A APPENDIX

Anonymous code and FU-SAR dataset for review is available at https://anonymous.4open.science/r/ICLR24-4617.

Table A1: **SAR ship datasets since 2017.** We use our method to tackle small-class problems in SAR ship classification, and only FUSAR-Ship and SRSDD-v1.0 meet our criteria. Datasets marked by "†" means it is deprecated due to low resolution, and "*" means insufficient categories.

Dataset	Year	Category	Instances	Width (px)	Resolution (/px)		
OpenSARShip2 (Li et al., 2017) [†]	2017	16	19,360	30-120	22m		
SAR-Ship-Dataset (Wang et al., 2019)*	2019	1	59,535	256	3m-25m		
AIR-SARShip-2.0 (Wang et al., 2023)*	2020	1	461	1000	1m, 3m		
FUSAR-Ship (Hou et al., 2020)	2020	15	6,358	512	$\geq 0.5 m$		
HRSID (Wei et al., 2020)*	2020	1	16,951	800	0.5m, 1m, 3m		
LS-SSDD-v1.0 (Zhang et al., 2020)*	2020	1	6,015	16,000	20m		
Official SSDD (Zhang et al., 2021a)*	2021	1	2,456	190-160	1m–15m		
SRSDD-v1.0 (Lei et al., 2021)	2021	6	2,884	512	1m		
RSDD-SAR (Congan et al., 2022)*	2022	1	10,263	512	2m-20m		
xView3-SAR (Paolo et al., 2022) [†]	2023	2	243,018	512	10m		

Table A2: **Sample numbers of FUSAR dataset.** The FUSAR dataset faces problems of insufficient test samples and vaguely defined classes. Categories marked by "†" means it is deprecated due to insufficient test samples, and "*" means being vaguely defined. Results are shown in classification F1-Score, and "IM21K" indicates pre-trained ResNet50 on the IM21K dataset.

			-					
Category	Cargo	DiveVessel [†]	Dredger	Fishing	$HighSpeedCraft^{\dagger}$	LawEnforce [†]	Other*	Passenger [†]
Test Sample	325	1	14	120	3	3	412	6
Category	PortTender ^{†*}	Reserved ^{†*}	\mathbf{SAR}^\dagger	Tanker	Tug [†]	Unspecified*	$WingInGrnd^{\dagger \ast}$	
Test Sample	1	9	2	34	9	14	2	

A.1 DATASETS

FUSRS dataset. As listed in Table A1, most of the SAR ship datasets either only contain a broad "ship" category without subcategories, or are of low resolution (≥ 10 m). Only FUSAR-Ship and SRSDD v1.0 datasets met our resolution and category criteria. However, as shown in Table A2, FUSAR-Ship had issues with insufficient test samples and vaguely defined categories. To address this, we merged the ship categories from SRSDD v1.0 and FUSAR-Ship, removed categories with fewer than 10 test samples (to the "others" category), and named this new dataset as FUSRS (Table 1). Our experiments showed that with vote-ensembling, the test results' standard deviation on FUSRS significantly converged to ± 3 in F1-Score, indicating that FUSRS can serve as a robust benchmark. We will open-source this FUSRS dataset and benchmarking codes.

ORS dataset. To train the ORS LoRA, we need an ORS image-caption dataset. Due to the lack of such datasets in existing ORS research, we collected one from the DOTAv2 and the ShipRSImageNet datasets. We introduce the preprocessing of DOTAv2 and ShipRSImageNet respectively here: The DOTAv2 dataset is a large-scale aerial detection dataset, which contains 50,356 ship/harbor instances. We crop out the ship/harbor instances as image patches, and label these patches with simple captions like "ORS, optical remote sensing, <ship/harbor>". The ShipRSImageNet dataset is an ORS ship dataset for detection, and its annotation files contain extensive information (*i.e.*, the coordinates of ships, the correlation between ships, the weather conditions, etc.). We extract key information from the detection annotation files and use GPT-4 to organize that information into image descriptions. This ORS image-caption dataset will be open-sourced.

A.2 IMPLEMENTATIONS

Detailed implementations. LoRA training is trained with batch size 32. ORS LoRA was trained for 200 epochs and SAR LoRA for 100, with a cosine annealing scheduler starting at a learning rate of 1×10^{-3} . We fine-tune ControlNet for 30 epochs with batch size 4, using a learning rate of 4×10^{-5} . We keep other training settings the same as ControlNet. For the recognition model, we fine-tune SAR data based on an ImageNet-21K pre-trained ResNet50. We use 4 NVIDIA RTX 3090 or Tesla V100 GPUs with a batch size 128. We use SGD with a learning rate of 0.1, momentum of 0.9, and weight decay of 1×10^{-4} . The scheduler was cosine annealing with a warm-up of 500 iterations from 1×10^{-4} , and the model was trained for 100 epochs.

Generation configs During inference, we empirically set hyper-parameters for LoRA generation as: CFG=7.5, sampling steps 30, ControlNet combination weight 0.4 when training epochs ≥ 10 , and weight 0.8 when training epochs ≤ 10 . We adopt ControlNet "balanced mode" as the original implementation in GitHub.

Table A3: Rank of 2LoRA. We compare how different LoRA ranks affect the generated image quality in the second stage (adaptation stage).

Rank	Params (M)	Cargo		Fishing		Tanker		Dredger	
	1 4141115 (111)	FID↓	F1↑	FID↓	F1↑	FID↓	F1↑	FID↓	F1↑
4	0.0797	0.9042	0.9351	0.9290	0.7088	1.0714	0.6296	1.1296	0.8214
8	0.1594	0.8504	0.9338	0.8970	0.7092	1.1492	0.5981	1.0079	0.8142
16	0.3188	0.8479	0.9338	0.9301	0.7063	1.0227	0.6182	0.9670	0.8214
32	0.6377	0.8519	0.9344	0.9094	0.7138	1.0907	0.6038	1.0714	0.8000

A.3 THE VALUE OF RANK.

The rank of the LoRA component controls the number of learnable parameters. As shown in Table A3, we compare the FID and F1-Score of 2LoRA generated images with different LoRA ranks. Considering the overall performance of three minor classes, we set the rank as 16 in our experiment.

Dredger

All

A.4 JUSTIFICATION

We formulate w_p as follows: given cluster distribution N(C, P) where $C = \{c_i\}$ is the categories, and $P = \{p_i\}$ is clusters. When generating image for *i*-th category, the bias score of i-th category in j-th cluster is calculated as $b_{i,j} = N(c_i, p_j) / \sum_i N(c_i, p_j)$. For example, in Table A4, bias score for "tanker" ship in cluster p_1 is 239/3153, and in cluster p_2 is 4/436. We thus could obtain a bias score vector $\mathbf{b} = [b_i]$. For example, in Table A4, the bias vector for the "tanker" ship is $\mathbf{b} = [239/3153, 4/436, 23/569, 89/2590]$. We then use the L1 normalization of b as our LoRA combination weights.

Table A4: Clusters with K=4.								
Category	p_1	p_2	p_3	p_4				
Cargo	1,513	153	417	1,299				
Other	876	128	76	843				
Fishing	354	149	45	368				
Tanker	239	4	23	89				

171

3,153

2

436

8

569

91

2,690

We justify that pLoRA is less prone to bias problems than 2LoRA. Take the "tanker" ship as an example. In the 2LoRA, the training samples of the "tanker" ship only occupy 4.5% of the dataset. If learning a shared SAR LoRA (as in 2LoRA), the knowledge of "tanker" ship will be severely overwritten by major classes such as "cargo": as shown in Table 2, the "tanker" ship got a high FID of 1.1024 as compared with "cargo" whose FID is 0.8479.

Suppose we set K=4 in pLoRA. In that case, we decompose the training data into 4 prototypes, respectively containing a=[239, 4, 23, 89] "tanker" instances. We first calculate the bias score of "tanker" ship in each cluster by sample number/cluster sample number: for cluster p_1 , the bias score for "tanker" is 239/3153=0.076; for cluster p_2 , the bias score is 4/436=0.009. Similarly, we can get 23/569=0.040 and 89/2690=0.033 for p_3 and p_4 respectively. The resulting bias score vector is b=[0.076, 0.009, 0.040, 0.033]. Compare the 3-rd and the 4-th clusters: though "tanker" ship got

Figure A1: **Illustration of Clusters.** The four clusters captures distinct visual representations, such as "fast-moving", "small" ships or "foggy" weather.

more training samples in 4-th prototype training (89>23), the 4-th cluster suffers more from data imbalance problem for "tanker" (0.033<0.040). Thus, we should rely more on the 3-rd prototype, and reduce dependence on the 4-th prototype. We apply L1 normalization on b to achieve this. The resulting normalized bias-score $\hat{b}=[0.47, 0.05, 0.26, 0.20]$, where the 3-rd prototype is put a clearly higher score. We take the \hat{b} as our prototype weights w_p .

A.5 PROMPT CONSTRUCTION

We show GPT-4 chat history at this anonymous link (https://anonymous.4open.science/r/ICLR24-4617).

A.6 ILLUSTRATION OF CLUSTERS

We show clustered samples in Figure A1.