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A FURTHER EXPERIMENTS

Here we adopt ResNet18 and / or WRN-32-10 as the backbone model with the same experimental
setup as in Sec. 4.1, where we reported the natural accuracy (NAT), PGD-20 and PGD-100 attack
(PGD), MIM (PGD with a momentum term), CW attack and each component of AutoAttack. All the
experiments are conducted for 5 individual trials and we also report their standard deviations. All the
methods were realized by Pytorch 1.5, where we used a single NVIDIA GeForce RTX 3090 GPU.

A.1 ROBUSTNESS AGAINST COMPONENTS OF AUTOATTACK

To broadly demonstrate the robustness of our proposal, we conducted experiments against each
component of AutoAttack. We perform each component of AA on CIFAR-10 dataset with both
ResNet18 and WRN-32-10, including three parameter-free versions of PGD with the CE, DLR,
targeted-CE loss with 9 target classes loss (APGDCE , APGDDLR, APGDT ), the targeted version
of FAB (FABT ) and an existing complementary Square (?). Results are shown in the following Table
1. And it is obvious that our SEAT outperforms other methods against all components of AA.

Table 1: Average robust accuracy (%) and standard deviation against each component of AA on
CIFAR-10 dataset with ResNet18 and WRN-32-10.

ResNet18 WRN-32-10
APGDCE APGDDLR APGDT FABT Square APGDCE APGDDLR APGDT FABT Square

AT 47.47
±0.35

48.57
±0.18

45.14
±0.31

46.17
±0.11

54.21
±0.15

49.17
±0.26

50.09
±0.36

47.34
±0.33

48.00
±0.43

56.5
±0.18

TRADES 53.47
±0.21

50.89
±0.26

47.93
±0.36

48.53
±0.43

55.75
±0.21

55.38
±0.43

55.55
±0.42

52.2
±0.13

53.11
±0.72

59.47
±0.17

MART 52.98
±0.13

50.36
±0.3

48.17
±0.72

49.39
±0.28

55.73
±0.51

55.2
±0.32

55.41
±0.4

51.99
±0.3

52.88
±0.63

59.01
±0.38

SEAT 53.87
±0.17

53.35
±0.24

50.88
±0.27

51.41
±0.37

57.77
±0.22

57.57
±0.18

57.74
±0.29

55.06
±0.27

55.53
±0.36

62.26
±0.23

A.2 PERFORMANCE ON CIFAR-100

To further demonstrate the robustness of our proposal against adversarial attacks, we benchmark the
state-of-the-art robustness with ResNet18 on CIFAR-100 (?). We widely investigate the performance
of SEAT against the PGD methods (PGD20 and PGD100), MIM, CW, AA and its all components.
Results shown in Table 2 demonstrate the effectiveness of SEAT for building a robust classifier.

Table 2: Comparison of our algorithm with different defense methods using ResNet18 on CIFAR10.
The maximum perturbation is ε = 8/255. Average accuracy rates (in %) and standard deviations
have shown that the proposed SEAT method greatly improves the robustness of the model.

Method NAT PGD20 PGD100 MIM CW APGDCE APGDDLR APGDT FABT Square AA

AT 60.1
±0.35

28.22
±0.3

28.27
±0.12

28.31
±0.41

24.87
±0.51

26.63
±0.29

24.13
±0.22

21.98
±0.3

23.87
±0.21

27.93
±0.12

23.91
±0.41

TRADES 59.93
±0.46

29.9
±0.41

29.88
±0.11

29.55
±0.25

26.14
±0.21

27.93
±0.44

25.43
±0.29

23.72
±0.45

25.16
±0.15

30.03
±0.32

24.72
±0.37

MART 57.24
±0.64

30.62
±0.37

30.62
±0.17

30.83
±0.28

26.3
±0.29

29.91
±0.07

26.32
±0.24

24.28
±0.49

24.86
±0.66

28.28
±0.39

24.27
±0.21

SEAT 56.28
±0.33

32.15
±0.17

32.12
±0.26

32.62
±0.15

29.68
±0.26

30.97
±0.18

29.62
±0.22

26.88
±0.23

27.71
±0.24

32.35
±0.34

27.87
±0.24
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A.3 DIFFERENT LEARNING RATE STRATEGIES

Apart from showing the curve of different learning rate schedule in Figure 3 (a) in Sec. 4.3, we also
report final results in Table 3. The effect of warming up learning rate is marginal. When compared
with the staircase one, the warmup strategy cannot generate diverse models in the later stages so the
homogenization of the candidate models we mentioned in Sec. 3.2 cannot be fixed by the warmup
strategy. On the contrary, those methods like cosine / linear / cyclic that provide relatively diverse
models in the later stages can mitigate the issue, accounting for more robust ensemble models.

Table 3: Average robust accuracy (%) under different learning strategies on CIFAR-10 dataset with
ResNet18.

Method NAT PGD20 PGD100 MIM CW APGDCE APGDDLR APGDT FABT Square AA

SEAT (Staircase) 80.91 54.58 54.56 54.47 49.71 52.39 48.01 45.83 45.11 53.64 45.85
SEAT (Cosine) 83.0 55.09 55.16 56.39 53.43 52.34 52.1 49.51 50.15 56.48 50.48
SEAT (Linear) 83.7 56.02 55.97 57.13 54.38 53.87 53.35 50.88 51.41 57.77 51.3
SEAT (Warmup) 82.74 55.31 55.35 56.39 53.26 53.55 48.94 45.89 46.6 54.94 45.82
SEAT (Cyclic) 83.14 56.03 55.79 56.99 54.01 53.72 53.1 50.66 51.02 57.75 51.44

A.4 DETERIORATION OF VANILLA EMA

As shown in Sec. 3.3, the deteriorated SEAT underperforms SEAT a lot from the perspective of
optimization. We also report quantitative results on both ResNet18 and WRN-32-10 shown in the
Tables 4 and 5. The deteriorated one does not bring too much boost when compared to the vanilla
adversarial training (except for PGD methods). A plausible explanation for the exception of PGD
is that the SEAT technique produces an ensemble of individuals that are adversarially trained by
PGD with the cross-entropy loss, which means that they are intrinsically good at defending the PGD
attack with the cross-entropy loss and its variants even though they suffer from the deterioration.
Considering results have greatly improved after using the piecewise linear learning rate strategy, it
is fair to say that adjusting learning rate is effective. As we claimed in Proposition 2 and its proof,
the staircase will inevitably make the self-ensemble model worsen since

∑T
t=1(βtξ̃

T) will gradually
approach to zero, meaning the difference between f̄F (x, y) and fθ̃(x, y) achieves the second order
of smallness.

Table 4: Average robust accuracy (%) and standard deviation on CIFAR-10 dataset with ResNet18.
Method NAT PGD20 PGD100 MIM CW APGDCE APGDDLR APGDT FABT Square AA

AT 84.32
±0.23

48.29
±0.11

48.12
±0.13

47.95
±0.04

49.57
±0.15

47.47
±0.35

48.57
±0.18

45.14
±0.31

46.17
±0.11

54.21
±0.25

44.37
±0.37

SEAT
(deteriorated)

80.91
±0.38

54.58
±0.71

54.56
±0.29

54.47
±0.39

49.71
±0.41

52.39
±0.26

48.01
±0.18

45.83
±0.52

45.11
±0.23

53.64
±0.44

45.85
±0.19

SEAT 83.7
±0.13

56.02
±0.11

55.97
±0.07

57.13
±0.12

54.38
±0.1

53.87
±0.17

53.35
±0.24

50.88
±0.27

51.41
±0.37

57.77
±0.22

51.3
±0.26

Table 5: Average robust accuracy (%) and standard deviation on CIFAR-10 dataset with WRN-32-10.
Method NAT PGD20 PGD100 MIM CW APGDCE APGDDLR APGDT FABT Square AA

AT 87.32
±0.21

49.01
±0.33

48.83
±0.27

48.25
±0.17

52.8
±0.25

54.17
±0.26

53.09
±0.36

48.34
±0.33

49.00
±0.43

57.5
±0.18

48.17
±0.48

SEAT
(deteriorated)

85.28
±0.42

55.68
±0.42

55.57
±0.19

55.6
±0.23

53.01
±0.41

54.12
±0.54

53.54
±0.28

49.95
±0.67

50.02
±0.75

57.81
±0.33

49.96
±0.31

SEAT 86.44
±0.12

59.84
±0.2

59.8
±0.16

60.87
±0.1

58.95
±0.34

57.57
±0.18

57.74
±0.29

55.06
±0.27

55.53
±0.36

62.26
±0.23

55.67
±0.22

A.5 COMPUTATIONAL COMPLEXITY FOR SEAT

To demonstrate the efficiency of the SEAT method, we use the number of Multiply-Accumulate
operations (MACs) in Giga (G) to compute the theoretical amount of multiply-add operations in
DNNs, roughly GMACs = 0.5 * GFLOPs. Besides, we also provide the actual running time. As
shown in Table 6, the SEAT method takes negligible MACs and training time when compared with
standard adversarial training.
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Table 6: Evaluation of time complexity of SEAT. Here we use the number of Multiply-Accumulate
operations (MACs) in Giga (G) to measure the running time complexity. And we also compute the
actual training time with or without the SEAT method using ResNet18 and WRN-32-10 on a single
NVIDIA GeForce RTX 3090 GPU.

Method MACs (G) Training Time (mins)
ResNet18 (AT) 0.56 272
ResNet18 (SEAT) 0.59 273
WRN-32-10 (AT) 6.67 1534
WRN-32-10 (SEAT) 6.81 1544

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 1

Proposition 1. (Restated) Let fθ (·) denote the predictions of a neural network parametrized by
weights θ. Assuming that ∀θ ∈ Θ, fθ (·) is continuous and ∀(x, y) ∈ D, fθ(x, y) is at least
twice differentiable. Consider two points θt, θ̃ ∈ Θ in the weight space and let ξ = θt − θ̃, for
t ∈ {1, 2, · · · , T}, the difference between f̄F (x, y) and fθ̃(x, y) is of the second order of smallness
if and only if

∑T
t=1(βtξ

T) = 0.

Proof. For the sake of the twice differentiability of fθ(x, y), based on the Taylor expansion, we can
fit a quadratic polynomial of fθ̃(x, y) to approximate the value of fθt

(x, y):

fθt(x, y) = fθ̃(x, y) + ξT∇ξfθ̃(x, y) +
1

2
ξ>∇2

ξfθ̃(x, y)ξ +O (∆n) , (1)

where O (∆n) represents the higher-order remainder term. Note that the subscript ξ here stands for
a neighborhood where the Taylor expansion approximates a function by polynomials of any point
(i.e. θ̃) in terms of its value and derivatives. So the difference between the averaged prediction of
candidate classifiers and the prediction of the ensembled weight classifier can be formulated as:

f̄F (x, y)− fθ̃(x, y) =

T∑
t=1

βtfθt(x, y)− fθ̃(x, y)

=

H
HHH

HHH

T∑
t=1

βtfθ̃(x, y) +

T∑
t=1

βtξ
T∇ξfθ̃(x, y) +

T∑
t=1

βtO
(
∆2
)XXXXX−fθ̃(x, y)

=

T∑
t=1

(βtξ
T)∇ξfθ̃(x, y) +O

(
∆2
)
.

(2)

Therefore, we can claim that the difference between fθt(x, y) and fθ̃(x, y) is ”almost” at least of the
first order of smallness except for some special cases. And we will immediately declare under which
condition this difference can achieve the second order of smallness in the following proof of Theorem
1.

B.2 PROOF OF THEOREM 1

Theorem 1. (Restated) Assuming that for i, j ∈ {1, · · · , T}, θi = θj if and only if i = j. The
difference between the averaged prediction of multiple networks and the prediction of SEAT is of the
second order of smallness if and only if βi = (1− α)αi−1 for i ∈ {1, 2, · · · , T}.
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Proof. According to Eqn 2, we know that the second order of smallness will achieve when∑T
t=1(βtξ

T) = 0. Thus, we continue deducing from Eqn 2 as:

T∑
t=1

(βtξ
T) = 0

T∑
t=1

βt(θt − θ̃) = 0

T∑
t=1

βtθt = θ̃

T∑
t=1

βtθt =

T∑
t=1

(1− α)αt−1θt.

(3)

To get a further aonclusion, we next use Mathematical Induction (MI) to prove only when βi =

(1− α)αi−1 for i ∈ {1, 2, · · · , T} will
∑T
t=1 βtθt =

∑T
t=1(1− α)αt−1θt set up.

Base case: Let t = 1, it is clearly true that β1 = (1 − α)α0 if and only if β1θ1 = (1 − α)α0θ1,
hence the base case holds.

Inductive step: Assume the induction hypothesis that for a particular k, the single case T = k holds,
meaning the sequence of (β1, β2, · · · , βk) is equal to the sequence of ((1−α)α0, (1−α)α1, · · · , (1−
α)αk−1) if

∑k
t=1 βtθt =

∑k
t=1(1− α)αt−1θt.

For T = k + 1, it follows that:

k+1∑
t=1

βtθt =

k+1∑
t=1

(1− α)αt−1θt

@
@
@
@

k∑
t=1

βtθt + βk+1θk+1 =

H
HHH

HHHH

k∑
t=1

(1− α)αt−1θt + (1− α)αk+1−1θk+1

βk+1θk+1 = (1− α)αk+1−1θk+1

βk+1 = (1− α)αk+1−1.

(4)

The sequence of normalized scores at the k + 1-th ensembling at left hand is (β1, β2, · · · , βk, βk+1)
after adding the new term βk+1. Likewise, the sequence of the right hand is ((1 − α)α0, (1 −
α)α1, · · · , (1−α)αk−1, (1−α)αk). Because every fθt ∈ F is different from others and the sequence
is ordered, we have (β1, β2, · · · , βk, βk+1) = ((1−α)α0, (1−α)α1, · · · , (1−α)αk−1, (1−α)αk)

Conclusion: Since both the base case and the inductive step have been proved as true, by mathemati-
cal induction the statement βi = (1− α)αi−1 for i ∈ {1, 2, · · · , T} holds for every positive integer
T . Back to the starting point, the first order term cannot be ignored in most cases. SEAT is hardly be
approximate to the averaged prediction of history networks indeed.

B.3 PROOF OF PROPOSITION 2

Proposition 2. (Restated) Assuming that every candidate classifier is updated by SGD-like strategy,
meaning θt+1 = θt − τt∇θt

fθt
(x′, y) with τ1 ≥ τ2 ≥ · · · ≥ τT > 0, the self-ensemble model will

inevitably worsen and the degree depends on learning rate schedules.
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Proof. First we discuss a special case - the change at the t-th iteration. Reconsidering the first order
term in Eqn 2, we have:

T∑
t=1

(βtξ
T)∇ξfθ̃(x, y)

=

T∑
t=1

[βt(θt − θ̃)]∇ξfθ̃(x, y)

=

T∑
t=1

[βt((1− (1− α)αt−1)θt − θ̃F\t)]∇ξfθ̃(x, y)

=

T∑
t=1

[βt((1− (1− α)αt−1)θt − (1− (1− α)αt−1/α)θt−1 − θ̃F\t,t−1)]∇ξfθ̃(x, y)

(5)

Owing to the fact that the decay rate α close to 1 is typically recommended in practice, so 1/α→ 1.
Then we can deduce by combining:

T∑
t=1

[βt((1− (1− α)αt−1)(θt − θt−1)− θ̃F\t,t−1)]∇ξfθ̃(x, y) (6)

By using SGD to update θt−1, we have:

T∑
t=1

[βt((1− (1− α)αt−1)(τtE(x,y) [∇θt`(θt; (x′k, y))])− θ̃F\t,t−1)]∇ξfθ̃(x, y) (7)

Without changing samples in the t-th minibatch, we can conclude that the output of SEAT will be
closer to the averaged prediction of multiple networks when the learning rate τt becomes extremely
small at the t-th iteration.

To further analyse the whole training process, we construct θ = 1
T

∑T
t=1 θt and ξ̃ = θ− θ̃ to unpack

θ̃F\t, and then reformulate Eqn 2:

T∑
t=1

(βtξ̃
T)∇ξfθ̃(x, y)

=

T∑
t=1

[βt(θ − θ̃)]∇ξ̃fθ̃(x, y)

=

T∑
t=1

[
βt
T

((1− (1− α)αt−1)θt − θ̃F\t)]∇ξ̃fθ̃(x, y)

=

T∑
t=1

[
βt
T

((1− (1− α)αt−1)(θt − θt−1))]∇ξ̃fθ̃(x, y)

=

T∑
t=1

[
βt
T

((1− (1− α)αt−1)(τtE(x,y) [∇θt
`(θt; (x′k, y))]))]∇ξfθ̃(x, y)

(8)

When the learning rate τt achieves the threshold where the updating amount becomes very small
(as shown in Figure 1 (a) in the main body) at a certain iteration t′, the learning rate schedules
τ1 ≥ τ2 ≥ · · · ≥ τT will be divided into τ1 ≥ τ2 ≥ · · · ≥ τt′ and τt′+1 ≥ τt′+2 ≥ · · · ≥ τT .
Because (β1, β2, · · · , βT ) is a non-decreasing sequence, when T − t′ → ∞,

∑T
t=1(βtξ̃

T) will
gradually approach to zero, which means the difference between f̄F (x, y) and fθ̃(x, y) achieves the
second order of smallness.
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