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Experimental Approach

Abstract

In order to evaluate attacks and -> Select / deep neural networks to evaluate adversarial model-to-model transferability.
defenses in - the field of o AlexNet[1, SqueezeNet2), VGG-1613], ResNet-504,

adversarial machine learning,
ImageNet remains one of the DenseNet-1211s), ViT-Bie), and ViT-Liel.

Key Findings

-> Most of the adversarial examples that achieve (untargeted) model-to-model transferability (i.e., adversarial examples misclassified by the target model) are misclassified into one of
the top-{2,3,4,5} categories of its own (unperturbed) source image.
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=> |n the context of ImageNet, most of the misclassifications made by deep neural networks for adversarial examples that achieve model-to-model adversarial transferability are
genuine misclassifications that semantically make sense.

-> Adversarial examples are not only misclassified into categories that are within the same collection in the ImageNet hierarchy, those categories are also, more-often-than-not, within
the top-3/5 predictions obtained for the (unperturbed) source image counterparts.




