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A COMPARISONS WITH JIN ET AL. (2020).
Jin et al. (2020) Our work

Gradient
Batch-size Full-batch (True Gradient) [Eq. (33)] Mini-batch Stochastic Gradient

Distribution Bounded [Theorem 3] Sub-Gaussian (bounded as a subset)
and heavy-tailed

Residual

Weak Signal
Strength

∆(M) as a function of client number
M without explicit form [Theorem 2
and Remark 3].

c0√
M

Byzantine Implicit forms without quantitative
results [Theorem 7 and Remark 6].

(B+β)
∑T−1

t=0 τ(t)
TM

Gradient
noise

No, since only bounded gradients are
considered.

O
(
exp

(
−n

2

))
for Sub-Gaussian noise;

O
(
1/n

p′
2

)
(p′ ≥ 4) for heavy-tailed

noise.

Differential Privacy No for sto-sign compressor; flawed
arguments for DP-sign compressor.

d log(1 + 2B
β ) for arbitrary gradients;(

∆1

β

)
for gradient pairs with bounded

l1 sensitivity ∆1.

Partial Client Participation No.
Theoretically and empirically verified,
and build adaptive Byzantine
adversaries on it.

Table 3: Point-by-point comparisons with Jin et al. (2020).

B ALGORITHMS

Definition 6. Let S ⊆ [M ] and let ûm ∈ {±1}d for m ∈ S.
(A.1) The mean aggregation rule is defined as aggavg ({ûm, m ∈ S}) = 1

|S|
∑

m∈S ûm.

(A.2) The coordinate-wise k-trimmed-mean aggregation rule, denoted by aggtrimmed,k, takes k ∈
N and {ûm, m ∈ S} as inputs and aggregates each coordinate i ∈ [d] as follows: (1) sort
{ûmi, m ∈ S}, where ûmi is the i-th coordinate of ûm, in an increasing order; (2) remove
the top and bottom k values, and denote the remained clients w. r. t. coordinate i as Ri; (3)
if Ri = ∅, then aggtrimmed,k,i ({ûm, m ∈ S}) = 1 (or −1) uniformly at random; otherwise,
aggtrimmed,k,i ({ûm, m ∈ S}) = 1

|Ri|
∑

m∈Ri
ûm.

(A.3) The coordinate-wise median aggregation rule, denoted by aggmedian, aggregates each coor-
dinate i ∈ [d] as follows: it first sorts the {ûmi, m ∈ S} in an increasing order. If |S| is even,
aggmedian,i ({ûm, m ∈ S}) outputs the average of the elements whose ranks are |S|

2 and |S|
2 + 1.

Otherwise, aggmedian,i ({ûm, m ∈ S}) outputs the element whose rank is ⌈ |S|
2 ⌉.

(A.4) The coordinate-wise majority vote aggregation rule, denoted by aggmaj, aggregates each
coordinate i ∈ [d] as follows: If there are more 1 than −1 in {ûmi, m ∈ S}, then
aggmaj,i ({ûm, m ∈ S}) outputs 1. If there are more −1 than 1 in {ûmi, m ∈ S}, then
aggmaj,i ({ûm, m ∈ S}) outputs −1. Otherwise, aggmedian,i ({ûm, m ∈ S}) outputs 0.

C ALTERNATIVE RESULTS

C.1 ALTERNATIVE ASSUMPTIONS

The following two alternative assumptions on the randomness of stochastic gradients are of decreas-
ing levels of stringency.
Assumption 6 (Boundedness). The ℓ∞ norm of all possible stochastic gradients is upper bounded.
Formally, let m ∈ [M ] be an arbitrary client and g be an arbitrary stochastic gradient that client m
obtains. For any coordinate i ∈ [d], there exists B̃i > 0 such that |gi| ≤ B̃i. Let B̃ = maxi∈[d] B̃i.

The following alternative assumption relaxes the boundedness requirement, and allows the stochastic
gradients to be supported over the entire Rd.
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Assumption 7 (Gaussianity). For a given client m ∈ [M ], at any query w ∈ Rd, the stochastic
gradient gm(w) is an independent unbiased estimate of ∇fm(w) that is coordinate-wise related to
the gradient∇fm(w) as gmi(w) = ∇fmi(w) + ξmi ∀ i ∈ [d],

where ξmi ∼ N
(
0, σ2

mi

)
. Let σ2 := maxm∈[M ],i∈[d] σ

2
mi.

C.2 ALTERNATIVE CONVERGENCE RATES

Corollary 2. Suppose that Assumptions 3 and 7 hold. Choose B = (1 + ϵ0)B0 for ϵ0 > σ/B0 and

c0 = max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
. Fix t ≥ 1 and i ∈ [d]. Let c > 0 be any given

constant such that c < 3
5 .

When the system adversary is adaptive or when the system adversary is static but with τ(t) ≤
2
p2 log

6
c , if |∇iF (w(t))| ≥ 2(B+β)

pM τ(t) + B+β

2
√
2π

exp
(
−n

2

)
+ c0√

M
, then Eq. (4) holds.

When the system adversary is static with τ(t) > 2
p2 log

6
c , if |∇iF (w(t))| ≥ 3(B+β)τ(t)

M +
B+β

2
√
2π

exp
(
−n

2

)
+ c0√

M
, then Eq. (4) holds.

Corollary 3. Suppose Assumptions 1, 2, 3, and 7 hold. For any given T , B = (1 + ϵ0)B0

for ϵ0 > σ
B0

, and c such that 0 < c < 3
5 , set the learning rate as η = 1√

dT
and c0 :=

max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
.

When the system adversary is adaptive or when the system adversary is static but with τ(t) ≤
2
p2 log

6
c , we have

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+
d√
2π

(B + β) exp
(
−n

2

)
+2d

c0√
M

+ 4d
(B + β)

∑T−1
t=0 τ(t)

pTM

]
.

On the other hand, when the system adversary is static with τ(t) > 2
p2 log

6
c , we have

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+
d√
2π

(B + β) exp
(
−n

2

)
+2d

c0√
M

+ 6d
(B + β)

∑T−1
t=0 τ(t)

TM

]
.

Corollary 4. Suppose that Assumption 6 holds. Choose B = B̃ and c0 =

max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
. Fix t ≥ 1 and i ∈ [d]. Let c > 0 be any given con-

stant such that c < 3
5 .

When the system adversary is adaptive or when the system adversary is static but with τ(t) ≤
2
p2 log

6
c , if |∇iF (w(t))| ≥ 2(B+β)

pM τ(t) + c0√
M

, then Eq. (4) holds.

When the system adversary is static with τ(t) > 2
p2 log

6
c , if |∇iF (w(t))| ≥ 3(B+β)

M τ(t) +
B+β

2
√
2π

exp
(
−n

2

)
+ c0√

M
, then Eq. (4) holds.

Corollary 5. Suppose Assumptions 1, 2, and 6 hold. For any given T and c such that 0 < c < 3
5 ,

set the learning rate as η = 1√
dT

and c0 := max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
.
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When the system adversary is adaptive or when the system adversary is static but with τ(t) ≤
2
p2 log

6
c , we have

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+ 2d
c0√
M

+ 4d
(B + β)

∑T−1
t=0 τ(t)

pTM

]
.

On the other hand, when the system adversary is static with τ(t) > 2
p2 log

6
c , we have

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+ 2d
c0√
M

+ 6d
(B + β)

∑T−1
t=0 τ(t)

TM

]
.

D PROOFS

D.1 AGGREGATION FUNCTIONS

Proof. [Proof of Proposition 1 (Equivalent to Majority Vote)] The intuition behind this proof
is to show that the signs of all the aggregation rules mentioned in the theorem statement, given
ûm ∈ {±1}d for m ∈ S, are equivalent to the sign of the k-trimmed-mean aggregation rule.

We first show that for any k < |S|/2, the signs of the outputs of the signs of the aggregation rule
aggtrimmed,k are the same. When k < |S|/2, it holds that Ri ̸= ∅ for each i ∈ [d]. Thus, the
aggregation rules aggtrimmed,k with k < |S|/2 is deterministic.

For any given coordinate i ∈ [d], if the sign of aggtrimmed,k is 0, by definition, we know that there
are equal numbers of 1 and −1 in {ûmi : m ∈ Ri}, and that the top (resp. bottom) k elements
removed from {ûmi : m ∈ S} are 1 (resp.−1). That is, there are equal numbers of 1 and −1 in
{ûmi : m ∈ S}. Hence, for any k′ ̸= k, as long as the remained set R′

i after trimming is nonempty
(which is ensured by the condition that k′ < |S|/2), it holds that aggtrimmed,k′ ({ûmi : m ∈ S}) = 0.

If the sign of aggtrimmed,k is−1, we know that there are more−1 than 1 in {ûmi : m ∈ Ri}, and that
the bottom k elements in {ûmi : m ∈ S} are all−1 whereas the number of 1 in the top k elements is
at most k. That is, there are more −1 than 1 in {ûmi : m ∈ S}. Hence, we know that for any k′, as
long as the remained set R′

i after trimming is nonempty, the sign of aggtrimmed,k′ ({ûmi : m ∈ S})
is −1. Similarly, we can show the case when the sign of aggtrimmed,k is 1.

The above argument, combined with the definition of aggmaj, immediately implies that when k <
|S|/2, the signs of aggtrimmed,k and aggmaj are the same.

Finally, since aggavg is aggtrimmed,0 and aggmedian = aggtrimmed,⌊ |S|−1
2 ⌋, the signs of aggavg, aggmedian,

and aggtrimmed,k for k < |S|/2 are all the same, proving the theorem.

D.2 PRIVACY PRESERVATION

Theorem 5. (Dwork et al., 2014, Corollary 3.15) Let Mi : Rd → {±1}d be an ϵi-differentially
private algorithm for i ∈ [k]. Then M[k](x) := (M1(x), · · · ,Mk(x)) is

∑k
i=1 ϵi-differentially

private.

Proof of Theorem 1 (Necessity of β). We first consider the setting when β = 0. Let

G = {g ∈ Rd : ∃i s.t.min{|gi −B|, |gi +B|} ≤ 1}.
Let g ∈ G. Without loss of generality, let us assume that |g1 −B| ≤ 1, where g1 is the first entry of
g. If g1 ≥ B, then there exists g′ ∈ Rd such that g′ ̸= g, g′

1 ∈ (−B,B), and ∥g − g′∥1 ≤ 1. Let
ĝ1 and ĝ′

1 be the compressed values of g1 and g′
1 under our compressor in Eq. (2). It holds that

P
{
ĝ′
1 = −1

}
P {ĝ1 = −1}

=

B−clip{g′
1,B}

2B
B−clip{g1,B}

2B

=
B − clip {g′

1, B}
B − clip {g1, B}

=
B − clip {g′

1, B}
B −B

=∞.
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If g1 ∈ (−B,B), then there exists g′ ∈ Rd such that g′ ̸= g, g′
1 ≥ B, and ∥g − g′∥1 ≤ 1. We have

P {ĝ1 = −1}
P {ĝ′

1 = −1}
=

B−clip{g1,B}
2B

B−clip{g′
1,B}

2B

=
B − clip {g1, B}
B − clip {g′

1, B}
=

B − clip {g1, B}
B −B

=∞.

Since a finite differential privacy quantification does not hold for any pair of gradients g and g′, no
differential privacy implies as per Definition 1, proving the first part of the theorem.

When β > 0, for any g, g′ ∈ Rd such that g′ ̸= g and ∥g − g′∥1 ≤ 1, and for each coordinate
i ∈ [d], it holds that

P {ĝ′
i = −1}

P {ĝi = −1}
=

B+β−clip{g′
1,B}

2B+2β

B+β−clip{g1,B}
2B+2β

=
B + β − clip {g′

1, B}
B + β − clip {g1, B}

≤ 2B + β

β
.

Similarly, we can show the same upper bound for P {ĝ′
i = 1} /P {ĝi = 1}. That is, for the i-th co-

ordinate, the compressorMB,β is coordinate-wise log
(

2B+β
β

)
- differentially private. By Theorem

5, we conclude that the compressor MB,β is d · log
(

2B+β
β

)
- differentially private for the entire

gradient.

Proof of Theorem 2 (Smaller Collection of Gradients). For each coordinate i ∈ [d], it holds that

P {ĝ′
i = −1}

P {ĝi = −1}
=

B+β−clip{g′
i,B}

2B+2β

B+β−clip{gi,B}
2B+2β

=
B + β − clip {g′

i, B}
B + β − clip {gi, B}

=
B + β − clip {gi, B}+ clip {gi, B} − clip {g′

i, B}
B + β − clip {gi, B}

≤ 1 +
|gi − g′

i|
B + β − clip {gi, B}

(7)

≤ 1 +
∆1

B + β − clip {gi, B}

≤ 1 +
∆1

β + dist (gi, CB)
.

By Theorem 5, we conclude that the compressorMB,β is maxg∈G
∑d

i=1 log
(
1 + ∆1

β+dist(gi,CB)

)
-

differentially private for all gradients g ∈ G.

Proof of Corollary 1 (Bounded DP with Bounded Sensitivity). By Theorem 2, we conclude that
the compressor MB,β is maxg∈G

∑d
i=1 log

(
1 + ∆1

β+dist(gi,CB)

)
- differentially private for all gra-

dients g ∈ G. It turns out that this bound can be relaxed, and we start the derivation from Eq.
(7):

(7) ≤ 1 +
|gi − g′

i|
β

.

Now consider the coordinate collection of the gradient pair, by Theorem 5, it remains to bound
d∑

i=1

log

(
1 +
|gi − g′

i|
β

)
≤ d log

[
1

d

d∑
i=1

(
1 +
|gi − g′

i|
β

)]
[Jensen’s inequality]

≤ d log

(
1 +

∆1

dβ

)
≤ ∆1

β
[follows from log(1 + x) < x when x > 0.]
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Proof of Proposition 2 (Equivalent as a Composition). Let g ∈ Rd be an arbitrary gradient. To
show this proposition, it is enough to show P {[MB,β ]i(g) = 1} = P {[MB,flip ◦MB,0]i(g) = 1}
holds for any i ∈ [d].

To see this,

P {[MB,flip ◦MB,0]i(g) = 1} = P {[MB,0]i(g) = 1&MB,flip(1) = 1}
+ P {[MB,0]i(g) = −1&MB,flip(−1) = −1}

=
B + clip {gi, B}

2B

2B + β

2(B + β)
+

B − clip {gi, B}
2B

β

2(B + β)

=
B + β + clip {gi, B}

2(B + β)

= P {[MB,β ]i(g) = 1} .

D.3 CONVERGENCE RESULTS

Proposition 3 (Bounded Random Variable Variance Bound). Given a random variable X and a
clipping threshold B > 0, if µ = E [X] ∈ [−B,B], then var (clip (X,B)) ≤ var (X) = σ2.

Proof of Proposition 3.

var (clip (X,B)) :=E
[
(clip(X,B)− E [clip(X,B)])

2
]

=E
[
(clip(X,B)− E [X])

2
]
− (E [clip(X,B)−X])

2

≤E
[
(clip(X,B)− E [X])

2
]
. (8)

For ease of exposition, we assume X admits a probability density function f(x). General distribu-
tions of X can be shown analogously. It follows that

E
[
(clip(X,B)− E [X])

2
]

=

∫ ∞

B

(B − µ)2f(x)dx+

∫ B

−B

(x− µ)2f(x)dx+

∫ −B

−∞
(−B − µ)2f(x)dx

≤
∫ ∞

B

(x− µ)2f(x)dx+

∫ B

−B

(x− µ)2f(x)dx+

∫ −B

−∞
(x− µ)2f(x)dx

= var (X) = σ2. (9)

Combining (8) and (9), we conclude var (clip (X,B)) ≤ var (X) = σ2.

D.3.1 SUB-GAUSSIAN AND HEAVY-TAILED DISTRIBUTIONS

Proof of Theorem 3 (Light and Heavy-tailed Sign Error). Recall that

ĝmi(t) =

{
[MB,β ]i

(
1
n

∑n
j=1 g

j
mi(t)

)
if m ∈ N (t);

∗ if m ∈ B(t),

where ∗ is an arbitrary value in {-1,1}. For any client m ∈ [M ] and any coordinate i ∈ [d], let

Xmi = 1{m∈S(t)}1{ĝmi ̸=sign( 1
M

∑M
m=1 gmi)},

and X̃mi = 1{m∈S(t)}1{[Mβ ]i(
1
n

∑n
j=1 gj

mi(t)) ̸=sign( 1
M

∑M
m=1 gmi)}.

Notably, if m ∈ B(t), then it is possible that Xmi ̸= X̃mi; otherwise, Xmi = X̃mi.

Without loss of generality, we assume the true aggregation is negative, i.e., sign (∇iF (w(t))) =
−1. The case when sign (∇iF (w(t))) = 1 can be shown analogously.
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For ease of exposition, we drop a condition of w(t) in the conditional probability expressions unless
otherwise noted. It holds that

P

{
sign

(
1

M

M∑
m=1

ĝmi

)
̸= −1

}
≤ P

{
M∑

m=1

Xmi ≥
|S(t)|
2

}

= P

 ∑
m∈N (t)

X̃mi +
∑

m∈B(t)

Xmi ≥
|S(t)|
2


= P

 ∑
m∈N (t)

X̃mi ≥
|S(t)|
2
−

∑
m∈B(t)

Xmi


≤ P


M∑

m=1

X̃mi ≥
|S(t)|
2
−

∑
m∈B(t)

Xmi

 . (10)

Next, we bound
∑M

m=1 X̃mi and
∑

m∈B(t) Xmi separately.

When the system adversary is static, i.e., the system adversary does not know S(t), it corrupts
clients independently of S(t). Hence,∑

m∈B(t)

Xmi ≤
∑

m∈B(t)

1{m∈S(t)}. (11)

We know that if τ(t) ≤ 2
p2 log

6
c , then

∑
m∈B(t) 1{m∈S(t)} ≤ 2

p2 log
6
c . Otherwise, with probability

at least 1− c
6 , it is true that

∑
m∈B(t) 1{m∈S(t)} ≤ 3

2pτ(t).

On the other hand, when the system adversary is adaptive, it chooses B(t) based on S(t). In partic-
ular, if |S(t)| ≤ τ(t), then the adversary chooses B(t) = S(t). Otherwise, i.e., |S(t)| > τ(t), the
adversary chooses an arbitrary subset of S(t). In both cases, it holds that∑

m∈B(t)

Xmi ≤
∑

m∈B(t)

1{m∈S(t)} ≤ min{τ(t), |S(t)|} ≤ τ(t). (12)

For ease of exposition, we first focus on adaptive adversary and will visit the static adversary towards
the end of this proof. Observe that |S(t)| =

∑M
m=1 1{m∈S(t)}. Let Ỹmi = X̃mi −

1{m∈S(t)}
2 .

Conditioning on the mini-batch stochastic gradients g1
mi, · · · , gn

mi, we have

E
[
Ỹmi | g1

mi, · · · , gn
mi

]
= E

[
X̃mi | g1

mi, · · · , gn
mi

]
− p

2
=

p

2B + 2β
clip

 1

n

n∑
j=1

gj
mi, B

 .

Taking expectation over g1
mi, · · · , gn

mi, we get

E
[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]]
= E

[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 g

j
mi

2B + 2β

]
+

pgmi

2B + 2β

= E

[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 g

j
mi

2B + 2β

]
+

pgmi

2B + 2β
.

(13)

It turns out that E
[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 gj

mi

2B+2β

]
is small:

1

p
E

[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 g

j
mi

2B + 2β

]

=
BP

{
1
n

∑n
j=1 g

j
mi ≥ B

}
−BP

{
1
n

∑n
j=1 g

j
mi ≤ −B

}
2B + 2β︸ ︷︷ ︸

(A)

+
E
[
− 1

n

∑n
j=1 g

j
mi1{| 1n

∑n
j=1 gj

mi|≥B}
]

2B + 2β︸ ︷︷ ︸
(B)

.
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We bound (A) and (B) for sub-Gaussian and heavy-tailed noise separately.

First, for sub-Gaussian distributions with Assumption 4, we have

(A) ≤ B

2B + 2β
P

 1

n

n∑
j=1

gj
mi − E

 1

n

n∑
j=1

gj
mi

 ≥ B − E

 1

n

n∑
j=1

gj
mi


≤ B

2B + 2β
exp

(
−n (B − gmi)

2

2σ2
mi

)

≤ B

2B + 2β
exp

(
−nϵ20B

2
0

2σ2
mi

)
≤1

2
exp

(
−n

2

)
[since ϵ0 >

σ

B0
],

and

(B) =
E
[
− 1

n

∑n
j=1 g

j
mi1{| 1n

∑n
j=1 gj

mi|≥B}
]

2B + 2β

=

∫ −B

−∞ P
{

1
n

∑n
j=1 g

j
mi < t

}
dt−

∫ +∞
B

P
{

1
n

∑n
j=1 g

j
mi > t

}
dt

2B + 2β

≤

∫ −B

−∞ P
{

1
n

∑n
j=1 g

j
mi − E

[
1
n

∑n
j=1 g

j
mi

]
< t− E

[
1
n

∑n
j=1 g

j
mi

]}
dt

2B + 2β

≤

∫ −B

−∞ exp
(
− (t−gmi)

2

2σ2
mi/n

)
dt

2B + 2β
[Mill’s ratio Gordon (1941)]

=
1

2B + 2β

∫ −B

−∞

[
− 2σ2

mi/n

2 (t− gmi)

] [
−2 (t− gmi)

2σ2
mi/n

]
exp

[
− (t− gmi)

2

2σ2
mi/n

]
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≤ σ2
mi/n

(2B + 2β) (B + gmi)
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−∞

[
−2 (t− gmi)

2σ2
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]
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(
− (t− gmi)

2

2σ2
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)
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≤ σ2
mi

nϵ0B0(2B + 2β)
exp

(
−nϵ20B

2
0

2σ2
mi

)
≤ σ2

mi

2nϵ20B
2
0

exp

(
−nϵ20B

2
0

2σ2
mi

)
[β > 0 and B := (1 + ϵ0)B0 > ϵ0B0]

≤ 1

2n
exp

(
−n

2

)
,

where the last inequality follows from the choice of ϵ0 > σ
B0

. Combining the bounds of (A) and

(B), we get E
[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 gj

mi

2B+2β

]
≤ p exp

(
−n

2

)
. Hence,

E
[
Ỹmi

]
≤ p exp

(
−n

2

)
+

pgmi

2B + 2β
. (14)
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Second, for heavy-tailed distributions with Assumption 5, we have

(A) ≤ B

2B + 2β
P

 1

n

n∑
j=1

gj
mi − E

 1

n

n∑
j=1

gj
mi

 ≥ B − E
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n

n∑
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gj
mi


≤ B

2B + 2β
P


∣∣∣∣∣∣

n∑
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 n∑
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gj
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∣∣∣∣∣∣
p′

≥ np′
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′


≤ B
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E
[∣∣∣∑n

j=1 g
j
mi − E

[∑n
j=1 g

j
mi

]∣∣∣p′]
np′ |B − gmi|p

′ [Markov’s inequality]

≤
B
∑n

j=1 E
[∣∣∣gj

mi − E
[
gj
mi

]∣∣∣p′]
+B

(∑n
j=1 E

[∣∣∣gj
mi − E

[
gj
mi

]∣∣∣2]) p′
2

(2B + 2β)np′ |B − gmi|p
′︸ ︷︷ ︸

Rosenthal-type inequality Merlevède & Peligrad (2013)

≤1

2

nMp′ + n
p′
2 Mp′

np′ |B − gmi|p
′ [M

1
2
2 ≤M

1
p′

p′ for p′ ≥ 4]

≤ Mp′

n
p′
2 ϵp

′

0 Bp′

0

≤ 1

n
p′
2

and

(B) =
E
[
− 1

n

∑n
j=1 g

j
mi1{| 1n

∑n
j=1 gj

mi|≥B}
]

2B + 2β

=
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−∞ P
{

1
n

∑n
j=1 g

j
mi < t

}
dt−

∫ +∞
B

P
{

1
n

∑n
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j
mi > t

}
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2B + 2β

≤
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−∞ P
{

1
n

∑n
j=1 g

j
mi − E

[
1
n

∑n
j=1 g

j
mi

]
< t− E

[
1
n

∑n
j=1 g

j
mi

]}
dt

2B + 2β

≤ 1

2B + 2β

∫ −B

−∞

2Mp′

n
p′
2 |t− gmi|p

′ dt [similar argument as in (A)]

≤ 1

2B + 2β

1

ϵp
′−1

0 Bp′−1
0 (p′ − 1)n

p′
2

≤ 1

(p′ − 1)n
p′
2

≤ 1

n
p′
2

,

where the last inequality follows from the choice of ϵ0 >
M

1
p′
p′

B0
. Combining the bounds of (A) and

(B), we get E
[
E
[
Ỹmi | g1

mi, · · · , gn
mi

]
− p

1
n

∑n
j=1 gj

mi

2B+2β

]
≤ 2p

n
p′
2

. Hence,

E
[
Ỹmi

]
≤ 2p

n
p′
2

+
pgmi

2B + 2β
. (15)

Let us consider two mutually complement events E1 and E2:

E1 :=

{
1

2(B + β)

M∑
m=1

clip

(
1

n

n∑
j=1

gj
mi, B

)
− E

[
1

2(B + β)

M∑
m=1

clip

(
1

n

n∑
j=1

gj
mi, B

)]
≤ c0

4(B + β)

√
M

}
,

E2 :=

{
1

2(B + β)

M∑
m=1

clip

(
1

n

n∑
j=1

gj
mi, B

)
− E

[
1

2(B + β)

M∑
m=1

clip

(
1

n

n∑
j=1

gj
mi, B

)]
>

c0
4(B + β)

√
M

}
.
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We have

P

{
M∑

m=1

X̃mi ≥
|S(t)|
2
− τ(t)

}
≤ P

{
M∑

m=1

Ỹmi ≥ −τ(t) | E1

}
+ P {E2} . (16)

By Proposition 3, we know that

var

clip

 1

n

n∑
j=1

gj
mi, B

 ≤ var

 1

n

n∑
j=1

gj
mi

 ≤ 1

n
var
(
g1
mi

)
=

1

n
σ2
mi ≤

1

n
σ2.

In addition, clip
(

1
n

∑n
j=1 g

j
mi, B

)
is bounded and thus sub-Gaussian. Hence, we have

P {E2} ≤ exp

(
−

c20M
4

2Mσ2

n

)
.

Since c0 ≥
√

8σ2

n log 6
c , we have P {E2} ≤ c

6 .

For the first term in the right-hand side of Eq. (16), we have

P

{
M∑

m=1

Ỹmi ≥ −τ(t) | E1

}

=P


M∑

m=1

Ỹmi − E

[
M∑

m=1

Ỹmi | g1
mi, · · · , gn

mi

]
≥ −τ(t)− E

[
M∑

m=1

Ỹmi | g1
mi, · · · , gn

mi

]
︸ ︷︷ ︸

(C)

| E1


Recall that E

[
Ỹmi | g1

mi, · · · , gn
mi

]
= p

2B+2β clip
(

1
n

∑n
j=1 g

j
mi, B

)
. We have

(C) | E1 = −τ(t)− p

2B + 2β

M∑
m=1

clip

 1

n

n∑
j=1

gj
mi, B

 | E1
≥ −τ(t)− E

 p

2B + 2β

M∑
m=1

clip

 1

n

n∑
j=1

gj
mi, B

− pc0
4(B + β)

√
M

= −τ(t)−
M∑

m=1

E
[
Ỹmi

]
− pc0

4(B + β)

√
M{

≥ −τ(t)−Mp exp
(
−n

2

)
− pM

2(B+β)∇iF (w(t))− pc0
4(B+β)

√
M [Sub-Gaussian Noise]

≥ −τ(t)− 2Mp

n
p′
2

− pM
2(B+β)∇iF (w(t))− pc0

4(B+β)

√
M [Heavy-tailed Noise]

Recall that ∇iF (w(t)) < 0. When pM
2(B+β) |∇iF (w(t))| ≥ τ(t) + Mp exp

(
−n

2

)
+ pc0

2(B+β)

√
M

(sub-Gaussian noise) or when pM
2(B+β) |∇iF (w(t))| ≥ τ(t) + 2Mp

n
p′
2

+ pc0
2(B+β)

√
M (heavy-tailed

noise), we get

P

{
M∑

m=1

Ỹmi ≥ −τ(t) | E1

}
≤P

{
M∑

m=1

Ỹmi − E

[
M∑

m=1

Ỹmi | g1
mi, · · · , gn
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]
≥ pc0

4(B + β)

√
M | E1

}

≤ exp

(
− p2c20
8(B + β)2

)
≤3− 5c

6
,
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where the last inequality holds because c0 ≥
√

8(B+β)2

p2 log 6
3−5c .

Therefore, for adaptive system adversary, choosing c0 = max

{√
8σ2

n log 6
c ,
√

8(B+β)2

p2 log 6
3−5c

}
,

we conclude that if pM
2(B+β) |∇iF (w(t))| ≥ τ(t) + Mp exp

(
−n

2

)
+ pc0

2(B+β)

√
M (sub-Gaussian

Noise) or if pM
2(B+β) |∇iF (w(t))| ≥ τ(t) + 2Mp

n
p′
2

+ pc0
2(B+β)

√
M (heavy-tailed noise), then

P

{
sign

(
1

M

M∑
m=1

ĝmi

)
̸= sign (∇iF (w(t))) | w(t)

}
≤ 1− c

2
.

Otherwise, P
{
sign

(
1
M

∑M
m=1 ĝmi

)
̸= sign (∇iF (w(t))) | w(t)

}
≤ 1.

It remains to show the case for static adversary. When τ(t) ≤ 2
p2 log

6
c , we bound Eq. (10) as

P


M∑

m=1

X̃mi ≥
|S(t)|
2
−

∑
m∈B(t)

Xmi

 ≤P
{

M∑
m=1

X̃mi ≥
|S(t)|
2
− τ(t)

}
.

When τ(t) > 2
p2 log

6
c , we bound Eq. (10) as

P


M∑

m=1

X̃mi ≥
|S(t)|
2
−

∑
m∈B(t)

Xmi

 ≤P
{

M∑
m=1

X̃mi ≥
|S(t)|
2
− 3p

2
τ(t)

}
+

c

6
.

The remaining proof follows the above argument for adaptive adversary.

Proof of Theorem 4 (Sub-Gaussian and Heavy-tailed Convergence Rate). By Assumption 2,
we have

F (w(t+ 1))− F (w(t)) ≤ ⟨∇F (w(t)), w(t+ 1)− w(t)⟩+ L

2
∥w(t+ 1)− w(t)∥2

= −η
d∑

i=1

|∇F (w(t))i|1{g̃i=sign (∇iF (w(t)))}

+ η

d∑
i=1

|∇F (w(t))i|1{g̃i ̸=sign (∇iF (w(t)))} +
Ld

2
η2

= −η∥∇F (w(t))∥1 + 2η

d∑
i=1

|∇F (w(t))i|1{g̃i ̸=sign (∇iF (w(t)))} +
Ld

2
η2,

where ∇F (w(t))i is the i-th coordinate of ∇F (w(t)). Then, by conditioning on parameter w(t),
we get

E
[
F (w(t+ 1))− F (w(t))

∣∣w(t)]
≤ E

[
−η∥∇F (w(t))∥1 + 2η

d∑
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2
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2
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|∇F (w(t))i|P {g̃i ̸= sign (∇F (w(t))i)} .

Recall that Ξ1(n) = 2(B + β) exp
(
−n

2

)
, and Ξ2(n) =

4(B+β)

n
p′
2

. Define
A1 =

{
|∇iF (w(t))| ≥ 2(B+β)

pM τ(t) + c0√
M

+ 2(B + β) exp
(
−n

2

)}
;

A2 =

{
|∇iF (w(t))| ≥ 2(B+β)

pM τ(t) + c0√
M

+ 4(B+β)

n
p′
2

}
.

22



Under review as a conference paper at ICLR 2023

In the following proof, we denote A = A1, Ξ(n) = Ξ1(n) for sub-Gaussian noise and A = A2,
Ξ(n) = Ξ2(n) for heavy-tailed noise.

We now have two cases:

First, when the system adversary is adaptive or the system adversary is static but with τ(t) ≤
2
p2 log

6
c , then

E
[
F (w(t+ 1))− F (w(t))

∣∣w(t)]
= −η∥∇F (w(t))∥1 +
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2
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2
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2
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+

c0√
M

+ Ξ(n)
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≤ −ηc∥∇F (w(t))∥1 +
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2
η2 + 2ηd

c0√
M

+ 4ηd
(B + β)τ(t)

pM
+ 2ηdΞ(n).

Therefore, by Assumption 1, we have

F ∗ − F (w(0)) ≤ E [F (w(T ))− F (w(0))]

≤ −ηc
T−1∑
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E [∥∇F (w(t))∥1] +
η2LdT

2
+ 2ηdT

c0√
M

+ 2ηdTΞ(n) + 4ηd
(B + β)

∑T−1
t=0 τ(t)
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.

Rearrange the inequality and plug in η = 1√
dT

, we get

ηc

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤ F (w(0))− F ∗ +
η2LdT

2
+ 2ηdT

c0√
M

+ 2ηdTΞ(n) + 4ηd
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pM

1

T
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E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
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T
+

L
√
d

2
√
T
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c0√
M

+ 4d
(B + β)

∑T−1
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pTM
+ 2dΞ(n)

]
.

Second, when the system adversary is static with τ(t) > 2
p2 log

6
c , follow a similar proof as above,

we get

1

T

T−1∑
t=0

E [∥∇F (w(t))∥1] ≤
1

c

[
(F (w(0))− F ∗)

√
d√

T
+

L
√
d

2
√
T

+ 2d
c0√
M

+ 6d
(B + β)

∑T−1
t=0 τ(t)

TM
+ 2dΞ(n)

]
.

D.3.2 GAUSSIAN DISTRIBUTION

Proof of Corollary 2 (Gaussian Tail Sign Errors). Most of the proofs are the same with Theorem
3. We start from Eq. 13.
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It turns out that E
[
E
[
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mi, · · · , gn
mi

]
− p

1
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∑n
j=1 gj

mi

2B+2β

]
is small:
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p
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1
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j
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)
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n
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j
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]
2B + 2β︸ ︷︷ ︸

(C)

.

(17)

We have,
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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2
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,

where (A) and (B) follow because of Mill’s ratio Gordon (1941).

Combining (A), (B), and (C), we get
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√
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√
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where the last inequality follows because ϵ0 > σ
B0

and B := B0 + ϵ0B0 > ϵ0B0.
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For the first term in the right hand side of Eq. (16), we have

P

{
M∑
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}
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mi, · · · , gn

mi

]
≥ −τ(t)− E

[
M∑

m=1
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√
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√
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Recall that ∇iF (w(t)) < 0. When Mp
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4
√
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we get

P

{
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}
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6
,

where the last inequality holds because c0 ≥
√

8(B+β)2

p2 log 6
3−5c .

The remaining proof follows the arguments in Theorem 3.

Proof of Corollary 3 (Gaussian Tail Convergence Rate). This proof follows from Theorem 4.
We also consider two cases here.

First, when the system adversary is adaptive or the system adversary is static but with τ(t) ≤
2
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6
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Second, when the system adversary is static with τ(t) > 2
p2 log

6
c , plug in |∇iF (w(t))| ≥
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D.4 BOUNDED STOCHASTIC GRADIENTS

Proof of Corollary 4 (Bounded Gradient Sign Errors). This proof follows from Theorem 3. No-
tably, if we choose B = B̃, clip

(
1
n

∑n
j=1 g

j
mi, B

)
= 1

n

∑n
j=1 g

j
mi by Assumption 6. Thus, the

bias introduced by the tail bound will be gone.

For the first term in the right-hand side of Eq. (16), we have
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Recall that∇iF (w(t)) < 0. When |∇iF (w(t))| ≥ 2(B+β)τ(t)
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, we get
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,

The remaining proof also follows the arguments in Theorem 3.

Proof of Corollary 5 (Bounded Gradient Convergence Rate). This proof follows from Theorem
4. We also consider two cases here.
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First, when the system adversary is adaptive or the system adversary is static but with τ(t) ≤
2
p2 log

6
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Second, when the system adversary is static with τ(t) > 2
p2 log

6
c , plug in |∇iF (w(t))| ≥

3(B+β)τ(t)
M + c0√

M
, we get
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E EXPERIMENT DETAILS

E.1 DATASETS AND PREPROCESSING

• MNIST LeCun et al. (2009). MNIST contains 60, 000 training images and 10, 000 testing images
of 10 classes.

• CIFAR-10 Krizhevsky et al. (2009). CIFAR-10 contains 50, 000 training images and 10, 000
testing images of 10 classes.

Implementation. We build our codes upon PyTorch Paszke et al. (2019). We run all the experiments
with 4 GPUs of type Tesla P100 and 1 GPU of type RTX 3060.

E.2 PARAMETERS

Communication rounds: 500 for both datasets in the section of client sampling. For the other
sections, 80 and 300 communication rounds for MNIST and CIFAR-10, respectively.

Dataset partition: Clients’ local datasets are evenly partitioned into balanced subsets. However,
the distributions are non-IID since they follow Dirichlet distribution with a concentration α.

We consider a constant learning rate in all cases, and the choices are tuned through grid search.
Specifically, η ∈ {0.0001, 0.001, 0.01, 0.1}, B ∈ {0.001, 0.01, 0.1, 1}. Although our theory indi-
cates the algorithm is not sensitive to mini-batch size, we set a large batch size n = 256 for both
datasets.

Universal β-Stochastic Sign SGD FedAvg
Learning Rate η Mini-batch Size n Hidden Units B Local Epochs

MNIST 0.01 256 64 0.01 1
CIFAR-10 0.01 256 200 0.01 1

Table 4: Hyperparameters

E.3 BYZANTINE BASELINE COMPARISONS

In this section, we reuse the network model and parameter settings in Table 4, set local epoch to be
1 for non-signed aggregation rules. We evaluate the algorithms on MNIST dataset and partition in
a same manner as Appendix.E.1. We consider a total of 100 clients under full-participation with 20
Byzantine clients. The aggregation-rule-specific parameters are illustrated in the following part. All
the experiment results are collected with 5 repetitions.

We compare our β stochastic sign compressor with Krum Blanchard et al. (2017), geometric median
Chen et al. (2017), centered clipping Karimireddy et al. (2021) under three adversary models, in-
cluding label flipping, inner product manipulation Xie et al. (2020), the ”A little is enough” Baruch
et al. (2019). Following Karimireddy et al. (2021), τ is set to be 10 in centered clipping since
momentum is switched off. We first illustrate the adversary models below:
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• Label flipping: Suppose original label is x, the adversary will replace it with 9− x;
• Inner Product Manipulation: The adversaries send − γ

|N |
∑

i∈N ∇f(wi), instead of honest
messages, to mislead the parameter server, where ϵ is the strength of the adversary. Let γ = 0.1.

• A Little is Enough: The adversaries estimate the benign clients’ mean µN and standard deviation
σN . Then, they will construct new messages as µN + zσN and upload to the parameter server,
where z is the strength of the adversary. We choose z according to Baruch et al. (2019):

z = max
z

(
Φ(z) <

M − s

M

)
,

where z = ⌊M2 + 1⌋ − |B(t)|, and Φ is the cumulative distribution function of standard normal
distribution. For us, z ≈ 0.5.

In Section 7, we present the performance of our compressor under flipping sign attacks. For sign-bit
messages, this is the worst-case scenario as adversaries’ messages cannot escape a binary value.
Otherwise, it will be detected by PS and filtered out.

We consider a milder condition than the sign flipping attacks for a fair of competition. We allow
adversaries to manipulate the mini-batch stochastic gradient but assume an honest compressor that
will send out the correctly compressed corrupted messages to PS.
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Figure 4: Comparisons with baselines: Krum, Geometric Median, Centered Clipping under Label
Flipping, Inner Product Manipulation, and the ”A Little is Enough” Adversaries,
where 1-STO refers to our β stochastic sign compressor with β = B = 0.01.

Throughout the experiments, it is observed that our β stochastic sign compressor outperforms all
other baseline algorithms when β = 0 or β = B. Notably, our compressor saves up to 31x commu-
nications and is differentially private when β > 0.
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