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Abstract

Models for human choice prediction in preference
learning and perception science often use binary
response data, requiring many samples to accu-
rately learn latent utilities or perceptual intensi-
ties. The response time (RT) to make each choice
captures additional information about the decision
process, but existing models incorporating RTs for
choice prediction do so in a fully parametric way or
over discrete inputs. At the same time, state-of-the-
art Gaussian process (GP) models of perception
and preferences operate on choices only, ignoring
RTs. We propose two approaches for incorporat-
ing RTs into GP preference and perception models.
The first is based on stacking GP models, and the
second uses a novel differentiable approximation
to the likelihood of the diffusion decision model
(DDM), the de-facto standard model for choice
RTs. Our RT-choice GPs enable better latent value
estimation and held-out choice prediction relative
to baselines, which we demonstrate on three real-
world multivariate datasets covering both human
psychophysics and preference learning.

1 INTRODUCTION

Human binary choice data are widely used to measure la-
tent mental constructs. Key motivating applications are hu-
man psychophysics, the study of human perception (?);
human value-based decision making (?); and preference
learning (?). In all cases, humans give binary responses
about whether they detect a stimulus or can discriminate
between two stimuli (in psychophysics), or about which of
two options they prefer (in value-based decision-making and
preference learning). Although binary choice experiments
have been used in psychology for more than a century (e.g.
?), they have seen recent advances in the machine learn-

ing community, particularly through nonparametric latent
function modeling and active learning. Since ?, Gaussian
processes (GPs) have been a standard approach in pref-
erence learning for modeling latent utility functions from
binary preferences expressed over general multivariate and
continuous feature spaces. Among their many applications,
human preference data has been used to learn robot loco-
motion policies (???), personalize assistive devices (??),
and learn a good golf swing (?). Recent work in machine
learning for psychophysics has similarly used GP models to
learn latent perceptual functions from binary human feed-
back, for purposes including audiometry (??), measuring
visual sensitivity (?), and understanding perception in aug-
mented/virtual reality devices (??).

In these applications, the model assumes that binary re-
sponses derive from a latent function on the input space that
is mapped to choice probability through a sigmoidal link
function. There are two important aspects of the problem
that are detrimental to the sample efficiency of the model.
First, information is lost for large portions of the latent
space that are mapped to choice probabilities very near 1
or 0. Second, areas of the function with high uncertainty,
that is, where preference or detection probability is close
to 0.5, require many samples for accurate estimation since
they have a large Bernoulli variance, p(1− p). These short-
comings are due to the fact that binary responses are a very
coarse measurement of the underlying continuous function
reflecting a human’s decision process. A richer model of the
decision process should allow for discrimination between a
‘yes’ response with choice probability close to 0.5 and one
close to 1.

Psychology and neuroscience provide rich models for the
underlying decision process. These models incorporate ad-
ditional information, notably response times (RTs), as a way
of inferring the latent function underlying the subject’s re-
sponse (e.g. ????). One of the most popular such models is
the diffusion decision model, also called the drift-diffusion
model (DDM) (???). Unfortunately, the joint choice-RT
likelihood of the DDM cannot be computed in closed form.
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Figure 1: A human subject evaluated 1,225 pairs of robot
gaits to select the more natural looking gait. The response
time in making the judgement was longer for pairs that
have a small difference in their latent utilities, reflecting
the increased challenge of judging gaits of similar quality.
Response time is useful auxiliary information for learning
the latent utility function and predicting choices.

A variety of numerical approaches can be used to approxi-
mate it (??), but none are differentiable. This prevents them
from being incorporated into a modern variational GP ap-
proximation framework in a straightforward way. Our core
contribution is to approximate the DDM using a family of
parametric skewed distributions, which enables for the first
time the use of GP models with DDM-inspired RT-choice
likelihoods.

To illustrate the relationship between RTs and choice,
Fig. ?? shows RT data from the multivariate robot gait op-
timization task we study in Section ??, in which a human
subject watched two simulations of a quadruped robot walk-
ing, each with different gait parameters, and was asked
which gait looked more natural. The figure compares the
latent GP utility estimates for each evaluated pair using the
binary preference data only (‘choice-only’ model), with the
response time of the human subject in judging that pair.
When the difference in latent utility for the pair is 0, they are
equally preferred, and the choice probability is 0.5. Gaits
with closer utility values had both longer and more variable
response times, while those with large differences in utility
were easier to judge and had shorter and less variable re-
sponse times. This is the relationship that we use to improve
latent function estimation and choice prediction.

RTs are particularly valuable as an implicit measure of con-
fidence because they are easily recorded alongside binary
choice decisions in experiments with humans. They allow
us to improve model performance without having to change
from experimental designs already in use, and without bur-
dening the subject with additional questions to elicit explicit
confidence assessments. This is especially valuable in the
human user studies that are the focus of this work, where

minimizing load on the subject is of paramount importance.

Alongside the psychology-driven approach using the DDM
likelihood, we also propose a simple stacking approach
for incorporating RTs into a choice GP, in which a GP
model for RTs is used as an input to a second layer GP
that models choice. We show that the DDM-augmented
model consistently outperforms the choice-only baseline,
but does so far better in the regime where DDMs are conven-
tionally used (accurately-measured, non-deliberative short
decisions). When RT measurements are lower quality or
consistency, the more flexible stacking model can perform
better.

We study the performance of the models using both syn-
thetic data and data from real human subject studies. On
synthetic problems, we show that leveraging RTs provides
more accurate estimation of the latent function than choice-
only models, especially in realistic low-data regimes. On
real data, we show that incorporating RTs into GP models
can substantially improve choice prediction performance rel-
ative to choice-only models. This is the case even when the
choice probability is the only quantity of direct interest and
the RTs are solely used as side information for the modeling,
as in machine learning applications in this domain.

Section ?? provides background on RT modeling and the
DDM. Section ?? introduces the GP classification model
used for modeling human choices. Section ?? then describes
our novel DDM approximation and how we use that to
jointly model RTs and choices in a GP, as well as the stack-
ing model. Section ?? describes the synthetic experiments,
followed by the real-world psychophysics and preference
learning experiments in Sections ?? and ?? respectively. Our
psychophysical dataset is from a high-dimensional visual
psychophysics task. Our first preference learning example
is a novel robotics preference learning dataset1, the robot
gait optimization used for Fig. ??. Our second preference
learning dataset comes from a study of recommender sys-
tem evaluation, containing pairwise evaluations of A/B test
outcomes at an internet company.

2 BACKGROUND

The DDM is widely used for modeling decision making in
neuroscience and psychology, and can be motivated from
a variety of theoretical perspectives: as a generalization of
classical signal detection theory in psychophysics (??), as a
sequential statistical inference process (?), as an approxima-
tion to neural firing rates (??), or as a mechanistic theory of

1This new dataset, alongside code used to generate
the figures in the paper, is at https://github.com/
facebookresearch/response-time-gps. The core
modeling and estimation code will be available as part of the
AEPsych package for adaptive experimentation for human
experiments (https://aepsych.org/).
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memory (?). With just a few parameters, the model describes
the joint distribution of choices and RTs. The RT is generally
understood to reflect a process of evidence accumulation,
sequential statistical inference, or integration over neural
noise. When this process reaches some threshold determined
by the desired accuracy of the decision maker, a decision is
made. The process completes more quickly when stronger
signal is available, resulting in faster decisions when signal
is stronger.

Existing DDM models almost universally estimate parame-
ters independently over a set of discrete experimental con-
ditions, making them incompatible with the general con-
tinuous stimulus spaces that are of interest here. The RT
distribution under the DDM is that of the first-passage time
of a 1-d Wiener process with nonzero drift and nonzero ini-
tial condition to one of two boundaries. While expressions
for this distribution are well-known (?), they take the form of
an infinite summation. This sum can be truncated while con-
trolling approximation error (?), but naive application of this
approximation is incompatible with modern differentiable
programming frameworks, for two reasons: first, because
bounding density error does not necessarily bound error
in gradients; and second, because varying term counts per
parameter value preclude leveraging standard batched lin-
ear algebra operations. Alternate approaches solve the Kol-
mogorov backward equation associated with the DDM pro-
cess (???) or approximate parameters by moment-matching
to the data (?). Given this complexity, standard approaches
to DDM estimation rely on full MCMC using slice sampling
(e.g. ?) or zeroth-order optimization.

Our focus is not necessarily improving DDM likelihood ap-
proximation or density estimation. Rather, we would prefer
to use a simpler density that is still able to represent the
latent value or signal strength we need for choice predic-
tion in a GP framework or other ML models. Unfortunately,
while other distributions have been used to describe response
times, their parameters do not map to the domain knowledge
encoded in the DDM process in a straightforward way (?).
Instead of using such distributions directly, we use the fact
that closed-form expressions for the conditional moments of
the DDM distribution are known even if the exact density is
intractable (?). We use these moments, which are a function
of the DDM parameters, to match the moments of a shifted,
skewed distribution with a known functional form such as
the shifted lognormal or shifted inverse gamma distributions.
We select the parameters of these three-parameter distribu-
tions to uniquely match the mean, variance, and skew of the
DDM distribution (?).

3 GP MODELS FOR HUMAN CHOICES

GP models can successfully model both human percep-
tion (????) and preferences (??). Observations are given as
{xn, yn}Nn=1, where xn ∈ Rd are multi-dimensional stim-

ulus configurations, and yn ∈ {0, 1} are subject responses.
The typical GP approach to modeling in this setting is to
assume a latent function z with a GP prior:

z(x) ∼ GP (0, kθ (·, ·)) . (1)

For single choices (e.g. ‘yes’ vs. ‘no’), the kernel kθ(x,x′)
can be a standard GP kernel such as the radial basis func-
tion (RBF), which we use throughout our experiments. For
preference choices between paired inputs (e.g. ‘prefer 1’ or
‘prefer 2’), z(x) models a utility function, and we assume
that the choice probability is determined by the difference
in utility between the two choices (?). We do this by using
the ‘preference kernel’ given by ?, which exploits the fact
that GPs are closed under addition to convert a GP prior
over the latent function to a GP prior over the paired differ-
ences with a particular kernel formulation. In both cases we
estimate hyperparameters controlling the amplitude and an
independent lengthscale per input dimension (i.e., an ARD
kernel), which hyperparameters we denote θG = {ρ, ℓ}.

The observation model is Bernoulli, and assumes that y
is conditionally independent of x, given z. Formally, let
zn = z(xn), and yn ∼ Bernoulli(Φ(zn)), where Φ(·) is
a sigmoid, typically the Gaussian cumulative distribution
function. Prior work has varied the choice of the sigmoid
and the details of the kernel, but has maintained this basic
model structure. We are primarily interested in inferring z,
both for the purpose of predicting y and for extracting useful
information such as detection thresholds and most-preferred
inputs. We refer to this model as the ‘choice-only’ model
since it uses only choice data yn. We now show how this
model can be extended to incorporate RT observations.

4 THE RT-CHOICE MODEL

We augment the GP model above to include a distribution
over RTs. Now, our data are D = {xn, yn, tn}Nn=1 where
xn and yn are as before, and tn ∈ (0,∞) are the RTs. As
before, we assume the corresponding latent function values
zn depend on xn, and put a GP prior on z(x) as in (??).

Let y = (y1, . . . , yN ), t = (t1, . . . , tN ), z = (z1, . . . , zN ),
and X = (x1, . . . ,xN ). The joint likelihood of RTs and
choice responses can be written as:

p(t,y | X, θG, θD)

=

∫
p(t | z,y, θD)p(y | z, θD)p(z|X, θG)dz. (2)

Here both RTs t and choices y are assumed to depend on
the input X only via the latent function z; see Fig. ??A for
a graphical representation of the model. The distribution of
the latent function values, p(z|X, θG), will be Gaussian due
to the GP prior on z. The choice distribution, p(y | z, θD),
and the conditional RT distribution, p(t | z,y, θD), are
specified according to a DDM, with parameters θD. We will
now describe the DDM and these distributions in detail.
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4.1 THE DIFFUSION DECISION MODEL

The DDM can be simulated as a Wiener process that stochas-
tically moves towards one of two boundaries, the ‘yes’
boundary or the ‘no’ boundary. Whichever boundary is
reached first is the choice made, yn, and the time required
to reach the boundary is the RT, tn. An illustration of the
DDM process is shown in Fig. ??B. The movement towards
a boundary models the accumulation of evidence, and when
the boundary is reached, there is sufficient evidence to make
a judgement. The RT is thus the first-passage time of this
process, a well-studied quantity in stochastic processes.

The DDM contains several parameters: drift rate, the de-
cision threshold level (C), the initial condition (x0), and a
shift (t0). We use the GP latent function value zn as the drift
rate, providing an explicit link between the input xn and the
response produced by the DDM. The remaining parameters,
θD = {C, x0, t0}, will be directly estimated from data.

The DDM process induces different RT distributions for
the ‘yes’ and the ‘no’ choices, depending particularly on
values of the initial condition and drift parameters, as they
favor one choice over the other. The evaluation of the likeli-
hood under these distributions is intractable, but their mo-
ments can be analytically calculated as a function of θD
and zn (?). The first three moments of the RT distribu-
tions are denoted in Fig. ?? as (m+, v+, s+) and (m−,
v−, s−) for the mean, variance, and skew of the ’yes’ and
’no’ distributions, respectively. The DDM RT moments and
choice probabilities are then incorporated into the full model
likelihood in (??) using the exact DDM choice probability,
p(y|z, θD) =

∏N
n=1 p(yn|zn, θD) and a moment-matching

approach for the RT distributions, p(t | z,y, θD). We elab-
orate on each below.

4.2 THE CHOICE DISTRIBUTION

The choice distribution in (??), p(y|z, θD), is the probability
of yes / no choices given the DDM parameters and latent
function value. Unlike the response time, it can be computed
exactly. We assume conditional independence across trials,
p(y|z, θD) =

∏N
n=1 p(yn|zn, θD), and have yn|zn, θD ∼

Bernoulli(pn). The DDM process induces the following link
function between the latent function values and the choice
probability (?):

pn =
e2Czn − e−2x0zn

e2Czn − e−2Czn
. (3)

Fig. ?? shows how this link function compares to the probit
and logistic sigmoid link functions that have been used in
choice-only GP models, for x0 = 0. It can closely match
either depending on the DDM boundary parameter C. There-
fore, instead of invoking standard link functions (e.g. probit
and logistic) in this work, we use the flexible link represen-
tation derived from DDM theory.

4.3 MOMENT MATCHING THE RT
DISTRIBUTION

The conditional RT distributions as a function of choice,
p(t | z,y, θD), are not available in closed form under the
DDM process, however, as discussed above, the moments
are. To obtain a tractable likelihood in (??) we will assume
conditional independence across trials, p(t | z,y, θD) =∏N

n=1 p(tn|zn, yn, θD), and will then use a parametric dis-
tribution for p(tn|zn, yn, θD), whose parameters are set by
moment matching to the DDM RT distribution.

Proposition 1 (?). Let kz = Czn and ỹn = kz +
x0zn(−1)(1−yn). The RT distribution under the DDM pro-
cess has as its moments:

E[tn|zn, yn, θD]

= t0 +
1

z2n

(
2kz coth (2kz)− ỹn coth (3kz − ỹn)

)
,

Var[tn|zn, yn, θD] =
1

z4n

(
4k2z csch

2 (2kz)

+ 2kz coth (2kz)− ỹ2n csch
2 (ỹn)− ỹn coth (ỹn)

)
,

Skew[tn|zn, yn, θD] =
1

z6n

(
12k2z csch

2 (2kz)

+ 16k3z coth (2kz) csch
2 (2kz) + 6kz coth (2kz)

− 3ỹ2n csch
2 (ỹn)− 2ỹ3n coth (ỹn) csch

2 (ỹn)

− 3ỹn coth (ỹn)
)
.

We use these three moments from the DDM to match para-
metric distributions to the DDM RT distribution. Consid-
ering that RT distributions are typically heavy-tailed (?),
we focus here on heavily skewed distributions for our para-
metric RT forms. In our experiments, we use the lognor-
mal, shifted lognormal, shifted inverse gamma, and shifted
gamma distributions. In the economics community, expres-
sions are available for the parameters of these distributions
as a function of the empirical sample statistics—specifically
the mean, variance, and skew (??). These expressions allow
for analytic moment matching with the known expressions
of the DDM RT moments above. To evaluate the likelihood,
we use the fitted DDM parameters and GP function samples
to compute the mean, variance, and skew of the RT distri-
bution according to Prop. ??. The parameters of the desired
parametric RT distribution are then computed from those
moments via moment matching, and we evaluate the likeli-
hood of the RTs under this parametric distribution. The for-
mulae for computing the parameters from the moments for
each skewed distribution are provided in the supplementary
materials. This moment-matched parametric distribution is
then used as the RT component of the likelihood in (??),
p(tn|zn, yn, θD).
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Figure ?? shows how the numerically calculated DDM RT
distribution is captured by each of our parameterized heavy-
tailed distributions via moment-matching Prop. ?? with the
parameter expressions given in the supplement. It is visually
apparent that the approximations do not perfectly match
the gold-standard series truncation approach (which we use
as the ‘real’ DDM distribution). However, they are overall
similar, and we will see below that these approximations
are sufficient to enable RT-choice to outperform the choice-
only model. We additionally consider ‘lapse’ RTs, which are
thought to be stimulus-independent and arise due to distrac-
tion, fatigue, etc. We model such RTs as drawn uniformly
from the empirical range of the observed RTs, and parame-
terize the overall RT distribution as a mixture between the
DDM-derived likelihood and this lapse distribution (?).

4.4 INFERENCE

Because the marginal likelihood in (??) cannot be computed
in closed form, we use standard variational methods to ap-
proximate the GP posterior, and obtain point estimates of
{θG, θD}. Importantly, the parametric moment-matched dis-
tributions are all differentiable, so we can compute gradients
of the GP hyperparameters and variational approximation
with respect to the RT likelihood, rendering the full scheme
compatible with modern GP inference tooling. Consistent
with standard approaches, we use Gauss-Hermite quadra-
ture in the expectation term of the traditional evidence lower
bound, and optimize the objective with gradient-based opti-
mization (??). Estimation takes on the order of seconds on
a standard laptop.

4.5 A STACKING APPROACH

In addition to the DDM likelihood, we also introduce a
simple stacking approach for including RTs into a choice GP.
In this approach, we fit two GP models. Let t̃n = log(tn)
be the log RT; the log transform is helpful for enabling
GP modeling of the highly skewed RTs. The first model g
is a GP regression model fit to the log RT data, modeling
t̃n = g(xn). The second model h is a GP choice model
whose input space is augmented with log RT as an additional
feature, so that yn ∼ Bernoulli(Φ(h(xn, t̃n))). The kernel
over the original input space x is combined with an RBF
kernel over t̃ via a product kernel. These models can be fit
independently, but are used together for predicting an input
x for which RTs have not been observed. At prediction time,
we take

y ∼ Bernoulli(Φ(h(x, ḡ(x)))),

where ḡ(·) is a plug-in estimate using the posterior mean
of g. This model is simple to implement and understand,
though there are many real-life properties of RT distributions
and their relationship to choices that it does not capture.

5 SYNTHETIC EXPERIMENT

To demonstrate the benefits of our approach, we begin with
a synthetic data experiment. We use the 2-d detection test
function of ?, which was designed to evaluate models for
psychophysics, with the output scaled by a factor of 0.2
to be in the range of typical drift rates in the literature (?).
Fig ??A shows the basic properties of the test function. At
every point in the parameter space, the test function (bottom
left) was used as the drift parameter of a DDM. From this
latent function and the DDM parameters, we can calculate
the mean and standard deviation of the RTs for each stim-
ulus using Prop. ?? (top row). The latent function values
generate choice probabilities via (??) (bottom right). The
bottom right panel also shows the locations of 10 obser-
vations, at each of which the choice yn and RT tn were
obtained by full simulation of the DDM process (Sec. ??).
The simulated choice yn is shown for these observations in
the figure, indicated with a ‘+′ for a correct detection and
‘◦′ for detection failure.

Note that there is only a single negative response (detection
failure) in this example, a common occurrence in the low-
data regime in such problems. In this case, a choice-only
model cannot do much more than separate the space into
broad ‘yes’ and ‘no’ regions, whereas a model taking ad-
vantage of RTs can do much more. Fig. ??B shows error on
recovering the true, latent function from only 10 observa-
tions, in expectation over the GP posterior. All variants of
the RT-choice model, using different moment-matching dis-
tributions, far outperform the choice-only model. Moreover,
the choice-only model’s performance is highly variable as it
strongly depends on the presence of sufficiently balanced
numbers of ‘yes’ and ‘no’ trials. We will see this same sig-
nificant advantage for RT-choice models in the low-data
regime in the real-world problems as well.

6 REAL-WORLD PSYCHOPHYSICS

As a first evaluation of our model in a real-world setting,
we fit the model to data from a high-dimensional visual
psychophysical task. These data consist of 1,500 trials from
a two-alternative forced choice (2AFC) task provided by
?, and we obtained RTs from the authors. For each trial,
the subject was shown an animated Gabor patch, one half
of which had been scrambled, with the scrambled side se-
lected randomly each trial. The subject was asked to identify
which side was not scrambled. The stimulus in each trial var-
ied along six dimensions (contrast, background luminance,
temporal and spatial frequency, size, and eccentricity), ren-
dering some trials harder than others in a high-dimensional
space. The purpose of the study was to determine how visual
perception depends on those six stimulus properties, and to
extract detection thresholds from the latent function. Addi-
tional dataset details and an example stimulus are available
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in the supplementary materials.

We study how the performance of the model varies with
the amount of data. For each training set size, we randomly
selected a training set of that size and used the remaining
data as a test set. We evaluated six models: the choice-only
model, the four DDM-based variants of RT-choice with
different parametric RT distributions, and the stacked RT-
choice model. Model performance was measured using the
expected Brier score, the expectation being over the model
posterior. The Brier score (?) is a proper scoring rule, equiv-
alent to the mean-squared error of predicted probability and
outcome, and evaluating it in expectation over the model’s
posterior measures the calibration quality of the model’s pre-
dictions. For each training set, performance was recorded
as the difference in Brier score between each model and the
choice-only baseline, to directly measure the extent to which
incorporating RTs can improve the model. This evaluation
was repeated for 20 random train/test folds.

Fig. ?? (left) shows results of the evaluation. All of the
DDM RT-choice models performed significantly better than
the choice only baseline, with the difference especially
pronounced for training set sizes less than 200. The 3-
parameter shifted RT distributions performed better than
the 2-parameter log-normal distribution, showing the impor-
tance of having a flexible RT distribution. The stacked RT-
choice model did not improve over the choice-only model.
This model fails to capture important aspects of the RT dis-
tribution, such as the skew, heteroskedastic variance across
the parameter space, and the presence of lapses. All of these
real-world properties of RTs are captured by the DDM.

7 REAL-WORLD PREFERENCE
LEARNING

We evaluated our model on pairwise data for preference
learning using two real datasets, the first created as part of
this study.

7.1 ROBOT GAIT OPTIMIZATION

This problem explored a 3-d space of gait parameters for a
simulated quadruped robot (?). Using OpenAI Gym (?), 10
second videos were recorded of gait simulations for each
of 50 quasirandom points in the parameter space. A single
human subject consented to data collection, and evaluated
each of the 1,225 possible pairings of videos to identify
which gait appeared more natural. Videos were shown side-
by-side, so the subject could respond as soon as a judgement
had been made. Response times were recorded for each pair-
ing, as shown in Fig. ??. See the supplementary material
for more details and example videos. The goal of the ex-
periment was to learn the most natural-looking gait for the
robot, according to the human subject.

Model evaluation was done in the same way as in the psy-
chophysics task, by measuring the difference of expected
Brier score between each model and the choice-only base-
line, paired across 30 train/test folds for each training set
size. Results are shown in Fig. ?? (right), and are similar to
those of the psychophysics task. DDM RT-choice models
significantly outperformed the choice-only model for small
training sizes. Because of the smaller dimensionality of this
problem (d = 3), the improvement fades at a smaller train-
ing set size, by around 150 observations, as the choice-only
model is able to better capture the latent function in lower
dimensions. The stacked model again failed to improve over
choice-only.

7.2 RECOMMENDER SYSTEM EVALUATION

The data for this task come from a user study reported in ? in
which six employees of an internet company were asked to
compare pairs of A/B test results that showed performance
of a recommender system under different configurations.
For each pair, subjects identified which test had the better
outcome, for the purpose of finding the most-preferred con-
figuration. The results for each A/B test included changes
in up to 9 metrics related to the performance of the recom-
mender system, and the subject had to weigh the relative
benefits of changes in these various metrics. The dimension-
ality of the configuration varied (5 to 11, median 6). We
thought this experiment may help establish the limits of the
benefit of the DDM, as the nature of the decision is delib-
erative rather than immediate: subjects reported that they
had discussions with team members to help decide which
option they preferred, and were evaluating the options in
parallel with other tasks such as responding to messages.
Consequently, the response times were substantially longer
(4 seconds to over 7 minutes, median of 14 seconds—the
other datasets had a median below 4 seconds). Furthermore,
response times were quantized to 1s increments due to the
implementation of the preference elicitation system. Addi-
tional information about the dataset is in the supplementary
materials.

The amount of data in this study was insufficient to vary
the training set size as in the other experiments (41 to 50
observations depending on subject). Instead, we generated
50 random splits of the data, each time training on 80% and
testing on 20% to compute expected Brier score on the held-
out data. Fig. ?? shows that RT-choice models outperformed
the choice-only model for all six subjects. In contrast to
the other two real-world experiments, our novel stacked
model performed very well, significantly outperforming
both choice-only and the DDM-based models in half of
the subjects, and performing comparably to DDM-based
models in the other half.
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8 DISCUSSION

We have demonstrated that GP models that take into ac-
count the RT distribution improve latent function estimation
and held-out predictive accuracy in both psychophysics and
preference learning. By using the moments of the RT dis-
tributions provided in closed form by the DDM, we can
calculate point estimates of parameters of a parametric den-
sity over RTs, and leverage this additional information to
better predict human performance and understand latent
cognitive representations. Our results show that measuring
and modeling with RT data can improve performance across
a wide range of preference and perception learning tasks.
While we focus on binary applications here, GP preference
models with multinomial observation likelihoods would be
a first step in extending this class of models to decision
making settings with more than two options. Additional
work would be necessary to identify RT distributions in a
multiple-choice setting, perhaps derived from a model of
the dynamics of multi-choice decision making (e.g. ???).

Our results also yield clear guidance for practitioners: if
high-quality RTs are available (i.e. ones that are accurately
measured from focused subjects), augmenting the GP choice
model with the DDM improves choice prediction. If RTs do
not fall into the setting where DDMs are typically produc-
tive, DDM-augmented GP models still outperform choice-
only, but the more flexible stacked model may better lever-
age the RTs. When using the DDM-augmented model, we
see that different moment-match distributions perform simi-
larly, and the best one can be selected by cross-validation
(which is feasible due to model fitting requiring only a few
seconds for the training set sizes used here).

We show results in both a synthetic setting and a broad va-
riety of real-world scenarios: human visual psychophysics,
preferences in recommender system evaluation, and robot
gait tuning. We note improvement specifically when the
number of samples per-subject is small (N < 200 samples),
a regime of practical utility, as it can be time-consuming
and uncomfortable for humans to participate in experiments
for hundreds or thousands of trials. Importantly, our model
improvements are specifically salient in the small-sample
regime, as the model is able to effectively leverage RT infor-
mation to better estimate choice probability. As the number
of samples increases, choice-only models have enough in-
formation to do very well. However, as can be seen in the
left panel of Figure 6, for training sizes that are very small
(e.g. < 50), the performance improvements seen in the RT
model are more modest than when the number of samples
is slightly increased. This suggests a ’sweet spot’ for our
model, where there is enough data to accurately leverage
RT information, but not so much that the choice-only ap-
proaches achieve comparable performance. Incidentally, it
is this regime that is likely of practical utility in many real-
world human choice modelling settings.

Finally, we discuss a number of opportunities for future
work. First, we focus on the benefits of our approximation
for fast, differentiable inference of GP models with RTs but
do not make explicit claims about the quality of approxima-
tion, which may be worse than series truncation approaches
that have explicit error bounds but are challenging to apply
in this setting. The interaction of approximate likelihoods
(in our case, moment matching) and approximate inference
(in our case, variational inference) are closest in spirit to
methods for likelihood-free inference (e.g. ???), and future
work could make this connection more explicit and provide
stronger theoretical guarantees.

Second, in the stacked GP model we use a point estimate
of the GP model predicting RTs, discarding the uncertainty
of that model. We made this choice because integrating
over this uncertainty is not possible to do in closed form,
and doing so numerically would likely take our models out
of the realm of practical usage with a human in the loop
(an important goal for this work). Methods for propagating
input uncertainty in GPs (e.g. ??) provide a roadmap for the
types of approximations that could be used for propagating
RT uncertainty in the stacked model, but we leave that for
future work.

A final opportunity for future work is pooling or utilizing of
data across multiple subjects (?). Combining cross-subject
pooling, flexible GP models, and use of RT distributions
may enable future practitioners to even better predict binary
human choices in a few samples.
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Figs/RT-choice_motivational_yesno_v2.pdf

Figure 2: A. A graphical depiction of our RT-choice model. The latent variable zn has a GP prior and is a function of xn in
the input space. It is used as the drift parameter in the DDM. Via the DDM, it produces RT distributions for both ‘yes’ and
‘no’ choices as well as a choice probability p. B. Schematic of the diffusion decision model. A stochastic process with an
average drift (red arrow) dictates random movement in a latent space, capturing an underlying decision making process. The
latent accumulator eventually reaches one of two boundaries, representing one of two possible decisions, providing both a
choice and a response time. RT distributions for each choice (top and bottom) are skewed with known moments.
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Figure 3: The DDM link function closely matches typical
probit and logistic link functions, depending on the process
parameters. The supplementary material includes examples
of link functions fit to real data.
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Figure 4: Example of the real DDM distribution (computed
using the approximation of ?), and our moment-matched
approximations.
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Figure 5: A. The mean and standard deviation (top) of RT in
our 2-d test function, the latent function value (bottom left),
and associated choice probabilities (bottom right). B. Mean
squared error in expectation over the posterior of the latent
function under each model fit on 10 observations, for the
choice only model and four DDM-based RT-choice models,
using different parametric forms of the RT distribution. Error
bars show standard error over 10 simulated datasets.
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Visual psychophysics task (d = 6)
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Figure 6: Left. Choice prediction performance on the real-world visual psychophysics dataset. Lines show the mean of the
difference between expected Brier score of each model on each train/test fold, and the expected Brier score of the baseline
choice-only model. Error bars show two standard errors. Right. Choice prediction performance measured in the same way,
for the robot gait task. DDM-based RT-choice models significantly improve over the choice-only model, especially for small
training sizes. The stacking approach was not able to improve over choice-only.
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Figure 7: Expected Brier score improvement over choice-
only for choice predictions in the recommender system eval-
uation task. For each subject, the figure shows mean and two
standard errors across random train/test sets. All RT-choice
models improved over choice-only, and the stacked model
performed the best.
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A INFERENCE DETAILS

As noted in the main text, we used standard variational methods for approximate GPs (??). In all cases we used the Adam
optimizer (?) with a stepped learning rate beginning at 0.01 and 5000 iterations. Inputs were normalized to [0, 1]. The
hyperprior for the lengthscale was InverseGamma(4.6, 1.0), selected because it restricts approximately 95% of the prior
probability mass to be between 0.1 and 0.5 (i.e. excluding very short or long lengthscales relative to the normalized input
domain). The hyperprior for the variance was selected as Uniform(1, 4), as it restricts the GP output to values that are not
saturated by the probit sigmoid, and we wanted to keep priors consistent between the models. We additionally employed
multi-start optimization (with 5 restarts), and clamped the moment-matched skew to be between 0.1 and 10 to stabilize
estimation.

B DATASET DETAILS

B.1 HUMAN PSYCHOPHYSICS DATASET

This dataset was obtained by contacting the authors of ? and requesting response time data for the choice dataset in the
original paper. It consists of 1500 observations of a single subject making detection judgments. Stimulus features were
contrast, pedestal (background luminance), temporal frequency, spatial frequency, size, and eccentricity. An example
stimulus is shown in Fig. ??. Response times ranged from 0.16 to 15.87 seconds, with a median of 0.6 seconds.

Figure 8: Example psychophysics stimulus (reprinted from ?)
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Figure 9: A screenshot of the UI for the robot gait preference learning experiment of Section ??. The subject viewed two
videos simultaneously playing side-by-side, and selected the one with the more natural gait. Both choice and response time
were recorded to fit models of gait preference.

B.2 ROBOT GAIT PREFERENCE LEARNING

The simulation framework was from ?, and we built on the demo simulation from the package. The selected parameters and
their ranges were taken from the package demo settings. Specifically, SwingPeriod ranged from 0.1 to 0.4; StepVelocity
from 0.001 to 3; and ClearanceHeight from 0 to 0.1. All other gait parameters and all settings related to the simulation itself
were fixed to defaults.

A total of 50 simulation videos were recorded for the study, and this supplementary material includes 3: the most-preferred,
least-preferred, and median-preferred, when all videos were ranked according to the latent preference value of a ‘choice-only’
model fit to all of the data. The increasingly natural appearance of the gait with latent preference value is apparent. Fig. ??
shows a screenshot of the UI for the study in which the human subject viewed two gaits side-by-side and selected the more
natural looking. Response times ranged from 1.54 to 9.85 seconds, with a median of 3.6s.

B.3 RECOMMENDER SYSTEMS DATASET

This dataset was obtained by contacting the authors of ? and requesting the dataset in that paper. The dataset consisted of
data from seven subjects whose response times ranged from 4 to 429 seconds. Table ?? includes additional information
about this dataset. Data from subject 0 only had 20 observations, so we did not use it, since the test set size would be 4
instances only.

Table 1: Dataset details for recommender systems dataset.

subject ID Instances Dimensions Minimum RT (s) Maximum RT (s) Median RT (s)
0 20 7 5 46 11
1 41 8 11 429 30
2 41 11 6 250 14
3 43 5 7 159 14
4 50 6 7 118 15
5 50 7 4 157 7
6 50 8 4 35 9

12



C MOMENT MATCHING RESULTS

Here we provide the probability density functions of all heavy-tailed reaction time distributions we use in this work. Of
these, the log-normal is the only two-parameter distribution whereas the shifted gamma, shifted inverse gamma and the
shifted log-normal are all three-parameter distributions. The sample statistics calculated from the reaction times, specifically
the mean, variance, and skew, are denoted m∗, v∗, and s∗, respectively. Expressions for the three-parameter distributions
below are adapted from ?.

C.1 SHIFTED LOG-NORMAL

f(z;µ, σ, η) =
1

σ(z − η)
√
2π

exp

{
− (ln(z − η)− µ)2

2σ2

}
, z > η

with parameter estimates as a function of sample statistics

µ̂ = ln (m∗ − η)− σ2

2
, σ̂2 = ln

∣∣∣∣∣1 + v∗

(m∗ − η)
2

∣∣∣∣∣ , η̂ = m∗ −
√
v∗
s∗

[
1 + (B)

1
3 + (B)−

1
3

]
B ≡ 1

2

(
s2∗ + 2−

√
s4∗ + 4s2∗

)
∈ (0, 1].

C.2 SHIFTED INVERSE GAMMA

f(z;α, β, η) =
βα

Γ(α)

(
1

z − η

)α−1

exp

{
− β

z − η

}
, z > η, β > 0

with parameter estimates as a function of sample statistics

η̂ = m∗ −
√
v∗
s∗

[
2 +

√
4 + s2∗

]
α̂ = 2 +

(m∗ − η)
2

v∗
β̂ = (m∗ − η) (α− 1).

C.3 SHIFTED GAMMA

f(z;α, β, η) =
(z − η)α−1

βαΓ(α)
exp

{
−z − η

β

}
, z > η, β > 0

with parameter estimates as a function of sample statistics

α̂ =
4

s2∗
, β̂ =

√
v∗
α
, η̂ = m∗ − αβ.

D THE DDM LINK FUNCTION

Figure ?? showed that, depending on the parameters, the choice probability link function implied by the DDM can closely
match either the logistic or probit links. Fig. ?? shows a similar comparison using the actual DDM parameters from models
fit to the data in the experiments. For the visual psychophysics and robot gait tasks, we fit a model with a randomly sampled
training set of size 300, and used the shifted log normal matched DDM distribution. The fitted link functions are given in the
figure, alongside the logistic and probit link functions.
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Figure 10: The DDM link function, with parameters fit to the data from the visual psychophysics and robot gait tasks. The
link functions are similar though not identical to the logistic and probit link functions.

E ETHICS STATEMENT AND BROADER IMPACTS

Our work carries low-risk of ethical harm, as it focuses on binary responses in simple decision-making tasks in low-sensitivity
settings. For this work, we only consider de-identified data where subjects provided explicit informed consent, and we
keep our conclusions focused on model performance. We draw no broad conclusions about general human behavior. We
anticipate minimal risk associated with future application of our work.

F COMPUTATIONAL LOAD

The methods developed in this paper are not computationally demanding. All benchmarks were run on a standard laptop
computer. Single model fits, which are most relevant for future practitioners, take on the order of seconds on a typical laptop.

14


