results, respectively.

Methods SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF
w/o 𝐿𝐶𝐷 51.99 6.811 1.045 4.972 0.616 15.21

𝐿𝐶𝐷→𝐿𝑁𝑀𝑆𝐸 55.26 6.853 0.847 5.117 0.502 15.78
Ours 52.42 6.929 1.062 5.245 0.621 16.01

deterioration in EN and 𝑄𝐴𝐵/𝐹 . Fig. 9(b) and Fig. 9(c) reflect that
without a comprehensive CNN structure supplementing local in-
formation, the texture details of people and background appear
blurry, corresponding to a notable decline in AG and SF. Our result,
illustrated in Fig. 9(d), offers the most striking visual contrast and
rich texture details.

4.4.2 Complementary Feature AggregationModule. In the proposed
CFAM, we substitute coordinate attention with convolution and
channel-spatial hybrid attention, respectively. As shown in Table.
4, aggregation using convolution leads to a substantial decrease
in EN, indicating a loss of original information. Besides, aggrega-
tion with channel-spatial hybrid attention results in a sharp drop
in VIF and SF, indicating a deficiency in visual fidelity and tex-
ture detail. Departing from the above approaches, our proposed
CFAM generates coordinate attention maps, seizing the long-range
correlations of features both horizontally and vertically, thereby
dynamically guiding the aggregation weights of branches. Quan-
titative results show that DCAFuse improves SD and AG by over
15.26% and 14.72%, demonstrating the effective incorporation of
multi-modality information.

4.4.3 Cosine Divergence Loss 𝐿𝐶𝐷 . As shown in Table. 5, we initi-
ate by omitting 𝐿𝐶𝐷 , which results in a decrease in EN, AG, and SF,

Table 6: Quantitative ablation results of the denoising
timesteps. "N/A" signifies non-convergence of the network.
Red color and Blue color indicate the best and second-best
results, respectively.

Timesteps SD EN VIF AG 𝑄𝐴𝐵/𝐹 SF
5, 25, 50 N/A
5, 50, 100 49.41 6.851 1.050 4.927 0.644 15.02
50, 100, 200 50.81 6.876 1.051 5.032 0.637 15.47
100, 200, 400 52.42 6.929 1.062 5.245 0.621 16.01
200, 400, 800 53.55 6.920 1.060 5.145 0.621 15.81

indicating that the extracted features lack local detailed information.
Further, we replace 𝐿𝐶𝐷 with the Negative Mean Squared Error
(NMSE) loss function, defined as 𝐿𝑁𝑀𝑆𝐸 = − 1

𝑛

∑𝑛
𝑖=1 (𝐹𝐶 − 𝐹𝐷 )2,

where 𝐹𝐶 and 𝐹𝐷 denote the output features of CNN-based and
diffusion-based branch, respectively. Although 𝐿𝑁𝑀𝑆𝐸 amplifies
the numerical difference between features, thereby boosting SD, it
neglects the structural attributes of features, thus not performing
optimally on other metrics. Our proposed 𝐿𝐶𝐷 fosters feature com-
plementarity by maximizing the cosine distance, leading to more
comprehensive fusion results.

4.4.4 Denoising Timesteps. We establish five groups of denoising
timesteps: earliest (5, 25, 50), slightly early (5, 50, 100), midterm
(50, 100, 200), slightly late (100, 200, 400), and latest (200, 400, 800).
Implementing the earliest timestep results in a failure of network
convergence, as denoising U-Net cannot effectively comprehend
the global information under extremely low-intensity noise. As
demonstrated in Table. 6, enlarging the denoising timestep gradu-
ally improves the fusion effect. Upon setting the denoising timesteps
to [100, 200, 400], DCAFuse yields the best performance in EN, VIF,
AG, and SF, demonstrating the comprehensive preservation of both
global information and local detailed features However, when the
latest timesteps are employed, there’s a decline in the fusion effect
observed as a downturn in both SF and VIF, due to a significant
reduction of the original information caused by excessive-intensity
noise. The experimental results suggest that within a tolerable
noise intensity range, a slight delay in denoising timesteps aids in
enhancing the multi-modality image fusion effect.

5 CONCLUSION
In this paper, we introduce DCAFuse, a dual-branch Diffusion-CNN
framework designed for multi-modality image fusion. We propose
a novel complementary feature aggregation module, based on co-
ordinate attention, to effectively integrate the global information
extracted by the diffusion model and the local detailed features
captured by CNN. Moreover, the complementarity of features ex-
tracted from the dual branches is further enhanced, benefiting from
our introduced cosine divergence loss and timestep selection strat-
egy. Extensive experiments on IVF and MIF datasets demonstrate
that the proposed method achieves SOTA performance in multi-
modality image fusion.

In the future, we aim to explore the potential of diffusion models
to effectively model global information across a wider scope of
image fusion tasks.
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