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ABSTRACT

Supervised fine-tuning (SFT) is a standard approach to adapting large language
models (LLMs) to new domains. In this work, we improve the statistical efficiency
of SFT by selecting an informative subset of training examples. Specifically, for
a fixed budget of training examples, which determines the computational cost of
fine-tuning, we determine the most informative ones. The key idea in our method is
to select examples that maximize the Hessian of the log-likelihood of the LLM. We
approximate it efficiently by linearizing the LLM at the last layer using multinomial
logistic regression models. Our approach is computationally efficient, analyzable,
and performs well empirically. We demonstrate this on several problems, and back
our claims with both quantitative results and an LLM evaluation.

1 INTRODUCTION

Large language models (LLMs) (Bommasani et al., 2021) have emerged as general purpose tools
that can match human performance in both zero-shot and few-shot settings (Radford et al., 2019b;
Brown et al., 2020). LLMs are typically trained in three stages (Ouyang et al., 2022): pre-training on
a large corpus of diverse text, supervised fine-tuning in the domain of interest (Wei et al., 2022), and
alignment to human preferences (Ouyang et al., 2022; Rafailov et al., 2023). The main challenge in
all stages is the sheer scale of LLMs, which increased by four orders of magnitude in just four years:
from 117 million parameters in GPT-2 (2019) to 1.76 trillion parameters in GPT-4 (2023).

We focus on supervised fine-tuning (SFT) (Wei et al., 2022) in this work. A standard approach in
SFT is to optimize a low-rank adapter (LoRA) (Hu et al., 2022). The key idea in LoRA is to add
low-rank matrices to the matrices in the transformer layers. During fine-tuning, only the low-rank
matrices are adapted. Therefore, the computational cost of LoRA is linear in the rank of the low-rank
matrices, which naturally trades off the computational cost for the quality of the approximation.
The simplicity of LoRA made it popular in practice and thousands of different adapters have been
trained (Mangrulkar et al., 2022). We propose a complementary approach that selects a subset of
most informative training examples for fine-tuning. The computational cost of fine-tuning is linear in
the size of the chosen subset. Therefore, as in LoRA, the number of chosen examples naturally trades
off the computational cost of fine-tuning for quality.

The idea of selecting better training examples for SFT is not new and has been explored extensively
before. Coverage-based approaches select sufficiently diverse examples to form coresets Phillips
(2017); Tukan et al. (2021). Quality-based sampling prioritizes weeding out low-value or unhelpful
examples Wenzek et al. (2019); Muenchigoff et al. (2023). In ASK-LLM Sachdeva et al. (2024), a
proxy LLM is prompted with a potential training example and asked whether the example should be
used for training. We review all of these approaches in detail in Appendix A. The main difference in
our work is that we choose training examples based the log-likelihood of the LLM and thus take their
information value into account.

∗Work done while interning at Amazon.
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Without loss of generality, we view training examples in fine-tuning as sentences, each being a
sequence of tokens. We want to select the most informative n sentences, which determines the
computational cost of fine-tuning. We do this based on the SFT objective. Specifically, note that the
last layer of the LLM is a product of next token probabilities. Each probability is represented by a
multinomial logistic regression model (Bishop, 2006), where the feature vector is the embedding
of all previous tokens. Therefore, the problem of selecting the most informative sentences for fine-
tuning can be viewed as a variant of an optimal design (Pukelsheim, 1993; Stufken & Yang, 2012)
for multinomial logistic regression, where tokens in a sentence are chosen jointly based on their
information value. We derive an efficient approximation to the Hessian of the LLM log-likelihood,
which represents how informative a set of sentences is, and then optimize a lower bound on its log
determinant to find the most informative sentences.

We make the following contributions.

(1) We establish a connection between the supervised fine-tuning objective of LLMs and a product of
multinomial logistic regression models in Section 2.

(2) We propose our method in Section 3. Our main technical contribution is a computationally-
efficient approximation to the log determinant of the Hessian of the log-likelihood. More specifically,
all matrices in this optimization problem are d× d, where d is the size of transformer embeddings, as
opposing to dL× dL, where L is the number of distinct tokens. We solve the optimization problem
greedily (Nemhauser et al., 1978), using the monotonicity and submodularity of the objective. At a
high level, our algorithm greedily chooses sentences with tokens that are jointly most informative.
This is in a stark contrast to treating each sentence as a single data point (Das et al., 2024; Mukherjee
et al., 2024; Thekumparampil et al., 2024; Liu et al., 2024; Scheid et al., 2024), which we compare to
in Section 5.

(3) We analyze our method in Section 4. The main result of our analysis is that the prediction error of
our model decreases at rate Õ(dL/

√
n), where n is the number of chosen sentences. The dependence

on n is similar to other recent results in the literature (Zhu et al., 2023; Mukherjee et al., 2024;
Thekumparampil et al., 2024).

(4) We evaluate our method empirically in Section 5. Our experiments are both synthetic and on
real-world data with GPT models. We observe that our approach leads to lower prediction errors than
the baselines. We also conduct a qualitative evaluation of learned GPT models by a larger LLM.

2 PROBLEM FORMULATION

We have a dataset of N sentences indexed by i ∈ [N ]. A sentence i consists of Mi tokens indexed by
j ∈ [Mi]. Let yi,j be the j-th token in sentence i. Each token yi,j ∈ [L] belongs to a vocabulary of
size L. We represent sentence i by the sequence of its tokens,

yi = (yi,1, yi,2, . . . , yi,Mi
),

and denote the entire dataset by D = { yi}i∈[N ]. To model the evolution of each sentence token-
by-token, we define a vector xi,j ∈ Rd that captures the relevant history up to the j-th token in
sentence i. In the simplest setting, xi,j may be a word embedding of yi,j−1. In a large language
model, xi,j could be the output of the pre-logit layer that encodes contextual information about
tokens yi,1, yi,2, . . . , yi,j−1.

Objective: Our objective is to select an n sized subset S ⊂ [N ] of sentences from the dataset D and
subsequently fine-tune a model using this selected set S. For fine-tuning an LLM we use pre-logit
layer embeddings of sentences to compute this subset S.

We denote the parameter matrix by Θ∗ ∈ Rd×L. Its ℓ-th column θ∗ℓ ∈ Rd corresponds to the last-layer
LLM parameters for token ℓ ∈ [L], i.e., Θ∗ = (θ∗ℓ )ℓ∈[L]. Under a softmax model, the probability of
observing token ℓ at position (i, j) is given by

p
(
ℓ
∣∣xi,j ; Θ∗

)
=

exp
(
θ∗⊤ℓ xi,j

)
L∑

k=1

exp
(
θ∗⊤k xi,j

) , (1)
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Algorithm 1 Greedy Optimal Design for Autoregressive Models.

1: Input: Sentences {xi = (xi,j)
Ni
j=1}Ni=1

2: Design matrix V ← Id
3: Selected sentences S ← ∅
4: for t = 1, . . . , n do

5: k ← argmax
i∈[N ]\S

log det

V +

Mi∑
j=1

xi,jx
⊤
i,j


6: S ← S + {k}

7: V ← V +

Mk∑
j=1

xk,jx
⊤
k,j

8: Output: S

Under such a softmax model, the goal of an autoregressive model is to learn an estimate of the
unknown parameter matrix Θ∗ by minimizing the negative log-likelihood

L(Θ) = − 1

N

∑
i∈[N ]

Mi∑
j=1

log p(yi,j |xi,j ; Θ). (2)

Our objective is to select an n sized subset S ⊂ [N ] of sentences from the dataset D and thereafter
compute the maximum likelihood estimate (MLE) of the parameter Θ∗ on the subset S, i.e.,

min
Θ
LS(Θ),

whereLS(Θ) := − 1

n

∑
i∈S

Mi∑
j=1

log p(yi,j | xi,j ; Θ). (3)

When applied to an LLM fine-tuning, we use the linearized model (with the pre-logit embeddings)
only to select the subset S and instead of computing an MLE estimate Θ̂, we train all the parameters
of the network.

3 ALGORITHM

The Fisher information matrix Fisher (1922) corresponds to the Hessian of the negative log likelihood
with respect to Θ and is given by

∇2LS(Θ) = − 1

n

∑
i∈S

Mi∑
j=1

∇2 log p(yi,j | xi,j ; Θ) . (4)

The Hessian∇2LS(Θ) can be used to derive the covariance matrix of the MLE of LS(Θ). Therefore,
it can be used for both uncertainty quantification and information gathering. Specifically, a high-
probability confidence interval on model parameters Θ∗ can be typically derived using∇2LS(Θ∗)
(Abbasi-Yadkori et al., 2011; Lattimore & Szepesvari, 2019). In this work, we optimize∇2LS(Θ∗)
by maximizing all of its eigenvalues with respect to S, which can be tractably approached as
log det(∇2LS(Θ∗)) maximization.

This problem is hard for three reasons. First, ∇2LS(Θ∗) is a dL× dL times matrix. Therefore, for
practical values of d ≈ 1000 and L > 100 000, it is computationally costly to optimize it. Second,
the exact maximization is impossible because Θ∗ is unknown. To address these two challenges, we
derive a lower bound on log det(∇2LS(Θ)) that only involves d× d matrices and is Θ-independent.
We present the lower bound in the following lemma.
Lemma 3.1. Consider the loss function described in (3). Then the Hessian of the loss is given by

∇2LS(Θ) =
1

n

∑
i∈S

Mi∑
j=1

(
diag(p(yi,j |xi,j ; Θ))− p(yi,j |xi,j ; Θ)p(yi,j |xi,j ; Θ)⊤

)
⊗ xi,jx

⊤
i,j ,

3



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

where ⊗ is the tensor product. Moreover, if

diag(p(yi,j |xi,j ; Θ))− p(yi,j |xi,j ; Θ)p(yi,j |xi,j ; Θ)⊤⪰γ

holds for some γ > 0, then

log det(∇2LS(Θ)) ≥ d log det
(γ
n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)
.

Proof. The lemma is proved in Section 3.3.

Therefore, instead of maximizing log det(∇2LS(Θ)), we can maximize
log det(

∑
i∈S
∑Mi

j=1 xi,jx
⊤
i,j). The last challenge is that we have a combinatorial optimiza-

tion problem, choose a subset of n sentences out of N . Since log det is a monotone submodular
function, we solve this problem greedily (Nemhauser et al., 1978).

3.1 GREEDY OPTIMAL DESIGN

Our greedy algorithm is presented in Algorithm 1. We refer to the optimized Hessian as a design
matrix, because the matrix is used to design the set of chosen sentences. The design matrix is
initialized at V = Id (line 2) and the subset of selected sentences is initialized at S = ∅ (line 3). In
each step t ∈ [n], the algorithm selects the sentence, from the remaining sentences [N ] \ S, that
maximizes log det of the design matrix of the previously chosen sentences (line 5). This sentence
has the highest information gain. Intuitively, it contains the most diverse embeddings x⊤

i,j since
log det(V ) can be viewed as the logarithm of the volume of an ellipsoid represented by V , and this is
maximized when the lengths of all its axes increase equally. After the sentence is chosen, it is added
to the current subset of sentences S (line 6) and

∑Mi

j=1 xk,jx
⊤
k,j is added to the design matrix V (line

7).

Note that Algorithm 1 selects one sentence at a time and each such iteration involves computing
log det of all remaining sentences (line 5). Such an implementation is clearly impractical. In
Section 3.2, we present a computationally faster algorithm that takes advantage of the submodularity
of log det and parallelism to produce the same subset of sentences as in Algorithm 1.

We are concerned with two variants of Algorithm 1 in this work. In Section 4, we analyze it in
the idealized setting where the pre-logit layer of the LLM is treated as a fixed feature vector. After
Algorithm 1 collects n samples, we use maximum likelihood estimation to compute the estimated
model parameters

Θ̂ = argmin
Θ

LS(Θ) , (5)

where LS(Θ) is defined in (3). We argue that Θ̂ approaches Θ∗ as the sample size n increases.

When applied to LLMs, Algorithm 1 collects n sentences that are used to fine-tune an actual LLM.
The embedding of the j-th token in sentence i is the output of the pre-logit layer of the LLM, denoted
by xi,j .

3.2 FAST GREEDY OPTIMAL DESIGN

Now we present a more computationally-efficient variant of Algorithm 1 that exploits the submod-
ularity of log det and parallelism (Algorithm 2). Simply put, we implement line 5 in Algorithm 1
more efficiently, which is correspond to line 13 in Algorithm 2.

The key idea is to cache information gains, where gi is the cached information gain for sentence
i ∈ [N ]. The gains are initialized as gi ←∞ (line 4), updated in line 11, and we act greedily with
respect to them in line 13. If the gains were always updated, note that line 13 is equivalent to line 5 in
Algorithm 1, because the matrix V is a constant in step t.

The key insight to efficient updates is that log det is monotone and submodular. Therefore, the gains
cannot increase as V is updated and thus do not have to be recomputed when they are smaller than
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Algorithm 2 TokenOD: Fast Implementation of Algorithm 1

1: Input: Sentences {xi = (xi,j)
Ni
j=1}Ni=1, batch size B

2: Design matrix V ← Id
3: Selected sentences S ← ∅
4: Cached information gains g ←∞N

5: for t = 1, . . . , n do
6: gmax ← 0
7: for b = 1, . . . , N/B do
8: B ← {(b− 1)B + 1, . . . , bB}
9: for all i ∈ B do

10: if gi > gmax then

11: gi ← log det

V +

Mi∑
j=1

xi,jx
⊤
i,j

−
log det(V )

12: gmax ← max {gi}i∈B + {gmax}
13: k ← argmaxi∈[N ]\S gi
14: S ← S + {k}

15: V ← V +

Mk∑
j=1

xk,jx
⊤
k,j

16: Output: S

the highest tracked gain gmax at any step t ∈ [n]. We exploit this in line 10 and update gmax in line
12. Finally, we update gi in batches of size B (line 9). This can be done in parallel and results in an
additional O(B) speedup. We use this implementation in our experiments and refer to it as TokenOD.

3.3 PROOF OF LEMMA 3.1

In Section B Proposition B.1 we show that

∇2LS(Θ) =
1

n

∑
i∈S

Mi∑
j=1

(
diag(p(yi,j |xi,j ; Θ))− p(yi,j |xi,j ; Θ)p(yi,j |xi,j ; Θ)⊤

)
⊗ xi,jx

⊤
i,j

Now suppose for some γ > 0, diag(p(yi,j |xi,j ; Θ))− p(yi,j |xi,j ; Θ)p(yi,j |xi,j ; Θ)⊤⪰γ. Then

∇2LS(Θ) ⪰ 1

n

∑
i∈S

Mi∑
j=1

γIL ⊗ xi,jx
⊤
i,j

where IL is the L dimensional identity matrix. Therefore we have

det(∇2LS(Θ)) ≥ det
(
IL ⊗

γ

n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)
Now using the fact that for A ∈ Rp×p and B ∈ Rq×q, det(A ⊗ B) = det(A)p det(B)q (See
Proposition 7.1.11. in Bernstein (2009)) we have

det(∇2LS(Θ)) ≥ det(IL)
L det

(γ
n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)d
≥ det

(γ
n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)d
Finally

log det(∇2LS(Θ)) ≥ d log det
(γ
n

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j

)
,

completes the proof.
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4 ERROR BOUND

Our main Theorem 4.3 provides a O(1/
√
n) bound on the maximum prediction error of the estimated

parameter Θ̂ constructed using the samples generated by Algorithm 1. The maximum prediction error
is given by the following expression

max
i∈[N ]

Mi∑
j=1

∥Θ⊤
∗ xi,j − Θ̂⊤xi,j∥2.

Note that the maximum prediction error measures ∥ · ∥2, i.e., it is the sum of prediction errors over
the whole vocabulary, at the j-th token in sentence i, and therefore captures the error across all the L
words. We make the following assumption on the feature vectors and the unknown parameters.
Assumption 4.1. Assume that ∀i ∈ [N ], j ∈ [Mi], ∥xi,j∥ ≤ 1. Further we assume that the true
model parameter Θ∗ satisfies Θ∗ ∈ B where

B := {Θ = (θℓ)ℓ∈[L] : θℓ ∈ Rd, ∥θℓ∥2 ≤ 1,Θ1 = 0}

Further we make a diversity assumption on our dataset. Given any arbitrary subset S ⊆ D, we define

Σ̄S = σ0Id +
∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j , (6)

Assumption 4.2. There exists a constant κ ≥ 1 such that

log det(Id +

Mi∑
j=1

Σ
−1/2
t−1 xi,jx

⊤
i,jΣ

−1/2
t−1 ) ≤ κ log det(Id +

MIt∑
j=1

Σ
−1/2
t−1 xIt,jx

⊤
It,jΣ

−1/2
t−1 )

holds for any i ∈ St−1 and t ∈ [n].
Theorem 4.3. Suppose Assumption 4.1 and Assumption 4.2 hold. Then for any δ > 0, under the
softmax model in (1), with probability 1− δ, the maximum prediction error of Θ̂ can be bounded as
follows:

max
i∈[N ]

Mi∑
j=1

∥Θ⊤
∗ xi,j − Θ̂⊤xi,j∥2 ≤ CMe2L

√√√√σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0 )

√
dκ(d+ log(L/δ))

n
.

where C > 0 is some global constant.

4.1 PROOF SKETCH

Suppose S be the subset of n sentences produced by TokenOD. With Θ̂ = (θ̂ℓ)ℓ∈[L] and Θ∗ =
(θ∗ℓ )ℓ∈[L] we can decompose the error as follows:

max
i∈[N ]

Mi∑
j=1

∥Θ̂⊤xi,j −Θ⊤
∗ xi,j∥2 ≤ max

i∈[N ]

Mi∑
j=1

∑
ℓ∈[L]

|(θ̂ℓ − θ∗ℓ )
⊤xi,j |

≤ max
i∈[N ]

Mi∑
j=1

∑
ℓ∈[L]

∥θ̂ℓ − θ∗ℓ ∥Σ̄S∥xi,j∥Σ̄−1
S
≤
( ∑

ℓ∈[L]

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)
︸ ︷︷ ︸

I

max
i∈[N ]

Mi∑
j=1

∥xi,j∥Σ̄−1
S︸ ︷︷ ︸

II

(7)

where Σ̄S = σ2
0I +

∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j . Term I corresponds to the error between the true parameter Θ∗

and the MLE estimate Θ̂ while term II measures the maximum curvature of Σ̄S .

Let us first consider term II. Under Assumption 4.2 we show that term II is bounded as follows.

6
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Lemma 4.4. Suppose Assumption 4.2 holds and S be the subset of sentences produced by Algorithm 1,

Σ̄S =
∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j is the covariance matrix constructed using the samples in S and M =

maxi∈[N ] Mi. Then

max
i∈[N ]

Mi∑
j=1

∥xi,j∥2Σ̄−1
S
≤

σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0 )

κdM

n
. (8)

Next we need to control term I in (7). To do this we relate term I to the difference between the loss
and its first order approximation as below

LS(Θ̂)− LS(Θ
∗)− ⟨∇LS(Θ∗), Θ̂−Θ∗⟩

(a)

≤ −⟨∇LS(Θ∗), Θ̂−Θ∗⟩

= −
L∑

ℓ=1

∇ℓLS(Θ∗)
⊤(θ̂ℓ − θ∗ℓ )

(b)

≤
L∑

ℓ=1

∥∥∇ℓLS(Θ∗)
∥∥
Σ̄−1

S
∥θ̂ℓ − θ∗ℓ ∥Σ̄S (9)

where the dot product between matrices A and B is defined as ⟨A,B⟩ =
∑

i,j Ai,jBi,j . Inequality
(a) follows from LS(Θ̂) ≤ LS(Θ

∗) and (b) follows from Cauchy Schwarz inequality. Next we lower
bound LS(Θ̂)− LS(Θ

∗)− ⟨∇LS(Θ∗), Θ̂−Θ∗⟩ by showing that the loss is strongly convex at Θ∗

in the following lemma.

Lemma 4.5. Suppose Assumption 4.1 holds and Θ̂ be the MLE solution as in (5) such that Θ̂ ∈ B.
Then, there exists some α < 1 such that

LS(Θ̂)− LS(Θ
∗)− ⟨∇LS(Θ∗), Θ̂−Θ∗⟩

≥ e−2α

L

(∑
ℓ

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)2

.

Using Lemma 4.5 and (9) we have

e−2α

L

(∑
ℓ

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)2

≤
L∑

ℓ=1

∥∥∇ℓLS(Θ∗)
∥∥
Σ̄−1

S
∥θ̂ℓ − θ∗ℓ ∥Σ̄S

≤ sup
ℓ∈[L]

∥∥∇ℓLS(Θ∗)
∥∥
Σ̄−1

S

(∑
ℓ

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)
and therefore(∑

ℓ

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)
≤ e2αL sup

ℓ∈[L]

∥∥∇ℓLS(Θ∗)
∥∥
Σ̄−1

S
≤ e2L sup

ℓ∈[L]

∥∥∇ℓLS(Θ∗)
∥∥
Σ̄−1

S

The next lemma bounds supℓ∈[L]

∥∥∇ℓLS(Θ∗)
∥∥
Σ̄−1

S
.

Lemma 4.6. With probability 1− δ the gradient of the loss satisfies the following bound:

sup
ℓ∈[L]

∥∥∇ℓLS(Θ∗)
∥∥
Σ̄−1

S
≤ C

√
d+ log(L/δ) (10)

where C > 0 is some global constant.
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Figure 1: Comparison of maximum and mean prediction errors on synthetic token vectors. The x
axis shows the number of sentences selected to train the model. The y axis shows the corresponding
error averaged over 20 runs.
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Figure 2: Comparison of maximum and mean prediction errors on word2vec token vectors. The x
axis shows the number of sentences selected to train the model. The y axis shows the corresponding
error averaged over 20 runs.

Combining (10), (9), (8) and (7) we have with probability 1− δ

max
i∈[N ]

Mi∑
j=1

∥Θ⊤
∗ xi,j − Θ̂⊤xi,j∥2

≤ CMe2L

√√√√σ−2
0 log

(
1 +

σ2
0nM
d

)
log(1 + σ2

0)

√
dκ(d+ log(L/δ))

n
,

where C > 0 is some constant, thus completing the proof.

5 EXPERIMENTS

In this section, we empirically evaluate our algorithm and compare it to baselines. We experiment
with a synthetic autoregressive prediction task in Section 5.1, with pre-trained word embeddings in
Section 5.2, and with GPT-2 on text dataset in Section 5.3.

5.1 SYNTHETIC EXPERIMENTS

We start with a simplified setup where each token ℓ ∈ [L] is associated with a vector sampled from a
standard normal distribution, xℓ ∼ N (0, Id). The number of tokens is L = 20 and d = 10. The first
token in each sentence is sampled uniformly at random from all tokens. Each next token is sampled
the softmax model in (1), where all entries of Θ∗ are sampled i.i.d. from N (0, 1).

We compare TokenOD to several baselines. Uniform selects sentences uniformly at random.
SentenceOD selects sentences greedily by maximizing log det of a sentence-level Fisher infor-
mation matrix. We construct sentence embeddings by summing up the token vectors in the sentences,

8
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Uniform
First Citizen: 
The gods grant that! Might but thee I shall lose that crown, 
My life and services 
Will thereto witness good Rome and that thou 
In token of my deeds: both your grace 
My life and all that is lost 
My life, which never 
My life and services 
At any time when 
I saw My life; which never 
My life, which never 
My life, which never 
My life, which never 
My life, which never 
My life shall have seen; being now dishonour'd by my life, 
And howled in that life, but beheld In doing the thing 
I said most honourably; 
Being criminal, which never 
My life, which never 
My life did incur the life-service, 
My life which never 
My life service i' the life; giving life to both parts

TokenOD

First Citizen: The wars for this matter, and more are open'd, 
More are open and more ungovern'd are the people. I mean 
to drop them all in theirs and, to have them yielded. Let 
them have no more sons, but when they do, They will bring 
in for consul; and therefore, in time, For certain care 
whether they will or no respect. You sigh when you see 
them 

BAGILIA: So it must fall, I know, and love you well. 

CORIOLANUS: Hail, soldiers! 

MENENIUS: You weary of the tribunes' suit: Why, patience! 
what care they of? 

COMINIUS: Are bound to you: The gods begin to mock you, 
and to blame Your ignorance, which finds not till you have 
The stamp of that banishment.

Figure 3: Text generated by fine-tuned GPT-2 models on sentences selected by Uniform and TokenOD.
The latter is more coherent.

xi =
∑Mi

j=1 xi,j , where xi denotes the vector for sentence i ∈ [N ]. DensitySampling (Sachdeva
et al., 2024) uses inverse propensity sampling to select sentences based on a score computed by a ker-
nel density estimate. ClusteredSampling (Axiotis et al., 2024) clusters the sentence embeddings
using k-means clustering and then samples them proportionally to their distance to the closest mean
plus the mean’s loss. See Appendix A for more details on the baselines.

All methods are evaluated as follows. After they choose the set of sentences S , Θ̂ is estimated using
multinomial logistic regression. We evaluate the methods by two metrics: maximum prediction error

Emax(n) = max
i∈[N ]

Mi∑
j=1

∥Θ⊤
∗ xi,j − Θ̂⊤xi,j∥2

and mean prediction error

Emean(n) =
1

N

∑
i∈[N ]

Mi∑
j=1

∥Θ⊤
∗ xi,j − Θ̂⊤xi,j∥2 .

The maximum error measures the performance on the most challenging sentence, while the mean
error measures the average performance on all sentences. Note that we bound the maximum error of
TokenOD in Theorem 4.3.

We plot the errors for our synthetic problem in Figure 1 and observe that TokenOD performs better
than all baselines in both metrics. In most regimes, TokenOD is much more sample efficient than the
best baseline. As an example, the lowest maximum error of the best baseline, which is attained at
n = 2000, is attained by TokenOD at n = 1000.

5.2 PRE-TRAINED WORD EMBEDDINGS

The main difference in this experiment comparing to Section 5.1 is that we use pre-trained word2vec
embeddings Mikolov et al. (2013) of dimension 300. We randomly select L = 20 words from the
word2vec vocabulary and project their embeddings randomly to d = 10 dimensions. The vector
associated with token ℓ ∈ [L] is xℓ. The rest is the same as in Section 5.1. We report the maximum
and mean prediction errors of all methods in Figure 2. Again TokenOD outperforms all baselines
from Section 5.1 in both metrics. As an example, the lowest mean error of the best baseline, which is
attained at n = 2000, is attained by TokenOD at n = 1500.
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Table 1: Comparison of TokenOD against various baseline data sub-sampling strategies when fine-
tuning GPT-2 on the Shakespeare dataset. Entries show the fraction of times TokenOD was preferred
over the corresponding baseline. All the fractions being greater than 0.5 implies that TokenOD
outperforms all the baselines

Sampling strategy Number of sentences sub-sampled for finetuning
TokenOD vs baseline 100 200 500 1000 2000 5000

vs Uniform 0.80 0.56 0.60 0.59 0.64 0.74
vs DensitySampling 0.61 0.66 0.68 0.62 0.54 0.84
vs AskLLM 0.59 0.52 0.68 0.59 0.68 0.74

5.3 EXPERIMENTS WITH GPT-2

Model and Datasets: We experiment with a tiny-Shakespeare corpus (Karpathy, 2015). Our corpus
D is its subset of 10 000 sentences. We actively select n ∈ {50, 100, 200, 500, 1 000, 2 000, 5 000}
sentences and then fine-tune a GPT-2 model (Radford et al., 2019a) on them. We use the Hugging
Face implementation of GPT-2 (Wolf et al., 2020).

Baselines: We experiment with DensitySampling (Sachdeva et al., 2024), AskLLM (Sachdeva et al.,
2024), and Uniform sampling baselines. See Appendix A for a detailed description of the baselines.
We choose DensitySampling because it outperforms other methods on language model fine-tuning
tasks (Sachdeva et al., 2024).

LLM-based Evaluation: Unlike in Sections 5.1 and 5.2, the ground truth model parameter is not
available, and thus the maximum and mean prediction errors cannot be computed. Therefore, we
judge the quality of the fine-tuned model using a state-of-the-art LLM. Specifically, we generate
new text using the fine-tuned model by prompting it with 100 different phrases from the original
dataset. Then we compare the generated text for two methods, say TokenOD and DensitySampling,
by asking a larger GPT-4o model that serves as a judge. We use the following prompt:

You are a judge of Shakespeare text.
<tag1>text1</tag1>
<tag2>text2</tag2>
Respond 2 if the text inside <tag2> is more fluent Shakespeare
text than the text inside <tag1>. Respond 1 otherwise.

The prompt does not name the methods, and targets our perceived benefit (improved language).
We use a state-of-the-art LLM GPT-4o to judge. The text generated by the compared methods is
randomized: one randomly-chosen method replaces text1 and the other text2. We tested the LLM
judge and it chooses the first position with probability 0.54, which is slightly higher than 0.5 for a
position-unbiased judge. When comparing sentences generated by two approaches, we use the same
initial phrase in each side-by-side comparison. One example of the outputs generated by the two
models is in Figure 3. Clearly the model trained on uniformly selected sentences generates worse
text, which is repetitive. In contrast, the text generated through TokenOD is more coherent and similar
to the Shakespeare dataset. In Table 1, we report the percentage of TokenOD being preferred to the
three different baselines DensitySampling, AskLLM, and Uniform for various samples sizes n. For
all sample sizes, the text generated by the fine-tuned model on TokenOD sentences is preferred to
fine-tuned models on sentences generated by the baselines.

6 CONCLUSIONS

In this work we developed a method to sample training examples for a fixed budget, that greedily
maximizes the log determinant of the Hessian of the log likelihood. We subsequently provide a
faster version of the algorithm by leveraging sub-modularity of the problem and provide bounds on
the estimation error on the model trained using the collected samples. Finally through experiments
on synthetic as well as real world data we evaluate our methods and show that they perform better
with lower prediction errors and better quality of sentences generated by the subsequently fine-tuned
models.
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A RELATED WORKS

Algorithm 3 Inverse Propensity Sampling (IPS) via Kernel Density Estimation (KDE) Sachdeva et al.
(2021)

1: Dataset D = {x1, x2, . . . , xN} of embeddings, sample size k, kernel k with corresponding LSH
familyH Coleman & Shrivastava (2020), hash range B, rows R, random seed s.

2: Ensure a subset of D of size k, sampled with probability p (see line 14).
3: Initialize KDE sketch S ← 0R×B .
4: Generate R independent hash functions h1, . . . , hR fromH with range B and random seed s.
5: for n← 1 to N do
6: for r ← 1 to R do
7: Sr, hr(xn) ← Sr, hr(xn) + 1

8: Initialize a list of scores S ← [ ].
9: for n← 1 to N do

10: score← 0
11: for r ← 1 to R do
12: score← score+ S[r, hr(xn)]

13: Append score
R to S .

14: Output: Select k elements from D with probability p = S∑
S (sampled without replacement).

Coverage-oriented approaches center on ensuring that a training set reflects the entire input distribution
as broadly as possible. One common strategy is cluster sampling Lee et al. (2023), which embeds
data points in a metric space (often via learned representations) and selects mutually distant examples
to form “coresets” Phillips (2017); Tukan et al. (2021). Related methods include prototype-based
sampling for vision Sorscher et al. (2022) and deduplication algorithms Abbas et al. (2023); Lee
et al. (2022); Tirmala et al. (2023) that remove near-duplicates or redundancies. More sophisticated
procedures—such as submodular optimization Chen et al. (2012); Indyk et al. (2014); Borsos et al.
(2020) and discrepancy minimization Karnin & Liberty (2019)—further refine coverage by balancing
representation across diverse data regions.

Quality-based sampling, in contrast, prioritizes weeding out low-value or unhelpful examples. A
prominent technique is perplexity filtering Wenzek et al. (2019); Muenchigoff et al. (2023), which
prefers samples with higher likelihood under a pretrained model, though this can inadvertently discard
valuable but rare text. Other approaches compute “uncertainty scores” via ensemble disagreement
Chitta et al. (2021); Meding et al. (2021) or examine whether examples are memorized Feldman &
Zhang (2020) or unlearnable Mindermann et al. (2022). The SVP algorithm Coleman et al. (2020);
Sachdeva et al. (2021) estimates each sample’s importance by its validation-loss variance, while EL2N
scores Paul et al. (2021) track a model’s difficulty in learning particular data points. These methods
all fit into a “score-and-sample” framework Hastings (1970), where the final selection depends on the
magnitude of each item’s quality score.

For a more detailed description see Sachdeva et al. (2024). Below we describe the two algorithms
proposed in Sachdeva et al. (2024) and used as benchmarks in Section 5.

ASK-LLM: In ASK-LLM Sachdeva et al. (2024), a proxy LLM is prompted with a potential training
example and asked whether the example should be used for training. More specifically, the proxy
LLM is provided the training example followed by the prompt ”Does the previous paragraph contain
informative signal for fine-tuning a large-language model? An informative datapoint should be
well-formatted, contain some usable knowledge of the world, and strictly NOT have any harmful,
racist, sexist, etc. content. OPTIONS: yes, no”. It then takes the softmax probability of the token
“yes” as the estimated data-quality score and sorts according to score to pick Top n data points.

Density sampling: Sachdeva et al. (2024) assumes access to embeddings from a pre-trained LLM.
Given a dataset D it uses a kernel k(x, y), to estimate the density using the following score.

score(y) =
∑
x∈D

kλ(x, y),
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where λ is a smoothing parameter and controls the scale of the data points’ effects. Density Sampling
then uses Inverse propensity sampling (IPS) to select items proportional to their re-weighted and
normalized inverse score. The algorithm as provided in Sachdeva et al. (2024) is summarized below.

Clustering Based Sensitivity Sampling: Axiotis et al. (2024) The method uses k-means clustering
and sensitivity sampling using the embedding representation of the data with respect to which the
model loss is measured and ensures that the sampled elements’ average loss corresponds to the
average loss of the whole dataset. The algorithm as presented in Axiotis et al. (2024) is summarized
below.

Algorithm 4 Clustering Based Sensitivity Sampling (D, k, ε,Λ, C) Axiotis et al. (2024)
1: Input: a dataset D partitioned into clusters C = (C1, . . . , Ck) with centers c1, . . . , ck and a

k-tuple of parameters Λ1, . . . ,Λk.
2: for e ∈ Ci do
3: Define ℓ̂(e) := ℓ(ci) and v(e) := ∥e− ci∥z .
4: Let s := ⌈ε−2(2 + 2ε/3)⌉. For e ∈ Ci define pe := ℓ̂(e)+Λiv(e)∑

i ΛiΦ(Ci,{ci})+
∑

x∈D ℓ̂(x)
and w(e) =

s−1p−1
e .

5: Compute a sample S of s points, picked independently following the distribution pe.
6: Output: the set S with weights w.

B GRADIENT AND HESSIAN OF THE LOSS

Proposition B.1. Consider the Loss function as defined in (3) and suppose assumption 4.1 holds.
Then the gradient and Hessian of LS are respectively given by

∇LS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

vec
(
xi,j ⊗

(
p(yi,j = ℓ|xi,j ; Θ)− 1(yi,j)

))
∇2LS(Θ) =

1

n

∑
i∈S

∑
j∈[Mi]

(
diag(p(yi,j |xi,j ; Θ))− p(yi,j |xi,j ; Θ)p(yi,j |xi,j ; Θ)⊤

)
⊗ xi,jx

⊤
i,j

Proof. Recall that the loss function is given by

LS(Θ) = − 1

n

∑
i∈S

∑
j∈[Mi]

∑
ℓ∈[L]

logP (yi,j = ℓ|xi,j ,Θ)δ(yi,j = ℓ)

= − 1

n

∑
i∈S

∑
j∈[Mi]

∑
ℓ∈[L]

log

 exp
(
(ΘTxi,j)ℓ

)
L∑

ℓ′=1

exp
(
(ΘTxi,j)ℓ′

)
 δ(yi,j = ℓ).

Now the loss can be re-written as

LS(Θ) =
−1
n

∑
i∈S

∑
j∈[Mi]

[
θTyi,j

xi,j − log

L∑
ℓ=1

exp(θTℓ xn)

]

Now note that

∂

∂θℓ
θTyi,j

xi,j = δ(yi,j = ℓ)xi,j
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and that,

∂

∂θℓ
log

L∑
ℓ′=1

exp(θTℓ′xi,j) =

∑L
ℓ′=1 exp(θ

T
ℓ′xi,j)× δ(yi,j = ℓ)xi,j∑L

k=1 exp(θ
T
k xi,j)

=

L∑
ℓ′=1

p(yi,j = ℓ′|xi,j ; Θ)δ(yi,j = ℓ)xi,j

= p(yi,j = ℓ|xi,j ; Θ)xi,j

Combining both we get
∂

∂θℓ
LS(Θ) =

−1
n

∑
i∈S

∑
j∈[Mi]

(
δ(yi,j = ℓ)− p(yi,j = ℓ|xi,j ; Θ)

)
xi,j

Therefore the gradient of the loss LS(Θ) with respect to Θ is given by

∇LS(Θ) =
−1
n

∑
i∈S

∑
j∈[Mi]

vec
(
xi,j ⊗

(
1(yi,j)− p(yi,j = ℓ|xi,j ; Θ)

))
(11)

where 1(yi,j) ∈ RL is a one-hot vector with the yi,j-th entry as 1 and ⊗ is the Kronecker product.

Next we compute the Hessian. Note that
∂2

∂θℓθℓ′
LS(Θ) =

−1
n

∂

∂θℓ

∑
i∈S

∑
j∈[Mi]

(
δ(yi,j = ℓ)− p(yi,j = ℓ|xi,j ; Θ)

)
xi,j

=
1

n

∑
i∈S

∑
j∈[Mi]

(
∂

∂θℓ′
p(yi,j = ℓ|xi,j ; Θ)

)
xT
i,j

=
1

n

∑
i∈S

∑
j∈[Mi]

p(yi,j = ℓ|xi,j ; Θ)
(
δ(ℓ = ℓ′)− p(yi,j = ℓ|xi,j ; Θ)

)
xi,jx

⊤
i,j

and therefore, the Hessian of the loss is given by

∇2LS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

(
diag(p(yi,j |xi,j ; Θ))− p(yi,j |xi,j ; Θ)p(yi,j |xi,j ; Θ)⊤

)
⊗ xi,jx

⊤
i,j

(12)

Now note that p(yi,j |xi,j ; Θ) ≥ e−2α where supℓ,i,j
∣∣Θ⊤

ℓ xi,j

∣∣ ≤ α.

Therefore

∇2LS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

(
e−2αIL×L − e−4α11⊤

)
⊗ xi,jx

⊤
i,j (13)

Assume
(
e−2αIL×L − e−4α11⊤

)
⪰ γIl×L for some γ > 0. Then we have

∇2LS(Θ) ⪰ 1

n

∑
i∈S

∑
j∈[Mi]

γIL×L ⊗ xi,jx
⊤
i,j (14)

C PROOF OF ERROR BOUND

Lemma 4.4. Suppose Assumption 4.2 holds and S be the subset of sentences produced by Algorithm 1,

Σ̄S =
∑
i∈S

Mi∑
j=1

xi,jx
⊤
i,j is the covariance matrix constructed using the samples in S and M =

maxi∈[N ] Mi. Then

max
i∈[N ]

Mi∑
j=1

∥xi,j∥2Σ̄−1
S
≤

σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0 )

κdM

n
. (8)
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Proof. We derive an upper bound on ∥xi,j∥Σ̄−1
n

, where xi,j ∈ Rd is a feature vector and Σ̄n ∈ Rd×d

is a design matrix obtained by greedy log-determinant maximization. Let D = {xi,j : i ∈ [N ], j ∈
[Mi]} be a dataset of N data points such that ∥xi,j∥2 ≤ 1. Let It ∈ [N ] be the index of the t-th
chosen feature vector and St = {Iℓ}tℓ=1 be the first t chosen feature vectors. For simplicity we use
Σ̄Sn

and Σ̄n interchangeably. Let

Σ̄t = σ2
0I +

∑
i∈St

Mi∑
j=1

xi,jx
⊤
i,j

where σ0 > 0 is a constant that guarantees that Σ0 is well defined.

The t-th feature vector is chosen as

It = argmax
i∈[N ]\St−1

log det

Σ̄t−1 +

Mt∑
j=1

xt,jx
⊤
t,j

 . (15)

Lemma C.1. For any i ∈ [N ] and t ∈ [n],
Mi∑
j=1

x⊤
i,jΣ̄

−1
t xi,j ≤

Mi∑
j=1

x⊤
i,jΣ̄

−1
t−1xi,j .

Proof. Define the matrix
X = [xi,1 xi,2 · · · xi,Mt ] ,

so that each xi,j is a column of X . Then we can write
Mt∑
i=1

xi,j x
T
i,j = XXT .

Hence we want to find the inverse of
Σt−1 +XXT .

Using Sherman–Morrison–Woodbury identity, which states that for an invertible matrix A and
any matrices U,C, V of compatible dimensions (with C also invertible), one has(

A+ U C V
)−1

= A−1 − A−1 U
(
C−1 + V A−1 U

)−1
V A−1.

In our case, we set
A = Σt−1, U = X, C = IMt , V = XT ,

where IMt
is the Mt ×Mt identity matrix. Then

A+ U C V = Σt−1 +X In X
T = Σt−1 +XXT .

By applying the identity, we get

(Σt−1 +XXT )−1 = Σ−1
t−1 − Σ−1

t−1 X
(
IMt

+XT Σ−1
t−1 X

)−1
XT Σ−1

t−1.

which implies
Σ̄−1

t ⪯ Σ̄−1
t−1 ,

we get v⊤Σ−1
t v ≤ v⊤Σ−1

t−1v for any vector v ∈ Rd. This concludes the proof.

Lemma C.1 implies that
Mi∑
j=1

x⊤
i,jΣ̄

−1
n xi,j ≤

1

n

n∑
t=1

Mi∑
j=1

x⊤
i,jΣ̄

−1
t xi,j .

holds for any i ∈ [N ]. This allows us to attribute the quality of the solution to individual greedy steps
in (15).

If the scope of the maximization was i ∈ [N ], the inequality
∑Mi

j=1 x
⊤
i,jΣ̄

−1
t−1xi,j ≤∑Mt

j=1 x
⊤
It,j

Σ̄−1
t−1xIt,j would hold for any i ∈ [N ]. Since the scope is i ∈ [N ] \ St−1, we make

Assumption 4.2.

We also use the following logarithmic transformation.
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Lemma C.2. For any i ∈ [N ] and t ∈ [n],

Mi∑
j=1

x⊤
i,jΣ

−1
t−1xi,j ≤

σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0 )

κd

n
.

Proof. We start with an upper bound on
∑Mi

j=1 x
⊤
i,jΣ

−1
t−1xi,j . By Weyl’s inequalities, we have

λ1(Σ
−1
t−1) = λ−1

d (Σt−1) ≤ λ−1
d (σ2

0Id) = σ−2
0 .

Therefore, under the assumption that ∥xi,j∥2 ≤ 1, we have
∑Mi

j=1 x
⊤
i,jΣ

−1
t−1xi,j ≤ σ−2

0 Mi. Now
note that for any x ∈ [0, u],

x =
x

log(1 + x)
log(1 + x) ≤

(
max
x∈[0,u]

x

log(1 + x)

)
log(1 + x) =

u

log(1 + u)
log(1 + x) .

Finally, we set x =
∑Mi

j=1 x
⊤
i,jΣ

−1
t−1xi,j and u = σ−2

0 Mi, and get our claim.

Assumption C.3. There exists a constant κ ≥ 1 such that

log det(Id +

Mi∑
j=1

Σ
−1/2
t−1 xi,jx

⊤
i,jΣ

−1/2
t−1 ) ≤ κ log det(Id +

MIt∑
j=1

Σ
−1/2
t−1 xIt,jx

⊤
It,jΣ

−1/2
t−1 )

holds for any i ∈ St−1 and t ∈ [n].

Now we apply Assumption C.3 and Lemma C.2, use the telescoping property of the sum, and
M = maxi∈[N ] Mi to get

n∑
t=1

Mi∑
j=1

x⊤
i,jΣ

−1
t−1xi,j ≤

n∑
t=1

Mi∑
j=1

σ−2
0

log(1 + σ−2
0 )

log(1 + x⊤
i,jΣ

−1
t−1xi,j)

≤ σ−2
0

log(1 + σ−2
0 )

n∑
t=1

Mi∑
j=1

log det(Id +Σ
−1/2
t−1 xi,jx

⊤
i,jΣ

−1/2
t−1 )

≤ σ−2
0 Mi

log(1 + σ−2
0 )

n∑
t=1

log det(Id +
1

Mi

Mi∑
j=1

Σ
−1/2
t−1 xi,jx

⊤
i,jΣ

−1/2
t−1 )

≤ σ−2
0 M

log(1 + σ−2
0 )

n∑
t=1

log det(Id +

Mi∑
j=1

Σ
−1/2
t−1 xi,jx

⊤
i,jΣ

−1/2
t−1 )

≤ σ−2
0 M

log(1 + σ−2
0 )

n∑
t=1

κ log det(Id +

MIt∑
j=1

Σ
−1/2
t−1 xIt,jx

⊤
It,jΣ

−1/2
t−1 )

=
κσ−2

0 M

log(1 + σ−2
0 )

n∑
t=1

log det(Σt−1 +

MIt∑
j=1

xIt,jx
⊤
It,j)− log det(Σt−1)

=
κσ−2

0 M

log(1 + σ−2
0 )

n∑
t=1

log det(Σt)− log det(Σt−1)

=
κσ−2

0 M

log(1 + σ−2
0 )

(log det(Σn)− log det(Σ0))

=
κσ−2

0 M

log(1 + σ−2
0 )

(log det(Σn)− d log(σ2
0))
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Furthermore,

log det(Σn) ≤ d log

(
1

d
tr (Σn)

)
= d log

1 +
1

d

n∑
t=1

tr

MIt∑
j=1

xIt,jx
⊤
It,j


= d log

σ2
0Id +

1

d

n∑
t=1

MIt∑
j=1

x⊤
It,jxIt,j

 ≤ d log

(
σ2
0 +

nM

d

)
.

Finally, we combine all claims and get

max
i∈[N ]

Mi∑
j=1

x⊤
i,jΣ

−1
n xi,j ≤

κ

n

σ−2
0 M

log(1 + σ−2
0 )

(d log det(
1

d
tr(

n∑
t=1

MIt∑
j=1

xi,jx
⊤
i,j))− d log(σ0)) ≤

σ−2
0 log

(
1 +

σ−2
0 nM

d

)
log(1 + σ−2

0 )

κd

n
.

This concludes the proof.

Lemma 4.5. Suppose Assumption 4.1 holds and Θ̂ be the MLE solution as in (5) such that Θ̂ ∈ B.
Then, there exists some α < 1 such that

LS(Θ̂)− LS(Θ
∗)− ⟨∇LS(Θ∗), Θ̂−Θ∗⟩

≥ e−2α

L

(∑
ℓ

∥θ̂ℓ − θ∗ℓ ∥Σ̄S

)2

.

Proof. Using Taylor’s expansion

LS(Θ
∗) + ⟨∇LS(Θ∗), Θ̂−Θ∗⟩+ ⟨Θ̂−Θ∗,∇2LS(Θ), Θ̂−Θ∗⟩ = LS(Θ̂)

The Hessian is given by

∇2LS(Θ) =
1

n

∑
i∈S

Mi∑
j=1

(diag(pi,j)− pi,jp
⊤
i,j)⊗ (xi,jx

⊤
i,j)

where pi,j = p(yi,j |xi,j ; Θ). Now using Claim 1 from Hajek et al. (2014) we have

e2α(diag(pi,j)− pi,jp
⊤
i,j) ⪰

1

L
IL +

1

L2
11

⊤

where α = maxi,j |θ⊤∗,yi,j
xi,j | ≤ 1. Therefore we have

∇2LS(Θ) =
1

n

∑
i∈S

Mi∑
j=1

(diag(pi,j)− pi,jp
⊤
i,j)⊗ (xi,jx

⊤
i,j)

⪰ 1

n

∑
i∈S

Mi∑
j=1

(
e−2α

L
IL×L −

e−2α

L2
11

⊤
)
⊗ (xi,jx

⊤
i,j)
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Now consider ⟨Θ̂−Θ∗,∇2LS(Θ), Θ̂−Θ∗⟩. We can express this as follows:

⟨Θ̂−Θ∗,∇2LS(Θ), Θ̂−Θ∗⟩ = 1

n

∑
i∈S

Mi∑
j=1

∑
k,k′

(√
diag(pi,j)∆Θ·,k

)⊤(√
diag(pi,j)∆Θ·,k′

)(
xi,jx

⊤
i,j

)
k,k′

− ⟨∆Θ⊤
·,kpi,j ,∆Θ⊤

·,k′pi,j⟩(xi,jx
⊤
i,j)k,k′

=
1

n

∑
i∈S

Mi∑
j=1

(
Tr
(√

diag(pi,j)∆Θ⊤(xi,jx
⊤
i,j)
√

diag(pi,j)∆Θ
)

− Tr
(
p⊤i,j ∆Θ xi,jx

⊤
i,j ∆Θ pi,j

))

=
1

n

∑
i∈S

Mi∑
j=1

Tr
(
x⊤
i,j∆Θ

(
diag(pi,j)− pi,jp

⊤
i,j

)
∆Θ⊤xi,j

)

≥ 1

n

∑
i∈S

Mi∑
j=1

Tr
(
x⊤
i,j∆Θ

(
e−2α

L
IL×L −

e−2α

L2
11

⊤
)
∆Θ⊤xi,j

)
Now observe that ∆Θ1 = 0 follows from Assumption 4.1 and solution Θ̂. Therefore,

⟨Θ̂−Θ∗,∇2LS(Θ), Θ̂−Θ∗⟩ ≥ e−2α

nL

∑
i∈S

Mi∑
j=1

Tr(∆Θ⊤xi,jx
⊤
i,j∆Θ)

=
e−2α

L
Tr(Θ⊤ΣSΘ)

=
e−2α

L
Tr
(
Θ⊤
√
ΣS
√
ΣSΘ

)
=

e−2α

L
∥Σ∆Θ∥2F

≥ e−2α

L2

(∑
ℓ

∥∆θℓ∥ΣS

)2

Lemma 4.6. With probability 1− δ the gradient of the loss satisfies the following bound:

sup
ℓ∈[L]

∥∥∇ℓLS(Θ∗)
∥∥
Σ̄−1

S
≤ C

√
d+ log(L/δ) (10)

where C > 0 is some global constant.

Proof. First observe that ∥∇ℓLS(Θ)∥2
Σ̄−1

Sn

= n∥∇ℓLS(Θ)∥2
Σ−1

Sn

where ΣSn = 1
n Σ̄Sn . Next recall

that the gradient is given by

∇LS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

vec
(
xi,j ⊗

(
p(yi,j |xi,j ; Θ)− 1(yi,j)

))
.

Therefore

∇ℓLS(Θ) =
1

n

∑
i∈S

∑
j∈[Mi]

xi,j

(
p(yi,j = ℓ|xi,j ; Θ)− I(yi,j = ℓ)

)
.

Define X ∈ RnMi×d as the matrix whose rows are xi,j , i ∈ S, j ∈ [Mi], and V ℓ be the nMi

dimensional vector whose entries are p(yi,j = ℓ|xi,j ; Θ)− I(yi,j = ℓ), i.e.,

V ℓ
ij =

exp(Θ⊤
ℓ xi,j)∑L

ℓ′=1 exp(Θ
⊤
ℓ′xi,j)

− I(yi,j = ℓ).
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Note that E[V ℓ] = 0 and
∣∣V ℓ

ij

∣∣ ≤ 2, which implies V is 4 sub-Gaussian. Therefore∥∥∇ℓLS(Θ)
∥∥2
Σ−1

S
=

1

n2
(V ℓ)⊤XΣSX

⊤V ℓ ≤ 1

n
∥V ℓ∥22

Using Bernstein’s inequality, with probability 1− δ, for some constant C > 0∥∥∇ℓLS(Θ)
∥∥2
Σ−1

S
≤ C

(d+ log(1/δ))

n

Taking a union bound over all ℓ ∈ [L] we have with probability 1− δ, for some constant C > 0

sup
ℓ∈[L]

∥∥∇ℓLS(Θ)
∥∥2
Σ−1

S
≤ C

(d+ log(L/δ))

n

which implies we have with probability 1− δ, for some constant C > 0

sup
ℓ∈[L]

∥∥∇ℓLS(Θ)
∥∥
Σ̄−1

S
≤ C

√
(d+ log(L/δ))
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