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A GAF-S AND GAF-G IMPLEMENTATION DETAILS

In this section, we provide the implementation details for the two tampering strategies in our Grid-
Aligned Forgery (GAF) attack: GAF-G (Generative) and GAF-S (Splicing).

GAF-G (Generative). For the GAF-G attack, we perform text-level generative tampering in three
steps. First, we detect a set of candidate text boxes in the image and select those that lie in pristine
(non-tampered) regions based on the existing tamper mask. For each selected box, we estimate the
local background color from surrounding pixels, remove the original text via inpainting, and then
render a newly generated random string using a PIL-based text renderer. To ensure JPEG-consistent
artifacts, each box is aligned to the JPEG grid: both the top-left coordinate and the box size are
snapped to multiples of 8 pixels. Only the aligned region is then re-compressed using a randomly
sampled JPEG quality between 75 and 95, producing realistic block-level DCT signatures. Finally,
the tamper mask is updated by marking exactly the modified pixels as forged.

GAF-S (Splicing). For the GAF-S attack, we perform splicing by selecting a target text box from
the current document and a source box from a different document. Both boxes are aligned to the
JPEG 8 × 8 grid, ensuring that all boundaries match JPEG block edges. We remove the original
content from the target region by filling it with an estimated background color and then paste the
aligned source patch into this location. This produces a spliced image where the inserted content
blends with the target background and remains consistent with JPEG compression structure. As in
GAF-G, the tamper mask is updated to mark exactly the pasted (forged) area, while all other regions
are left unchanged.

B ABLATION STUDY ON FFDN ROBUSTNESS

To assess whether the improved robustness of FFDN (Chen et al., 2025) against our proposed PRC
attacks arises from its architectural enhancements, we conduct an ablation study focusing on its
Wavelet-like Frequency Enhancement (WFE) module. FFDN builds upon the DTD (Qu et al.,
2023) architecture, with the addition of Vision Enhancement Module (VEM) and WFE module
to strengthen its feature representation and cross-modal integration. By removing WFE, FFDN can
be isolated into a configuration that effectively corresponds to a DTD base model with an added
VEM for enhanced RGB–DCT feature fusion. Therefore, we evaluated FFDN under two sets of
conditions: (1) FFDN w/ WFE and (2) FFDN w/o WFE, and the results are reported in Table 2.
As shown, removing WFE has a negligible effect on the predictive performance of the model, both
in the absence and presence of forgery attacks. This strongly suggests that FFDN’s VEM is solely
responsible for the additional robustness of FFDN against the PRC attacks and therefore its VEM
could be considered as one viable solution against the PRC attacks. However, it is worth mention-
ing that while the addition of VEM allows FFDN to not trigger false positives, its performance still
degrades significantly with F1-scores dropping by 12.4%, 22.95%, and 9.7% on TestingSet, FCD,
and SCD respectively under PRC attacks. This suggests that PRC can still serve as a general robust-
ness test for evaluating model resilience to distribution shifts, even when models are not explicitly
vulnerable to grid-alignment biases that trigger false positives.

Table 2: Performance comparison on FFDN (Chen et al., 2025) model with and without the WFE
module in FFDN. Results show that the WFE module FFDN model has a negligible effect on the
model predictions.

TestingSet FCD SCD
Detection Model Attack Type Forgery Type P R F ASR/FPA P R F ASR/FPA P R F ASR/FPA

No Attack DocTamper Original 0.873 0.940 0.956 - 0.927 0.905 0.916 - 0.805 0.819 0.812 -
PRC DocTamper Original 0.783 0.723 0.752 0.001 0.766 0.661 0.710 0.002 0.747 0.723 0.735 0.001

No Attack Copy-Move 0.830 0.801 0.815 0.112 0.888 0.943 0.915 0.024 0.864 0.889 0.876 0.062
GAF-CM Copy-Move 0.633 0.495 0.549 0.399 0.369 0.273 0.314 0.645 0.667 0.566 0.613 0.346

No Attack Generative 0.890 0.567 0.693 0.185 0.939 0.952 0.946 0.004 0.899 0.623 0.736 0.122
GAF-G Generative 0.871 0.483 0.621 0.257 0.932 0.904 0.918 0.027 0.866 0.520 0.650 0.218

No Attack Splicing 0.808 0.654 0.723 0.247 0.903 0.942 0.922 0.018 0.821 0.720 0.766 0.194

FFDN w/ WFE

GAF-S Splicing 0.686 0.462 0.552 0.422 0.544 0.421 0.475 0.477 0.675 0.465 0.550 0.421

No Attack DocTamper Original 0.875 0.933 0.953 - 0.930 0.900 0.915 - 0.813 0.802 0.808 -
PRC DocTamper Original 0.794 0.714 0.747 0.001 0.759 0.659 0.705 0.002 0.755 0.705 0.729 0.001

GUCM Copy-Move 0.827 0.791 0.809 0.118 0.893 0.939 0.915 0.024 0.863 0.873 0.868 0.074
GAF-CM Copy-Move 0.618 0.471 0.534 0.417 0.360 0.262 0.303 0.657 0.648 0.547 0.593 0.369

GUG Generative 0.889 0.557 0.695 0.193 0.941 0.948 0.944 0.004 0.898 0.606 0.724 0.137
GAF-G Generative 0.868 0.470 0.609 0.272 0.932 0.890 0.910 0.033 0.860 0.500 0.632 0.240

GUS Splicing 0.780 0.610 0.695 0.288 0.908 0.937 0.922 0.020 0.795 0.681 0.734 0.228

FFDN w/o WFE

GAF-S Splicing 0.650 0.422 0.511 0.465 0.539 0.412 0.467 0.482 0.638 0.428 0.512 0.462
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C ASR PERFORMANCE ACROSS IOU THRESHOLDS

In Figure 6, we present Attack Success Rate (ASR) results across varying IOU thresholds (τ ) for all
evaluated models under GAF-S, GAF-G, and GAF-CM attacks. Several key observations emerge
from this analysis. First, it is evident that the performance decline under GAF-CM attack increases
consistently as the IOU threshold becomes more lenient (higher τ values). This behavior is ob-
served across all models, with one notable exception: ADCD-Net demonstrates substantially higher
robustness, maintaining ASR ≈ 0 at thresholds τ ≤ 0.1 and achieving the lowest ASR values even
at τ = 0.5 across all three datasets. Overall, CAT-Net, DTD, and DocForgeNet exhibit the highest
vulnerability to this attack, showing similar degradation patterns across all datasets.

Under GAF-S attack, models exhibit largely similar behavior to GAF-CM, with a notable shift in
relative robustness: RTM consistently demonstrates the strongest resistance in this scenario, outper-
forming ADCD-Net. This suggests that the splicing-based manipulation strategy exposes different
architectural weaknesses compared to copy-move operations, with RTM’s design being particularly
effective at handling splicing-based manipulations.

Figure 6: Attack Success Rate (ASR) vs. IOU threshold (τ ) under GAF attacks. Higher ASR
indicates more successful evasion of detection. Results demonstrate that ASR increases with more
lenient thresholds across all models, with GAF-CM and GAF-S proving substantially more effective
than GAF-G, particularly on FCD split.
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Finally, GAF-G attacks show a more gradual increase in ASR as the IOU threshold becomes more
lenient, with most models maintaining strong performance under strict thresholds (τ < 0.1). This
pattern is particularly pronounced on the FCD split, where GAF-G proves notably less effective
compared to other test splits: most models, except DTD and DocForgeNet, maintain robust perfor-
mance even at τ = 0.5. This aligns with our findings in Section 5.2, where GAF-G demonstrated
substantially lower effectiveness compared to GAF-CM and GAF-S attacks.
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