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ABSTRACT

Offline Goal-Conditioned Reinforcement Learning (GCRL) is tasked with learning
to achieve multiple goals in an environment purely from offline datasets using
sparse reward functions. Offline GCRL is pivotal for developing generalist agents
capable of leveraging pre-existing datasets to learn diverse and reusable skills
without hand-engineering reward functions. However, contemporary approaches to
GCRL based on supervised learning and contrastive learning are often suboptimal
in the offline setting. An alternative perspective on GCRL optimizes for occupancy
matching, but necessitates learning a discriminator, which subsequently serves as
a pseudo-reward for downstream RL. Inaccuracies in the learned discriminator
can cascade, negatively influencing the resulting policy. We present a novel ap-
proach to GCRL under a new lens of mixture-distribution matching, leading to our
discriminator-free method: SMORe. The key insight is combining the occupancy
matching perspective of GCRL with a convex dual formulation to derive a learning
objective that can better leverage suboptimal offline data. SMORe learns scores or
unnormalized densities representing the importance of taking an action at a state for
reaching a particular goal. SMORe is principled and our extensive experiments on
the fully offline GCRL benchmark composed of robot manipulation and locomotion
tasks, including high-dimensional observations, show that SMORe can outperform
state-of-the-art baselines by a significant margin.

1 INTRODUCTION

A generalist agent will require a vast repertoire of skills, and large amounts of offline pre-collected
data offer a way to learn useful skills without any environmental interaction. Many subfields of
machine learning like vision and NLP have enjoyed great success by designing objectives to learn
a general model from large and diverse datasets. In robot learning, offline interaction data has
become more prominent in the recent past (Ebert et al., 2021), with the scale of the datasets growing
consistently (Walke et al., 2023; Padalkar et al., 2023). Goal-conditioned reinforcement learning
(GCRL) offers a principled way to acquire a variety of useful skills without the prohibitively difficult
process of hand-engineering reward functions. In GCRL, the agent learns a policy to accomplish a
variety of goals in the environment. The rewards are sparse and goal-conditioned: 1 when the agent’s
state is proximal to the goal and 0 otherwise. However, the benefit of not requiring the designer to
hand-engineer dense reward functions can also be a curse, because learning from sparse rewards
is difficult. Driving progress in fundamental offline GCRL algorithms thus becomes an important
aspect of moving towards performant generalist agents whose skills scale with data.

Despite recent progress in developing methods for goal-reaching in the online setting (where envi-
ronment interactions are allowed), a number of these methods are either suboptimal in the offline
setting or suffer from learning difficulties. Prior GCRL algorithms can largely be classified into
one of three categories: iterated behavior cloning, RL with sparse rewards, and contrastive learning.
Iterated behavior cloning or goal-conditioned supervised learning approaches (Ghosh et al., 2019;
Yang et al., 2019) have been shown to be provably suboptimal (Eysenbach et al., 2022a) for GCRL.
Modifying single-task RL methods (Silver et al., 2014; Kostrikov et al., 2021) for GCRL with 0-1
reward implies learning a Q-function that predicts the discounted probability of goal reaching, which
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makes it essentially a density model. Modeling density directly is a hard problem, an insight which
has prompted the development of methods (Eysenbach et al., 2020) that learn density-ratio instead of
densities, as classification is an easier problem than density estimation. Contrastive RL approaches to
GCRL (Eysenbach et al., 2020; 2022b; Zheng et al., 2023) aim to do precisely this and are the main
methods to enjoy success for applying GCRL in high-dimensional observation spaces. However,
when dealing with offline datasets, contrastive RL approaches (Eysenbach et al., 2022b; Zheng et al.,
2023) are suboptimal, as they only learn a policy that is a greedy improvement over the Q-function of
the data generation policy. This begs the question: How can we derive a performant GCRL method
that learns near-optimal policies from offline datasets of suboptimal quality?

In this work, we leverage the underexplored insight of formulating GCRL as an occupancy matching
problem. Occupancy matching between the joint state-action-goal visitation distribution induced
by the current policy and the distribution over state-actions that transition to goals can be shown
to be equivalent to optimizing a max-entropy GCRL objective. Occupancy matching has been
studied extensively in imitation learning (Ghasemipour et al., 2020) and often requires learning a
discriminator and using the learned discriminator for downstream policy learning through RL. Indeed,
a prior GCRL work (Ma et al., 2022) explores a similar insight. Unfortunately, errors in learned
discriminators can compound and adversely affect the learned policy’s performance, especially in the
offline setting where these errors cannot be corrected with further interaction with the environment.

Going beyond the shortcomings of the previous methods, our proposed method combines the insight
of formulating GCRL as an occupancy matching problem along with an efficient, discriminator-free
dual formulation that learns from offline data. The resulting algorithm SMORe forgoes learning
density functions or classifiers, but instead learns unnormalized densities or scores that allow it
to produce near-optimal goal-reaching policies. The scores are learned via a Bellman-regularized
contrastive procedure that makes our method a desirable candidate for GCRL with high-dimensional
observations, avoiding the need for density modeling. Our experiments represent a wide variety of
goal-reaching environments – consisting of robotic arms, anthropomorphic hands, and locomotion
environments. We lay out the following contributions: 1) on the extended offline GCRL benchmark,
our results demonstrate that SMORe significantly outperforms prior methods in the offline GCRL
setting. 2) In line with our hypothesis, discriminator-free training makes SMORe particularly robust
to decreasing goal-coverage in the offline dataset, a property we demonstrate in the experiments. 3)
We test SMORe for zero-shot GCRL on a prior benchmark (Zheng et al., 2023) for high dimensional
vision-based GCRL where contrastive RL approaches are the only class of GCRL methods that have
been successful, and show improved performance over other state-of-the-art baselines.

2 PROBLEM FORMULATION

We consider an infinite horizon discounted Markov Decision Process denoted by the tuple M “

pS,A, p, r, γ, d0q, where S is the state space, A is the action space, p is the transition probability
function, r : S ˆ A Ñ R is the reward function, γ P p0, 1q is the discount factor, and d0 is the initial
state distribution. We constrain ourselves to the goal-conditioned RL setting, where we additionally
assume a goal space G where states in S are mapped to the goal space using a known mapping:
ϕ : S Ñ G. The reward function rps, a, gq in GCRL is sparse and also depends on the goal. A
goal conditioned policy π : S ˆ G Ñ ∆pAq outputs a distribution over actions in a given state
conditioned on a goal. Given a distribution over desired evaluation goals qtestpgq, the objective of
goal-conditioned RL is to find a policy πg1 that maximizes the expected discounted return:

Jpπgq :“ Eg„qtestppgqq,s0„d0,at„πg

«

8
ÿ

t“0

γtrpst, at, gq

ff

. (1)

We denote by Pπg the transition operator induced by the policy πg defined as PπgSps, a, gq :“
Es1„pp¨|s,aq,a1„πgp¨|s1,gqrSps1, a1, gqs , for any score function S : SˆAˆG Ñ R. We use dπps, a | gq

to denote the discounted goal-conditioned state-action occupancy distribution of πg, i.e dπg ps, a |

gq “ p1 ´ γqπpa|s, gq
ř8

t“1rγtPrpst “ s|πg, d0qs. which represents the expected discounted time
spent in each state-action pair by the policy πg conditioned on the goal g. For complete generality, in
GCRL, the distribution of goals the policy is trained on often differs from the test goal distribution. To
make this distinction clear we define the training distribution qtrainpgq, a uniform measure over goals

1We use the subscript g to make the policy’s conditioning on g explicit.
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we desire to learn to optimally reach during training. We write dπg ps, a, gq “ qtrainpgqdπg ps, a | gq

as the joint state-action-goal visitation distribution of the policy πg under the training goal distribution.
A state-action-goal occupancy distribution must satisfy the Bellman flow constraint in order for it to
be a valid occupancy2 distribution for some stationary policy πg , @s P S, a P A, g P G:

dps, a, gq “ p1 ´ γqd0ps, gqπgpa | s, gq ` γ
ÿ

s1,a1

pps | s1, a1qdps1, a1, gqπgpa | s, gq, (2)

where d0ps, gq “ d0psqqtrainpgq. Finally, given dπg , we can express the learning objective for the
GCRL agent under the training goal distribution as Jtrainpπgq “ 1

1´γEps,a,gq„dπg rrps, a, gqs.

In this work, we focus on the offline setup where the agent cannot interact with the environment
M and instead has access to a offline dataset of D :“ tτiu

N
i“1, where each trajectory τ piq “

ps
piq
0 , a

piq
0 , r

piq
0 , s

piq
1 , ...; gpiqq with spiq

0 „ d0. The trajectories are usually relabelled with the qtrainpgq

during learning. We denote the joint state-action-goal distribution of the offline dataset D as ρps, a, gq.

3 SCORE-MODELS FOR OFFLINE GOAL CONDITIONED REINFORCEMENT
LEARNING

In this section, we introduce our method in two parts: First, we build up the equivalence of the GCRL
objective to the occupancy matching problem in Section 3.1, and then we derive a discriminator-free
dual objective for solving the occupancy matching problem using off-policy data in Section 3.2.
Finally, we present the algorithm for SMORe under practical considerations in Section 3.3.

3.1 GCRL AS AN OCCUPANCY MATCHING PROBLEM

Define a goal-transition distribution qps, a, gq in a stochastic MDP as
qps, a, gq 9 qtrainpgqEs1„pp¨|s,aq

“

Iϕps1q“g

‰

. Intuitively, the distribution has probability mass
on each transition that leads to a goal. We formulate the GCRL problem as an occupancy matching
problem by searching for the policy πg that minimizes the discrepancy between its state-action-goal
occupancy distribution and the goal-transition distribution qps, a, gq:

Occupancy matching problem: Df pdπg ps, a, gq}qps, a, gqq, (3)
whereDf denotes an f -divergence with generator function f . Note that the q distribution is potentially
unachievable by any goal-conditioned policy πg. Firstly, it does not account for the initial transient
phase that the policy must navigate to reach the desired goal. Secondly, even if we consider only the
stationary regime (when γ Ñ 1), it may not be dynamically possible for the policy to continuously
remain at the goal and rather necessitate cycling around the goal. However, in Proposition 1, we show
that the occupancy matching in Eq. 3 offers a principled objective since it forms a lower bound to the
max-entropy GCRL problem.
Proposition 1. Consider a stochastic MDP, a stochastic policy π, and a sparse reward function
rps, a, gq “ Es1„pp¨|s,aq

“

Ipϕps1q “ g, qtrainpgq ą 0q
‰

where I is an indicator function. Define a soft
goal transition distribution to be qps, a, gq 9 exppα rps, a, gqq. The following bounds hold for any
f -divergence that upper bounds KL-divergence (eg. χ2, Jensen-Shannon):

J trainpπgq `
1

α
Hpdπg q ě ´

1

α
Df pdπg ps, a, gq}qps, a, gqq ` C, (4)

where H denotes the entropy, α is a temperature parameter and C is the partition function for
eRps,a,gq. Furthermore, the bound is tight when f is the KL-divergence.

Ma et al. (2022) (in Proposition 4.1) presented a similar result connecting state-goal distribution
matching ( i.e DKLpdπps, gq||qps, gqq) to GCRL objective and Proposition 1 extends their results to
goal-transition distribution matching. Matching action-free distributions necessitates constructing
a loose lower bound that is tractable to optimize. By considering goal-transition distributions we
sidestep constructing a loose lower bound and instead directly obtain a tractable distribution matching
objective (Ghasemipour et al., 2020; Kostrikov et al., 2019) that is tight under KL-divergence.

How does converting a GCRL objective to an imitation learning objective make learning easier? Esti-
mating the f -divergence still requires estimating the joint policy visitation probabilities dπg ps, a, gq,
which itself presents a challenging problem. We show in the following section that we can leverage

2We will use “occupancy” and “visitation” interchangeably.
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Figure 1: Illustration of the SMORe objective where βc “ 1 ´ β: SMORe matches a mixture distribution of
current policy and offline data to a mixture of the goal-transition distribution and offline data in order to find the
optimal goal reaching policy.

convex duality to transform the imitation learning problem into an off-policy optimization problem,
removing the need to sample from dπg ps, a, gq whilst being able to leverage offline data collected
from arbitrary sources.

3.2 SMORE: A DUAL FORMULATION FOR OCCUPANCY MATCHING

The previous section establishes GCRL as an occupancy matching problem (Eq. 3) but provides no
way to use offline data whose joint visitation distribution is given by ρps, a, gq. To leverage offline
data to learn performant goal-reaching policies, we consider a surrogate objective to the occupancy
matching learning problem by matching mixture distributions:

min
πg

Df pMixβpdπg , ρq}Mixβpq, ρqq, (5)

where for any two distributions µ1 and µ2, Mixβpµ1, µ2q denotes the mixture distribution with
coefficient β P p0, 1s defined as Mixβpµ1, µ2q “ βµ1 ` p1 ´ βqµ2. Proposition 2 (in appendix)
shows the matching mixture distribution3 provably maximizes a lower bound to the Lagrangian
relaxation of the max-entropy GCRL objective subject to a dataset regularization constraint. We can
rewrite the mixture occupancy matching objective as a convex program with linear constraints (Manne,
1960; Nachum and Dai, 2020):

max
πg,d

´Df pMixβpd, ρq}Mixβpq, ρqq

s.t dps, a, gq “ p1 ´ γqd0ps, gqπpa|sq ` γ
ř

s1PS dps1, a1, gqpps|s1, a1qπpa1|s1, gq, @s P S. (6)
An illustration of this objective can be found in Figure 1. Effectively, we have simply rewritten
Eq. 5 into an equivalent problem by considering an arbitrary probability distribution dps, a, gq in
the optimization objective, only to later constrain it to be a valid probability distribution induced by
some policy πg using the Bellman-flow constraints. The motivation behind this construction of the
primal form is that we have made computing the Lagrangian-dual easier as this objective is convex
with linear constraints. Theorem 1 shows that we can leverage tools from convex duality to obtain an
unconstrained dual problem that does not require computing dπg ps, a, gq or sampling from it, while
effectively leveraging offline data.
Theorem 1. The dual problem to the primal occupancy matching objective (Equation 6) is given by:

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` EMixβpq,ρqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs (7)

´ p1 ´ βqEρrγPπgSps, a, gq ´ Sps, a, gqs,
where f˚ is conjugate function of f and S is the Lagrange dual variable defined as S : S ˆAˆG Ñ

R. Moreover, as strong duality holds from Slater’s conditions the primal and dual share the same
optimal solution π˚

g for any offline transition distribution ρ.

To our knowledge, the closest prior works to our proposed method are GoFAR (Ma et al., 2022)
and Dual-RL (Sikchi et al., 2023). GoFAR considers the special case of KL-divergence for the
imitation formulation and derives a dual objective that requires learning the density ratio ρps,gq

qps,gq
in the

3Note that Eq. 5 shares the same global optima as the previous occupancy matching objective at dπg ps, a, gq “

qps, a, gq when q is an achievable visitation under some policy and recovers the original objective in Eq. 3 when
β “ 1.
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form of a discriminator and using this as a pseudo-reward. This leads to compounding errors in the
downstream RL optimization when learning the density ratio is challenging, e.g. in the case of low
coverage between ρps, a, gq and qps, a, gq. We show this phenomenon experimentally in Section 4.3.
Dual-RL (Sikchi et al., 2023) uses convex duality for matching visitation distribution of realizable
expert demonstrations and does not deal with the GCRL setting. Our contribution is a novel method
for GCRL that is discriminator-free, applicable for a number of f -divergences, and robust to low
coverage of goals in the offline dataset.

Sampling from the goal-transition distribution: Goal relabelling is an effective technique to
address reward sparsity by widening the training goal distribution qtrainpgq. It utilizes knowledge
about reaching other goals, possibly unrelated to test goals, to help in reaching the test distribution
of goals qtestpgq. In the most general case, qtrainpgq can be set to a uniform distribution over
goals corresponding to all the states in the offline data. A common method, Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017) chooses a training goal distribution that depends on the
current sampled state from the offline dataset as well as the data-collecting policies. In this setting,
the sampling distribution used for training Eq 7, ρps, a, gq, can no longer be factorized into ρps, aq

and qtrainpgq, as goals are conditionally dependent on state-actions. However, our formulation
can naturally account for learning from such relabelled data as the SMORe objective in Eq 7 is
derived considering the joint distribution ρps, a, gq. In this setting, we construct our goal transition
distribution qps, a, gq as the uniform distribution over all transitions that lead to the goals selected by
the HER procedure — in practice, this amounts to first selecting g through HER and then selecting
ts, au that transitions to the selected goal from the offline dataset to get a sample ts, a, gu from goal
transition distribution. We emphasize that relabelling does not change the test distribution of goals,
which is an immutable property of the environment.

3.3 PRACTICAL ALGORITHM

To devise a stable learning algorithm we consider the Pearson χ2 divergence. Pearson χ2 divergence
has been found to lead to distribution matching objectives that are stable to train as a result of a
smooth quadratic generator function f (Garg et al., 2021; Al-Hafez et al., 2023; Sikchi et al., 2023).
Our dual formulation SMORe simplifies to the following objective:

maxπg minS

Decrease score at transitions under current policy πg
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

βp1 ´ γqEps,gq„d0,a„πgp¨|s,gqrSps, a, gqs ` βγEps,a,gq„q,s1„pp¨|s,aq,a1„πgp¨|s1,gq

“

Sps1, a1, gq
‰

´ βEps,a,gq„qrSps, a, gqs
loooooooooooomoooooooooooon

Increase score at the proposed goal transition distribution

`0.25Eps,a,gq„Mixβpq,ρq

“

pγSps1, πgps1q, gq ´ Sps, a, gqq2
‰

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

Smoothness/Bellman regularization

. (8)

Equation 8 suggests a contrastive procedure, maximizing the score at the goal-transition dis-
tribution and minimizing the score at the offline data distribution under the current policy
with Bellman regularization. The Bellman regularization has the interpretation of discourag-
ing neighboring S values from deviating far and smoothing the score landscape. Instantiat-
ing with KL divergence results in an objective with similar intuition while resembling an In-
foNCE (Oord et al., 2018) objective. Although Propositions 1 and 2 suggest that KL divergence
gives an objective that is a tighter bound to the GCRL objective, prior work has found KL di-
vergence to be unstable in practice (Sikchi et al., 2023; Garg et al., 2023) for dual optimization.

Algorithm 1: SMORe
1: Init Sϕ, Mψ , and πθ
2: Params: expectile τ , mixture ratio β,

temperature α
3: Let D “ pρ “ tps, a, s1, gqu be an offline

dataset and q be goal-transition distribution
4: for t “ 1..T iterations do
5: Train Sϕ via Eq. 10
6: Train Mψ via Eq. 9
7: Update πθ via Eq. 11
8: end for

It is important to note that S-function is not grounded
to any rewards and does not serve as a probability
density of reaching goals, but is rather a score func-
tion learned via a Bellman-regularized contrastive
learning procedure.

We now derive a practical approach for SMORe in the
offline GCRL setting. We use parameterized func-
tions: Sϕps, a, gq, Mψps, gq, πθpa|s, gq. The offline
learning regime necessitates measures to constrain
the learning policy to the offline data support in order
to prevent overestimation due to maximizing πg in
Eq. 8 over potentially out-of-distribution actions. In-
spired by prior work (Kostrikov et al., 2021), we use implicit maximization to constrain the learning
algorithm to learn expectiles using the observed empirical samples. More concretely, we use expectile
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regression:
min
ψ

Lpψq :“ Eps,a,gq„ρrLτ2pMψps, gq ´ Sϕps, a, gqqs, (9)

where Lτ2puq “ |τ ´ 1pu ă 0q|u2. Intuitively, this step implements the maximization w.r.t π by using
expectile regression. With the above practical considerations, our objective for learning Sϕ reduces
to:

min
ϕ

Lpϕq :“ βp1 ´ γqEps,gq„D,a„πgp¨|a,gqrSϕps, πgpsq, gqs ` βγEps,a,gq„q,s1„pp¨|s,aq

“

Sϕps1, πgps1q, gq
‰

´ βEps,a,gq„qrSϕps, a, gqs ` Eps,a,gq„Mixβpq,ρq

“

pγMψps1, gq ´ Sϕps, a, gqq2
‰

,
(10)

where we have set the offline data distribution as our initial state distribution. Finally, the policy is
extracted via advantage-weighted regression that learns in-distribution actions maximizing the score
Sps, a, gq:

min
θ

Lpθq :“ Eps,a,gq„ρrexppαpSϕps, a, gq ´Mψps, gqqq logpπθpa|s, gqqs, (11)

where α is the temperature parameter. Algorithm 1 details the practical implementation.

4 EXPERIMENTS

Our experiments study the effectiveness of proposed GCRL algorithm SMORe on a set of simulated
benchmarks against other GCRL methods that employ behavior cloning, RL with sparse reward,
and contrastive learning. We also analyze if SMORe is robust to environment stochasticity — a
number of prior methods are based on an assumption of deterministic dynamics. Then, we study
if the discriminator-free nature of SMORe is indeed able to prevent performance degradation in the
face of low expert coverage in offline data. Finally, we analyze if SMORe’s score-modeling approach
helps SMORe scale to a vision-based manipulation offline GCRL benchmark, as density model-
ing and discriminator learning become increasingly difficult with high-dimensional observations.
Hyperparameter ablations can be found in Appendix D.

4.1 EXPERIMENTAL SETUP

Our experiments will use a suite of simulated goal-conditioned tasks extending the
tasks from previous work (Ma et al., 2022; Plappert et al., 2018). In particular
we consider the following environments: Reacher, Robotic arm environments -
[SawyerReach, SawyerDoor, FetchReach, FetchPick, FetchPush, FetchSlide],
Anthropomorphic hand environment - HandReach and Locomotion environments -
[CheetahTgtVel-me,CheetahTgtVel-re,AntTgtVel-me,AntTgtVel-re]. Tasks
in all environments are specified by a sparse reward function. Depending on whether the task involves
object manipulation, the goal distribution is defined over valid configurations in robot or object
space. The offline dataset for manipulation tasks consists of transitions collected by a random policy
or mixture of 90% random policy and 10% expert policy. For locomotion tasks, we generate our
dataset using the D4RL benchmark (Fu et al., 2020), combining a random or medium dataset with 30
episodes of expert data. Note that the policies used to collect the expert locomotion datasets have a
different objective than the tasks here, which are to achieve and maintain a particular desired velocity.

4.2 OFFLINE GOAL-CONDITIONED RL BENCHMARK

Baselines. We compare to state-of-art offline GCRL algorithms, consisting of both regression-based
and actor-critic methods. The occupancy-matching based methods are: (1) GoFar (Ma et al., 2022),
which derives a dual objective for GCRL based on a coverage assumption. The behavior cloning based
methods are: (1) GCSL (Ghosh et al., 2019), which incorporates hindsight relabeling in conjunction
with behavior cloning to clone actions that lead to a specified goal, and (2) WGCSL (Yang et al.,
2022), which improves upon GCSL by incorporating discount factor and advantage weighting into
the supervised policy learning update. Contrastive RL (Eysenbach et al., 2022b) generalizes C-
learning (Eysenbach et al., 2020) and represents contrastive GCRL approaches. The RL with sparse
reward methods are (1) IQL (Kostrikov et al., 2021) where we use a state-of-the-art offline RL
method repurposed for GCRL along with HER (Andrychowicz et al., 2017) goal sampling, and (2)
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Task Occupancy Matching Behavior cloning Contrastive RL RL+sparse reward
SMORe GoFAR WGCSL GCSL CRL AM IQL

Reacher (‹) 28.40˘0.88 19.74˘1.35 17.57˘0.53 15.87˘1.31 16.44˘0.60 23.26 ˘0.14 11.70 ˘1.97

SawyerReach (‹) 37.67˘0.12 15.34˘0.64 15.15˘0.44 14.25˘0.7 22.32 ˘0.34 23.34˘0.17 35.18 ˘0.29

SawyerDoor (‹) 31.48˘0.46 18.94˘0.01 20.01˘1.55 20.88˘0.22 12.96˘5.19 22.12 ˘0.13 25.52 ˘1.45

FetchReach (‹) 35.08˘ 0.54 28.2 ˘ 0.61 21.9˘ 2.13 20.91 ˘ 2.78 30.07˘0.07 30.1 ˘ 0.32 34.43 ˘ 1.00

FetchPick (‹) 26.47 ˘ 1.34 19.7 ˘ 2.57 9.84 ˘ 2.58 7.58˘1.85 0.42˘0.29 8.94 ˘ 3.09 16.8 ˘ 3.10

FetchPush (‹) 26.83˘ 1.21 18.2 ˘ 3.00 14.7 ˘ 2.65 13.4 ˘ 3.02 2.40 ˘1.28 14.0 ˘ 2.81 22.40 ˘ 0.74

FetchSlide 4.99˘ 0.40 2.47 ˘ 1.44 2.73 ˘ 1.64 1.75 ˘ 1.3 0.0˘0.0 1.46 ˘ 1.38 4.80 ˘ 1.59

HandReach (‹) 18.68 ˘ 3.35 11.5 ˘ 5.26 5.97 ˘ 4.81 1.37 ˘ 2.21 0.0˘0.0 0.0 ˘ 0.0 1.44 ˘ 1.77

CheetahTgtVel-m-e (‹) 136.71 ˘ 10.59 0.0˘ 0.0 0.0˘ 0.0 95.98˘ 15.72 0.0˘0.0 0.0˘ 0.0 100.38˘ 1.22

CheetahTgtVel-r-e (‹) 60.01 ˘ 39.40 0.0˘ 0.0 0.0˘ 0.0 11.56 ˘ 13.47 0.0˘0.0 0.0˘ 0.0 0.0˘ 0.0

AntTgtVel-m-e 154.95˘ 19.44 168.27˘ 9.58 0.0˘ 0.0 164.54˘ 7.69 0.0˘0.0 0.0˘ 0.0 148.17 ˘ 5.43

AntTgtVel-r-e (‹) 126.22˘ 14.40 74.36˘ 15.97 0.0˘ 0.0 104.95˘ 6.00 0.0˘0.0 0.0˘ 0.0 3.06 ˘ 2.64

Table 1: Discounted Return for the offline GCRL benchmark. Results are averaged over 10 seeds.‘m-e’ and ‘r-e’
stands for medium-expert mixture and random-expert mixture respectively. (‹) denotes statistically significant
improvements.

ActionableModel (AM) (Chebotar et al., 2021), which incorporates conservative Q-Learning (Kumar
et al., 2020) as well as goal-chaining on top of an actor-critic method.

The results for all baselines are tuned individually, particularly the best HER ratio was searched
among t0.2, 0.5, 0.8, 1.0u for each task. SMORe shares the same network architecture for baselines
and uses a mixture ratio of β “ 0.5. Each method is trained for 10 seeds. Complete architecture and
hyperparameter table as well as additional training details are provided in Appendix C.

FetchReach: Robustness to noise
Di
sc

ou
nt

ed
 R

et
ur

n

Noise Level

Figure 2: SMORe is robust in stochastic environ-
ments. With increasing noise, SMORe still outper-
forms prior methods.

Table 1 reports the discounted return obtained by
the learned policy with a sparse binary task reward.
(‹) denotes statistically significant improvement over
the second best method under a Mann-Whitney U
test with a significance level of 0.05. This metric
allows us to compare the algorithms on a finer scale
to understand which methods reach the goal as fast
as possible and stay in the goal region thereafter for
the longest time. Additional results on metrics like
success rate and final distance to goal can be found
in the appendix. These additional metrics do not take
into consideration how precisely and consistently a
goal is being reached. In Table 1, we see that SMORe
enjoys a high-performance gain consistently across
all tasks in the extended offline GCRL benchmark.

Robustness to environment stochasticity: We consider a noisy version of the FetchReach
environment in this experiment. Gaussian zero-mean noise is added before executing an action to
generate different variants of the environment with standard deviations of t0.5, 1.0, 1.5u. Datasets for
these environments are obtained from prior work (Ma et al., 2022). As we see in Figure 2, SMORe
is robust to stochasticity in the environment, outperforming baselines in terms of discounted return.
Behavior cloning based approaches assume deterministic dynamics and are therefore over-optimistic
in stochastic environments.

4.3 ROBUSTNESS OF OCCUPANCY-MATCHING METHODS TO DECREASING EXPERT
COVERAGE

We posit that the discriminator-free nature of SMORe makes it more robust to decreasing goal
coverage, as it does not suffer from cascading errors stemming from a learned discriminator. In
this section, we set out to test this hypothesis by decreasing the amount of expert data in the offline
goal-reaching dataset. We compare with GoFAR in Table 2 due to the similarity between methods and
GoFAR’s restrictive assumption on coverage of expert data in the suboptimal dataset. Comparison
against all the baselines can be found in Appendix D.

Our hypothesis holds true as we see in Table 2, the performance of the discriminator-based method
GoFar rapidly decays as expert data is decreased in the offline dataset – 28.4% with 2.5% and 36.15%
with 1% expert data(i.e. optimal policy’s coverage) respectively. SMORe shows a much slower decay

7
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Task 5 % expert data 2.5 % expert data 1 % expert data
SMORe GoFAR SMORe GoFAR SMORe GoFAR

Reacher 22.43˘3.46 16.86 ˘1.26 17.92 ˘ 0.93 12.20˘0.81 19.61˘ 1.56 11.52 ˘ 0.52

SawyerReach 36.35˘0.37 13.20 ˘1.36 36.74˘0.62 11.57 ˘1.79 35.44 0.27 9.34˘ 0.17

SawyerDoor 32.82˘0.88 20.07˘0.01 25.69˘0.21 19.54˘1.32 23.78˘2.88 18.04 ˘1.80

FetchReach 36.00˘ 0.01 27.66 ˘ 0.55 35.58 ˘ 0.47 27.84 ˘ 0.82 35.97 ˘ 0.25 28.01 ˘ 0.20

FetchPick 26.43˘ 1.95 16.21 ˘ 1.46 26.17˘ 3.37 3.21 ˘ 2.22 15.38 ˘ 1.52 0.31 ˘ 0.31

FetchPush 23.81˘ 0.37 18.2 ˘ 3.00 22.75˘1.08 5.17 ˘ 2.01 19.04˘ 2.79 4.23˘ 3.96

FetchSlide 4.05˘ 1.12 1.08 ˘ 0.06 3.11 ˘ 1.61 0.96 ˘ 0.73 3.50˘ 0.97 0.86 ˘ 1.22

Average Performance 25.98 16.18 23.99 11.49 21.81 10.33
Avg. Perf. Drop 0 0 -7.6% -28.4% -16% -36.15%

Table 2: Discounted Return for the offline GCRL benchmark with 5%, 2.5% and 1% expert data in offline
dataset. Results are averaged over 10 seeds.

in performance, 7.6% with 2.5% and 16% with 1% expert data, attesting to the method’s robustness
under decreasing expert coverage in the offline dataset.

4.4 OFFLINE GCRL WITH IMAGE OBSERVATIONS

SMORe provides an effective algorithm for offline GCRL in high-dimensional observation spaces
by learning unnormalized scores using a contrastive procedure as opposed to prior works that learn
normalized densities (Eysenbach et al., 2020) which are difficult to learn or density ratios (Eysenbach
et al., 2022b; Zheng et al., 2023) which do not optimize for the optimal goal-conditioned policy
in the offline GCRL setting. Similar to prior work (Eysenbach et al., 2022b), we consider the
following structure in S-function parameterization to learn performant and generalizable policies:
Sps, a, gq “ ϕps, aqTψpgq. The S-function can be interpreted as the similarity between the two
representations given by ϕ and ψ. Our network architecture for both representations is similar
to Zheng et al. (2023) and is kept the same across all baselines to ensure a fair comparison of the
underlying GCRL method.

We use the offline GCRL benchmark from (Zheng et al., 2021) which learns goal-reaching policies
from an image-observation dataset of 250K transitions with the horizon ranging from 50-100. The
benchmark adds another layer of complexity by testing on goals absent from the dataset — the
dataset contains primitive behaviors like picking up objects and pushing drawers but no behavior
that completes the compound task we consider from the initial state. The observations and goals are
48x48x3 RGB images.

Baselines We compare to the best performing GCRL algorithms from Section 1 as well as a recent
state-of-the-art work, stable contrastive RL Zheng et al. (2023). Stable contrastive RL features
a number of improvements over contrastive RL by changing design decisions in neural network
architecture, layer normalization, and data augmentation. Since our objective is to compare the
quality of the underlying GCRL algorithm, we keep these design decisions consistent across the
board.

Results Figure 3 shows the success rate on a variety of unseen tasks for all the methods. SMORe
achieves highest success rates across all the tasks, even for the most challenging task of pick, place

Su
cc

es
s R

at
e

Figure 3: Evaluation on simulated manipulation tasks with image observations. The left image shows the starting
state at the top and the goal at the bottom for evaluation tasks. The error bars show the standard deviation with 5
random seeds. SMORe is competitive or outperforms prior methods on all the tasks we considered.
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and closing the drawer. We note that our results differ from Zheng et al. (2023) for the baselines as
we apply the same design decisions for all methods whereas Zheng et al. (2023) focuses on ablating
design decisions.

5 RELATED WORKS

Offline Goal Conditioned Reinforcement Learning. Learning to achieve goals in the environment
optimally forms the basis of goal-condition RL problems. Studies in cognitive science (Molinaro
and Collins, 2023) underscore the importance goal-achieving plays in human development. Offline
GCRL approaches are typically catered to designing learning algorithms for addressing the sparsity
of reward function in the offline setting. One of the most successful techniques in this setting has
been hindsight relabelling. Hindsight-experience relabelling (HER) (Kaelbling, 1993; Andrychowicz
et al., 2017) suggests relabelling any experience with some commanded goal to the goal that was
actually achieved in order to leverage generalization. HER has been investigated in the setting of
learning from demonstrations (Ding et al., 2019) and exploration (Fang et al., 2019) to validate its
effectiveness. A number of prior works (Ghosh et al., 2019; Yang et al., 2019; Chen et al., 2020;
Ding et al., 2019; Lynch et al., 2020; Paster et al., 2020; Srivastava et al., 2019; Hejna et al., 2023)
have investigated using goal-conditioned behavior cloning, a strategy that uses relabelling to learn
goal-conditioned policies, as a way to learn performant policies. Eysenbach et al. (2022a) shows that
this line of work has a limitation of learning suboptimal policies that do not consistently improve over
the policy that collected the dataset. The simplest strategy of applying single-task RL to the problem
of multi-task goal reaching requires learning a Q-function which represents normalized densities over
the state-action space. Contrastive RL (Eysenbach et al., 2022b; 2020; Zheng et al., 2023) emerged as
another alternative for GCRL which relabels trajectories and, rather than use that relabelling to learn
policies, learns a Q-function using a contrastive procedure. While these approaches learn optimal
policies in the online setting, they fall behind in the offline setting where they only learn a policy
that greedily improves over the Q-function of the data collecting policy. Our work learns optimal
policies by presenting an off-policy objective that solves GCRL and furthermore learns scores (or
unnormalized densities) that alleviate the learning challenges of normalized density estimation.

Distribution matching. Our approach is inspired by the distribution matching ap-
proach (Ghasemipour et al., 2020; Ni et al., 2021; Sikchi et al., 2022; Swamy et al., 2021; Sikchi et al.,
2023) prominent in imitation learning. Ghasemipour et al. (2020); Ni et al. (2021) takes the problem
of imitating an expert demonstrator in the environment and converts it into a problem of distribution
matching between the current policy’s state-action visitation distribution and the expert policy’s
visitation distribution. Indeed, a prior work f -PG (Agarwal et al., 2024) proposes a distribution
matching approach to GCRL but is restricted to the on-policy setting. Another, prior work (Ma et al.,
2022) creates one such distribution matching problem and presents a new optimization problem
for GCRL in the form of an off-policy dual (Nachum and Dai, 2020; Sikchi et al., 2023). Such an
off-policy dual is very appealing for the offline RL setup, as optimizing for this dual only requires
sampling from the offline data distribution. A limitation of their dual construction is the fact that
they require learning a discriminator and use that discriminator as the pseudo-reward for solving the
GCRL objective. Our approach presents a new construction for GCRL as a distribution matching
problem along with a dual construction that leads to a more performant discriminator-free off-policy
approach for GCRL.

6 CONCLUSION

Prior work in performant online goal-conditioned RL often relies on iterated behavior cloning or
contrastive RL. However, these approaches are suboptimal for the offline setting. Existing methods
specifically derived for offline GCRL require learning a discriminator and using it as a pseudo-reward,
enabling compounding errors that make the resulting policy ineffective. We present an occupancy-
matching approach to offline GCRL that provably optimizes a lower bound to the regularized GCRL
objective. Our method is discriminator-free, applicable to a number of f -divergences, and learns
unnormalized scores over actions at a state to reach the goal. We show that these positive aspects of
our algorithm allow us to empirically outperform prior methods, stay robust under decreasing goal
coverage, and scale to high-dimensional observation space for GCRL.
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A APPENDIX

A.1 THEORY

In this section, we first show the equivalence of the GCRL problem and the distribution-matching
objective of imitation learning. Then, we show how the mixture distribution objective relates to
offline GCRL objective. Finally, we derive the dual objective for mixture distribution matching that
leads to our method SMORe.

A.1.1 REDUCTION OF GCRL TO DISTRIBUTION MATCHING

Proposition 1. Consider a stochastic MDP, a stochastic policy π, and a sparse reward function
rps, a, gq “ Es1„pp¨|s,aq

“

Ipϕps1q “ g, qtrainpgq ą 0q
‰

where I is an indicator function. Define a soft
goal transition distribution to be qps, a, gq 9 exppα rps, a, gqq. The following bounds hold for any
f -divergence that upper bounds KL-divergence (eg. χ2, Jensen-Shannon):

J trainpπgq `
1

α
Hpdπg q ě ´

1

α
Df pdπg ps, a, gq}qps, a, gqq ` C, (4)

where H denotes the entropy, α is a temperature parameter and C is the partition function for
eRps,a,gq. Furthermore, the bound is tight when f is the KL-divergence.

Proof. This proof is adapted from Ma et al. (2022) for goal transition distributions and state-action
distributions. Let Z “

ş

eRps,a,gq ds da dg and α ą 0 be the temperatue parameter. Note that
qps, a, gq “ erps,a,gq where r is defined in the proposition, strictly generalizes the original definition
qps, a, gq “ qtrainpgqEs1„pp¨|s,aqrIpϕps1q “ gqs and recovers it when α Ñ 8. Starting with the true
GCRL objective:

αJpπgq “ Edπg rαRps, a, gqs (12)

“ Edπg

”

log eαRps,a,gq
ı

(13)

“ Edπg

„

logp
eαRps,a,gq

Z

dπg ps, a, gq

dπg ps, a, gq
Zq

ȷ

(14)

“ Edπg

„

logp
qps, a, gq

dπg ps, a, gq
Zq

ȷ

` Edπg rlog dπg s (15)

“ ´DKLpdπg ps, a, gq}qps, a, gqq ´ Hpdπg q ` logpZq (16)
Rearranging terms we get:

Jpπgq `
1

α
Hpdπg q “ ´

1

α
DKLpdπg ps, a, gq}qps, a, gqq ` C (17)

For any f -divergence that upper bounds the KL divergence we have:

Jpπgq `
1

α
Hpdπg q “ ´

1

α
DKLpdπg ps, a, gq}qps, a, gqq `C ě ´

1

α
Df pdπg ps, a, gq}qps, a, gqq `C

(18)

A (dataset) regularized GCRL objective: Define a regularized objective for GCRL as follows:

Jofflinepπq “ α1Edπ
”

erps,a,gq
ı

` α2Edπps,a,gqrρps, a, gqs. (19)

The second term in the objective Edπps,a,gqrρps, a, gqs above is maximized when the policy visitation
places more probability mass on the most visited transitions in the dataset. To see why this is, consider
two probability distributions represented as vectors dπ and ρ with individuals elements of the vector
indexed by i:

xdπ, ρy ď max
i
ρi (20)

The equality holds only when dπ places probability mass on all state-action-goal tuples which are
most visited in the offline dataset ρ. The first term maximizes the true GCRL objective while the
second term prefers staying close to transitions that are most frequently observed in the offline dataset.
A constraint of xdπ, ρy ě 1 ´ δ implies that the agent visitation places atleast half of the probability
mass on state-action-goal tuples whose average visitation in offline dataset is greater than or equal
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to 1 ´ δ. With weights α1 and α2, the objective above reflects an lagrangian relaxation to this
constraint. Thus the above offline objective presents an alternative offline objective when compared
to the classical offline RL objectives Wu et al. (2019); Nachum and Dai (2020).

Proposition 2 derives the connection between the dataset regularized GCRL objective and SMORe:
Proposition 2. Consider a stochastic MDP, a stochastic policy π, and a sparse reward function
rps, a, gq “ Es1„pp¨|s,aq

“

Ipϕps1q “ g, qtrainpgq ą 0q
‰

where I is an indicator function, define a soft
goal transition distribution to be qps, a, gq 9 exppα rps, a, gqq the following bounds hold for any
f -divergence that upper bounds KL-divergence (eg. χ2, Jensen-Shannon):
log Jofflinepπgq ` HpMixβpd, ρqps, a, gqq ` C ě ´Df pMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqq,

(21)
where H denotes the entropy, α is a temperature parameter, α1 “ β2, α2 “ βp1 ´ βqZ and C is a
positive constant. Furthermore, the bound is tight when f is the KL-divergence.

Proof. We first consider the following two objectives for GCRL and show that they are equivalent.
This reduction will later help in proving a connection to mixture occupancy matching. We consider
α “ 1 w.l.o.g. Here are two objectives we consider:

Jpπq “ Edπ rrps, a, gqs (22)

J 1pπq “ Edπ
”

erps,a,gq
ı

(23)

In GCRL reward functions are sparse and binary. We show the equivalence of first two objectives in
find the optimal goal conditioned policy via two arguments. First, notice that the rewards for goal
transition states for objective J 1pπq is e and 1 for all other transitions. This is in contrast to Jpπq

which considers a reward function 1 at goal transitions states and 0 otherwise. Under our assumption
of infinite horizon discounted MDP, we can translate the rewards while keeping the optimal policy
same in MDP considered by J 1pπq to e´ 1 at goal transitions states and 0 otherwise. Further we can
scale the rewards by 1{pe´ 1q and recover and MDP with same optimal policy that has reward of 1
at goal-transition states and 0 otherwise. This concludes the equivalence of maximizing J 1pπq as an
alternative to Jpπq while recovering the same optimal policy.

We now consider a regularized (pessimistic/offline) GCRL problem with the shifted reward functions
erps,a,gq that maximizes the reward while ensuring the policy visitation stays close to offline data
visitation in cosine similarity.

Jofflinepπq “ α1Edπ
”

erps,a,gq
ı

` α2Edπps,a,gqrρps, a, gqs. (24)

With a particular instantiation of hyperparameters we show that the Jofflinepπq objective can be
simplified to an equivalent objective J 1

offlinepπq by setting α1 “ β2 and α2 “ βp1 ´ βqZ where Z
is the partition function for erps,a,gq over entire S ˆ A ˆ G.

J 1
offlinepπq “ EMixβpd,ρqps,a,gq

”

βerps,a,gq ` p1 ´ βqρps, a, gq.Z
ı

(25)

J 1
offlinepπq “ EMixβpd,ρqps,a,gq

”

βerps,a,gq ` p1 ´ βqρps, a, gq.Z
ı

(26)

“ β2Edπ
”

erps,a,gq
ı

` βp1 ´ βqZEdπ rρps, a, gqs (27)

` p1 ´ βqEdO
”

βerps,a,gq ` p1 ´ βqρps, a, gq.Z
ı

β (28)

(29)

“ β2Edπ
”

erps,a,gq
ı

` βp1 ´ βqZEdπ rρps, a, gqs ` C 1 (30)

“ Jofflinepπq ` C 1 (31)

Now that we have shown J 1
offlinepπq ” Jofflinepπq and hence solving the same optimization

problem, we proceed to derive connections with mixture occupancy matching which follows through
an application of Jensen’s inequality:
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log J 1
offlinepπq “ logEMixβpd,ρqps,a,gq

”

βerps,a,gq ` p1 ´ βqρps, a, gq.Z
ı

(32)

ě EMixβpd,ρqps,a,gq

”

logpβerps,a,gq ` p1 ´ βqρps, a, gq.Zq

ı

(33)

(34)
“ EMixβpd,ρqps,a,gqrlogpβqps, a, gq ` p1 ´ βqρps, a, gqqs ` logZ (35)

“ ´DKLrMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqs ´ HpMixβpd, ρqps, a, gqq ` logZ (36)

For any f -divergence that upperbounds the KL divergence since Z ě 1 we have:

log J 1
offlinepπq `

1

α
HpMixβpd, ρqps, a, gqq ě ´

1

α
Df pMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqq

(37)

Further simplifying using Eq 31:

log Jofflinepπq`
1

α
HpMixβpd, ρqps, a, gq`C ě ´

1

α
Df pMixβpd, ρqps, a, gq}Mixβpq, ρqps, a, gqq

(38)

Optimizing the mixture distribution matching objective of SMORe maximizes a variant of of-
fline/dataset regularized GCRL objective where the entropy for distribution Mixβpd, ρqps, a, gq

is jointly maximized. Therefore we have shown that the minimizing discrepancy of mixture distribu-
tion occupancy maximizes a lower bounds to an offline variant of maxent GCRL objective.

A.2 CONVEX CONJUGATES AND f -DIVERGENCES

We first review the basics of duality in reinforcement learning. Let f : R` Ñ R be a convex function.
The convex conjugate f˚ : R` Ñ R of f is defined by:

f˚pyq “ supxPR`
rxy ´ fpxqs. (39)

The convex conjugates have the important property that f˚ is also convex and the convex conjugate
of f˚ retrieves back the original function f . We also note an important relation regarding f and f˚:
pf˚q

1

“ pf 1q´1, where the 1 notation denotes first derivative.

Going forward, we would be dealing extensively with f -divergences. Informally, f -
divergences (Rényi, 1961) are a measure of distance between two probability distributions. Here’s a
more formal definition:

Let P and Q be two probability distributions over a space Z such that P is absolutely continuous
with respect to Q 4. For a function f : R` Ñ R that is a convex lower semi-continuous and fp1q “ 0,
the f -divergence of P from Q is

Df pP || Qq “ Ez„Q

„

f

ˆ

P pzq

Qpzq

˙ȷ

. (40)

Table 3 lists some common f -divergences with their generator functions f and the conjugate functions
f˚.

A.3 SMORE: DUAL OBJECTIVE FOR OFFLINE GOAL CONDITIONED REINFORCEMENT
LEARNING

In this section, we derive the dual objective for solving the multi-task occupancy problem formulation
for GCRL. First, we derive the original variant of SMORe for the GCRL problem and later derive the
action-free SMORe variant for the interested readers.

4Let z denote the random variable. For any measurable set Z Ď Z , Qpz P Zq “ 0 implies P pz P Zq “ 0.
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Divergence Name Generator fpxq Conjugate f˚pyq

KL (Reverse) x log x epy´1q

Squared Hellinger p
?
x´ 1q2

y
1´y

Pearson χ2 px´ 1q2 y `
y2

4

Total Variation 1
2 |x´ 1| y if y P r´ 1

2 ,
1
2 s otherwise 8

Jensen-Shannon ´px` 1q logpx`1
2 q ` x log x ´ log p2 ´ eyq

Table 3: List of common f -divergences.

Theorem 1. The dual problem to the primal occupancy matching objective (Equation 6) is given by:
max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` EMixβpq,ρqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs (7)

´ p1 ´ βqEρrγPπgSps, a, gq ´ Sps, a, gqs,
where f˚ is conjugate function of f and S is the Lagrange dual variable defined as S : S ˆAˆG Ñ

R. Moreover, as strong duality holds from Slater’s conditions the primal and dual share the same
optimal solution π˚

g for any offline transition distribution ρ.

Proof. Recall that: Mixβpd, ρqps, a, gq :“ βdps, a, gq`p1´βqρps, a, gq and Mixβpq, ρqps, a, gq :“
βqps, a, gq ` p1 ´ βqρps, a, gq. Mixβpd, ρqps, a, gq denotes the mixture between the current
agent’s joint-goal visitation distribution with an offline transition dataset potentially suboptimal
and Mixβpq, ρqps, a, gq is the mixture between the expert’s visitation distribution with arbitrary
experience from the offline transition dataset. Minimizing the divergence between these visitation
distributions still solves the occupancy problem, i.e dπg “ q when q is achievable. We start with the
primal formulation from Eq 6 for mixture divergence regularization:

max
dps,a,gqě0,πpa|sq

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

s.t dps, a, gq “ p1 ´ γqρ0ps, gq.πpa|s, gq ` γπpa|s, gq
ÿ

s1,a1

dps1, a1, gqpps|s1, a1q.

Applying Lagrangian duality and convex conjugate (39) to this problem, we can convert it to an
unconstrained problem with dual variables Sps, a, gq defined for all s, a P S ˆ A ˆ G:
max
π,dě0

min
Sps,a,gq

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

`
ÿ

s,a,g

Sps, a, gq

˜

p1 ´ γqd0ps, gq.πpa|s, gq ` γ
ÿ

s1,a1

dps1, a1, gqpps|s1, a1qπpa|s, gq ´ dps, a, gq

¸

(41)
“ max
π,dě0

min
Sps,a,gq

p1 ´ γqEd0ps,gq,πpa|s,gqrSps, a, gqs

` Es,a,g„d

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

(42)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (43)

“ max
π,dě0

min
Sps,a,gq

βp1 ´ γqEd0ps,gq,πpa|s,gqrSps, a, gqs

` βEs,a,g„d

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

(44)
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` p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

´ p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1, gqSps1, a1, gq ´ Sps, a, gq

ff

(45)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (46)

Now using the fact that strong duality holds in this problem we can swap the inner max and min
resulting in:

“ max
π

min
Sps,a,gq

max
Mixβpd,ρqps,a,gqě0

βp1 ´ γqEd0ps,gq,πpa|s,gqrSps, a, gqs

` βEs,a,g„d

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

` p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

´ p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1, gqSps1, a1, gq ´ Sps, a, gq

ff

(47)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (48)
(49)

We can now apply the convex conjugate (Eq. (39)) definition to obtain a closed form for the inner
maximization problem simplifying to:

max
πpa|s,gq

min
Sps,a,gq

βp1 ´ γqEd0ps,gq,πpa|s,gqrSps, a, gqs

` Es,a,g„Mixβpq,ρqps,a,gq

«

f˚pγ
ÿ

s1,a1

pps1|s, a, gqπpa1|s1qSps1, a1, gq ´ Sps, a, gqq

ff

´ p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1,a1

pps1|s, a, gqπpa1|s1qSps1, a1, gq ´ Sps, a, gq

ff

(50)

This completes our derivation of the SMORe objective. Since strong duality holds (objective convex,
constraints linear and feasible), SMORe and the primal mixture occupancy matching share the same
global optima π˚

g .

A.4 ACTION-FREE SMORE: DUAL-V OBJECTIVE FOR OFFLINE GOAL CONDITIONED
REINFORCEMENT LEARNING

The primal problem in Equation 6 is over-constrained. The objective determines the visitation
distribution d uniquely under a fixed policy. It turns out we can further relax this constraint to get an
objective that results in the same optimal solution (Agarwal et al., 2019) π˚

g by rewriting our primal
formulation as:

max
dps,a,gqě0

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

s.t
ÿ

a

dps, a, gq “ p1 ´ γqρ0ps, gq ` γ
ÿ

s1,a1

dps1, a1, gqpps|s1, a1q. (51)

Theorem 2. Let yps, a, gq “ γEs1„pp¨|s,aqrSps1, gqs ´ Sps, gq. The action-free dual problem to the
multi-task mixture occupancy matching objective (Equation 51) is given by:

min
Sps,gq

βp1 ´ γqEd0ps,gqrSps, gqs

`Es,a,g„Mixβpq,ρqps,a,gq

“

max
`

0, pf 1q´1 pyps, a, gqq
˘

yps, a, gq ´ f
`

max
`

0, pf 1q´1 pyps, a, gqq
˘˘‰

´ p1 ´ βqEs,a,g„ρ

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff
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where S is the lagrange dual variable defined as S : S ˆ G Ñ R . Moreover, strong duality holds
from Slater’s conditions the primal and dual share the same optimal solution π˚

g for any offline
transition distribution dO.

Proof. Proceeding as before and applying Lagrangian duality and convex conjugate (39) to this
problem, we can convert it to an unconstrained problem with dual variables Sps, gq defined for all
s, g P S ˆ G:

max
dě0

min
Sps,gq

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

`
ÿ

s,g

Sps, gq

˜

p1 ´ γqd0ps, gq ` γ
ÿ

s1,a1,g

dps1, a1, gqpps|s1, a1, gq ´
ÿ

a

dps, a, gq

¸

(52)

“ max
dě0

min
Sps,gq

p1 ´ γqEd0ps,gqrSps, gqs

` Es,a,g„d

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qSps1, gq ´ Sps, gq

ff

(53)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (54)

“ max
dě0

min
Sps,gq

βp1 ´ γqEd0ps,gqrSps, gqs

` βEs,a,g„d

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

` p1 ´ βqEs,a,g„dO

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

´ p1 ´ βqEs,a,g„dO

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

(55)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (56)

Now using the fact that strong duality holds in this problem we can swap the inner max and min
resulting in:

“ min
Sps,gq

max
Mixβpd,ρqps,a,gqě0

βp1 ´ γqEd0ps,gqrSps, gqs

` βEs,a,g„d

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

` p1 ´ βqEs,a,g„dO

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

´ p1 ´ βqEs,a,g„dO

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

(57)

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq (58)

Unlike previous case where constraints uniquely define a valid d for any given π, in this case we
need to take into account the hidden constraint d ě 0 or equivalently Mixβpd, ρqps, a, gq ě 0.
To incorporate the non-negativity constraints we consider the inner maximization separately and
derive a closed-form solution that adheres to the non-negativity constraints. Recall yps, a, gq “

Es1„pps,aqrSps1, gqs ´ Sps, gq.
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max
Mixβpd,ρqps,a,gqě0

Es,a,g„Mixβpd,ρqps,a,gq

«

γ
ÿ

s1

pps1|s, aqSps1, gq ´ Sps, gq

ff

´Df pMixβpd, ρqps, a, gq || Mixβpq, ρqps, a, gqq

We can now construct the Lagrangian dual to incorporate the constraint Mixβpd, ρqps, a, gq ě 0 in

its equivalent form wps, a, gq ě 0 and obtain the following where w ∆
“

Mixβpd,ρqps,a,gq

Mixβpq,ρqps,a,gq
:

max
wps,a,gq

max
λě0

Es,a„Mixβpq,ρqps,a,gqrwps, a, gqyps, a, gqs ´ EMixβpq,ρqps,a,gqrfpwps, a, gqqs `
ÿ

s,a,g

λpwps, a, gq ´ 0q

(59)

Since strong duality holds, we can use the KKT constraints to find the solutions w˚ps, a, gq and
λ˚ps, a, gq.

1. Primal feasibility: w˚ps, a, gq ě 0 @ s, a

2. Dual feasibility: λ˚ ě 0 @ s, a

3. Stationarity: Mixβpq, ρqps, a, gqp´f 1pw˚ps, a, gqq ` yps, a, gq ` λ˚ps, a, gqq “ 0 @ s, a

4. Complementary Slackness: pw˚ps, a, gq ´ 0qλ˚ps, a, gq “ 0 @ s, a

Using stationarity we have the following:
f 1pw˚ps, a, gqq “ yps, a, gq ` λ˚ps, a, gq @ s, a, g (60)

Now using complementary slackness, only two cases are possible w˚ps, a, gq ě 0 or λ˚ps, a, gq ě 0.
Combining both cases we arrive at the following solution for this constrained optimization:

w˚ps, aq “ max
´

0, f 1´1
pyps, a, gqq

¯

(61)

Using the optimal closed-form solution (w˚) for Mixβpd, ρqps, a, gq of the inner optimization in
Eq. (57) we obtain

min
Sps,aq

βp1 ´ γqEd0psqrSps, gqs

` Es,a,g„Mixβpq,ρqps,a,gq

“

max
`

0, pf 1q´1 pyps, a, gqq
˘

yps, a, gq ´ αf
`

max
`

0, pf 1q´1 pyps, a, gqq
˘˘‰

´ p1 ´ αqEs,a„ρ

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qSps1, gq ´ Sps, gq

ff

(62)

For deterministic dynamics, this reduces to the action-free SMORe objective:
min
Sps,aq

βp1 ´ γqEd0psqrSps, gqs

` Es,a„Mixβpq,ρqps,a,gq

“

max
`

0, pf 1q´1 pyps, a, gqq
˘

yps, a, gq ´ f
`

max
`

0, pf 1q´1 pyps, a, gqq
˘˘‰

´ p1 ´ βqEs,a„ρ

“

γSps1, gq ´ Sps, gq
‰

(63)

where yps, a, gq “ γSps1, gq ´ Sps, gq.

Note that we no longer need actions in the offline dataset to learn an optimal goal conditioned score
function. This score function can be used to learn presentation in action-free datasets as well as for
transfer of value function across differing action-modalities where agents share the same observation
space (eg. images as observations).
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B SMORE ALGORITHMIC DETAILS

B.1 SMORE WITH COMMON f -DIVERGENCES

a. KL divergence

We consider the reverse KL divergence and start with the general SMORe objective:
max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs

´ p1 ´ βqEs,a,g„ρrγPπgSps, a, gq ´ Sps, a, gqs (64)

Plugging in the conjugate f˚ for reverse KL divergence we get:

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gq

”

epγPπgSps,a,gq´Sps,a,gqq
ı

´ p1 ´ βqEs,a,g„ρrγPπgSps, a, gq ´ Sps, a, gqs (65)

Using the telescoping sum for the last term in the objective above, we can simplify it as follows:

max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gq

”

epγPπgSps,a,gq´Sps,a,gqq
ı

` p1 ´ βqEs,g„d0,a„ρp¨|s,gqrSps, a, gqs (66)

With the initial state distribution d0 set to the offline dataset distribution ρ, and Since our initial state
distribution is the same as offline data distribution, we get:

max
πg

min
S
βp1 ´ γqEρ,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gq

”

epγPπgSps,a,gq´Sps,a,gqq
ı

` p1 ´ βqEρrSps, a, gqs (67)

Collecting terms together we get:

max
πg

min
Q

EρrEa„πrβp1 ´ γqSps, a, gqs ` Ea„ρrp1 ´ βqSps, a, gqss

` Es,a,g„Mixβpq,ρqps,a,gq

”

epγPπgSps,a,gq´Sps,a,gqq
ı

(68)

The objective for SMORe with reverse KL divergence pushes down the ”score” of offline dataset
transitions selectively (without pushing down score of the goal-transition distribution) while minimiz-
ing the term resembling bellman regularization that also encourages increasing score at the mixture
dataset jointly over the offline dataset as well as the goal transition distribution.

b. Pearson chi-squared divergence

We consider the Pearson χ2 and start with the general SMORe objective:
max
πg

min
S
βp1 ´ γqEd0,πg

rSps, a, gqs ` Es,a,g„Mixβpq,ρqps,a,gqrf˚pγPπgSps, a, gq ´ Sps, a, gqqs

´ p1 ´ βqEs,a,g„ρrγPπgSps, a, gq ´ Sps, a, gqs (69)

With the initial state distribution d0 set to the offline dataset distribution ρ, and plugging in the
conjugate f˚ for Pearson χ2 divergence we get:

max
πg

min
S
βp1´γqEd0,πg

rSps, a, gqs`0.25Es,a,g„Mixβpq,ρqps,a,gq

“

pγPπgSps, a, gq ´ Sps, a, gqq2
‰

`Es,a,g„Mixβpq,ρqps,a,gqrpγPπgSps, a, gq ´ Sps, a, gqqs´p1´βqEs,a,g„ρrγPπgSps, a, gq ´ Sps, a, gqs

(70)
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Using the fact that Mixβpq, ρqps, a, gq “ βqps, a, gq ` p1´ βqρps, a, gq, we can further simplify the
above equation to:

max
πg

min
S
βp1´γqEd0,πg

rSps, a, gqs`0.25Es,a,g„Mixβpq,ρqps,a,gq

“

pγPπgSps, a, gq ´ Sps, a, gqq2
‰

` βEs,a,g„qrpγP
πgSps, a, gq ´ Sps, a, gqqs (71)

Collecting terms together we get:

max
πg

min
S
βp1 ´ γqEρ,πg

rSps, a, gqs ` βEs,g„q,a„πg
rγPπgSps, a, gqs

´ βEs,a,g„qrSps, a, gqs ` 0.25Es,a,g„Mixβpq,ρqps,a,gq

“

pγPπgSps, a, gq ´ Sps, a, gqq2
‰

(72)

Observing the equation above, we note that the first two terms decrease score at offline data distribution
as well as the goal transition distribution when actions are sampled according to the policy πg.
Simultaneously the third term pushes score up for the ts, a, gu tuples that are sampled from goal
transition distribution. Finally the last term encouraged enforces a bellman regularization enforcing
smoothness is the scores of neighbouring states.

C SMORE EXPERIMENTAL DETAILS

C.1 TASKS WITH OBSERVATIONS AS STATES

Environments: For the offline GCRL experiments we consider the benchmark used in prior work
GoFar and extend it with locomotion tasks. For the manipulations tasks we consider the Fetch
environment and a dextrous shadow hand environment. Fetch environments (Plappert et al., 2018)
consists of a manipulator with seven degrees of freedom along with a parallel gripper. The set of
environments get a sparse reward of 1 when the goal is within 5 cm and 0 otherwise. The action
space is 4 dimensional (3 dimension cartesian control + 1 dimension gripper control). The shadow
hand is 24 DOF manipulator with 20-dimensional action space. The goal is 15-dimension specifying
the position for each of the five fingers. The tolerance for goal reaching is 1 cm. For the locomotion
environments, the task is to achieve a particular velocity in the x direction and stay at the velocity. For
HalfCheetah, the target velocity is set to 11.0 and for Ant the target velocity is 5.0. For locomotion
environments, the tolerance for goal reaching if 0.5. The MuJoCo environments used in this work are
licensed under CC BY 4.0.

Offline Datasets: We use existing datasets from the offline GCRL benchmark used in (Ma et al.,
2022) for all manipulation tasks except Reacher, SawyerReach, and SawyerDoor. For Reacher,
SawyerReach, and SawyerDoor we use existing datasets from (Yang et al., 2022). These datasets are
comprised on x% random data and (100-x)% expert data depending on the coverage over goals reached
in individual datasets. We create our own datasets for locomotion by using ’random/medium/medium-
replay’ data as our offline (suboptimal) data combined with 30 trajectories from corresponding
’expert’ datasets. The datasets used from D4RL are licensed under Apache 2.0.

Baselines: To benchmark and analyze the performance of our proposed methods for offline imitation
learning with suboptimal data, we consider the following representative baselines in this work:
GoFAR (Ma et al., 2022), WGCSL (Yang et al., 2022), GCSL (Ghosh et al., 2019), and Actionable
Models (Chebotar et al., 2021), Contrastive RL (Eysenbach et al., 2020) and GC-IQL Kostrikov et al.
(2021). GoFAR is a dual occupancy matching approach to GCRL that formulates it as a weighted
regression problem. WGCSL and GSCL use goal-conditioned behavior cloning with goal relabelling
as the base algorithms and WGCL uses weights to learn improved policy over GCSL. Actionable
models uses conservative learning with goal chaining to learn goal-reaching behaviours using offline
datasets. Contrastive RL treats GCRL as a classification problem - contrastive goals that are achieved
in trajectory from random goals. Finally, GC-IQL extends the single task offline RL algorithm IQL
to GCRL.

The open-source implementations of the baselines GoFAR, WGCSL, GCSL, Actionable models,
Contrastive RL and IQL are provided by the authors (Ma et al., 2022) and employed in our experiments.
We use the hyperparameters provided by the authors, which are consistent with those used in the
original GoFAR paper, for all the MuJoCo locomotion and manipulation environments. We implement
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contrastive learning using the code from Contrastive RL repository. GC-IQL is implemented using
code from author’s implementation found here.

Architecture and Hyperparameters For the baselines, we use tuned hyperparameters from previous
works that were tuned on the same set of tasks and datasets. Implementation for SMORe shares the
same network architecture as baselines. GoFAR additionally requires training a discriminator. For
all experiments, all methods are trained for 10 seeds with each training run. Fetch manipulation
(except Push) tasks are trained for a maximum of 400k minibatch updates of size 512 whereas
all other environments training is done for 1M minibatch updates. The expectile parameter τ was
searched over [0.65 ,0.7,0.8,0.85]. For the results shown in table 1, Fetch and Sawyer environments
use τ “ 0.8, Locomotion and Adroit hand environments use τ “ 0.7. In general, the HER ratio is
searched over [0.2,0.5,0.8,1.0] for all methods and the best one was selected. HER ratio of 0.8 gave
best performance across all tasks for SMORe.

The architectures and hyperparameters for all methods are reported in Table 4.
Hyperparameter Value
Policy updates npol 1
Policy learning rate 3e-4
Value learning rate 3e-4
MLP layers (256,256)
LR decay schedule cosine
Discount factor 0.99
LR decay schedule cosine
Batch Size 512
Mixture ratio β 0.5
Policy temperature (α) 3.0

Table 4: Hyperparameters for SMORe.

C.2 TASKS WITH OBSERVATIONS AS IMAGES

Hyperparameters Values

batch size 2048

number of training epochs 300

number of training iterations per
epoch

1000

Horizon 400

image encoder architecture 3-layer CNN

policy network architecture (1024, 4) MLP

critic/score network architecture (1024, 4) MLP

weight initialization for final layers
of critic and policy

UNIFr´10´12, 10´12s

policy std deviation 0.15

representation dimension 16

data augmentation random cropping

discount factor 0.99

learning rate 3e-4

Table 5: Hyperparameters for image-observation GCRL from Zheng et al. (2023).

Tasks and dataset Our experiments use a suite of simulated goal-conditioned control tasks based
on prior work Zheng et al. (2023). The observations and goals are 48 ˆ 48 ˆ 3 RGB images. The
evaluation tasks require multi-trajectory stitching whereas the dataset contains trajectories solving
only parts of the evaluation tasks.
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Task Behavior cloning Contrastive RL RL+sparse reward
WGCSL GCSL CRL AM IQL

Reacher 15.30 ˘0.58 14.01 ˘0.36 16.62 ˘2.09 23.68˘0.58 8.86 ˘ 0.61

SawyerReach 14.06 ˘0.08 12.05˘1.23 23.03˘1.17 23.37˘2.29 36.19 ˘ 0.01

SawyerDoor 16.79˘0.75 18.29˘0.94 12.26 ˘3.94 16.63 ˘0.76 29.31˘ 0.88

FetchPick 6.87˘ 0.77 6.54 ˘ 1.85 0.21˘ 0.29 0.45 ˘ 0.32 15.24˘ 1.27

FetchPush 10.62˘ 0.98 12.38 ˘ 1.10 3.60 ˘ 0.59 2.74 ˘ 0.70 19.95 ˘ 1.94

FetchSlide 2.62˘ 1.15 2.03 ˘ 0.01 0.41˘ 0.03 0.31 ˘ 0.31 3.25 ˘ 1.02

Table 6: Discounted Return for the offline GCRL benchmark with 5% expert data. Results are averaged over 10
seeds.

Task Behavior cloning Contrastive RL RL+sparse reward
WGCSL GCSL CRL AM IQL

Reacher 13.03˘0.56 12.17 ˘0.8 19.63 ˘3.09 24.78˘0.23 4.44˘ 0.70

SawyerReach 11.455˘1.37 11.34˘1.18 25.35 ˘0.8 25.19˘0.61 35.73 ˘ 0.22

SawyerDoor 16.79˘0.29 13.20˘0.53 14.78 ˘5.29 16.59 ˘1.39 16.87 ˘ 4.21

FetchPick 4.39˘ 1.35 4.99 ˘ 0.11 0.21˘ 0.29 0.24˘ 0.27 11.79 ˘ 1.78

FetchPush 8.01˘ 1.96 8.04˘ 0.34 3.60˘ 0.59 2.02˘ 0.48 19.66 ˘ 1.69

FetchSlide 2.33˘ 0.23 2.37 ˘ 0.83 0.44 ˘ 0.016 0.45˘ 0.44 1.83˘ 1.31

Table 7: Discounted Return for the offline GCRL benchmark with 2.5% expert data. Results are averaged over
10 seeds.

In the simulation, we employed an offline manipulation dataset comprising near-optimal examples
of basic action sequences, including the initiation of drawer movement, the displacement of blocks,
and the grasping of items. The demonstrations exhibit variations in length, ranging between 50 to
100 horizon, while the offline dataset contains a total of 250,000 state transitions in its entirety. It is
important to note that the offline trajectories do not depict a complete progression from the initial
condition to the final objective. For the purposes of evaluation, we consider 4 tasks similar to Zheng
et al. (2023), against which we compare the success rates in realizing these specified objectives.

Baseline and SMORe implementations. We use the open-source implementation of Stable-
contrastive RL to use the same design decisions and implement SMORe, GC-IQL on that code-
base. We use the same hyperparameters as the stable-contrastive RL implementation for the shared
hyperparameters. The hyperparameters for SMORe were kept the same as in Table 4.

D ADDITIONAL EXPERIMENTS

D.1 RESULTS ON OFFLINE GCRL BENCHMARK WITH VARYING EXPERT COVERAGE IN
OFFLINE DATASET

We ablate the effect of dataset quality on the performance of an offline GCRL method in this sections.
Table 6, 7, 8 show performance of all methods with 5%, 2.5% and 1% expert data in the offline
dataset respectively.

D.2 SUCCESS RATE AND FINAL DISTANCE TO GOAL ON MANIPULATION TASKS

Table 10 and Table 11 reports the success rate and final distance to goal metrics on manipulation
tasks.

D.3 ROBUSTNESS OF MIXTURE DISTRIBUTION PARAMETER β

We find that SMORe is quite robust to the mixture distribution parameter β except in the environment
FetchPush where β “ 0.5 is the most performant. Table 9 shows this result empirically.
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Task Behavior cloning Contrastive RL RL+sparse reward
WGCSL GCSL CRL AM IQL

Reacher 13.56˘0.69 12.27 ˘1.45 17.94˘3.71 24.89˘0.34 4.28 ˘ 0.92

SawyerReach 10.71 ˘0.69 11.79˘1.46 25.61˘0.39 25.54˘0.95 31.31 ˘ 2.08

SawyerDoor 15.18 ˘0.81 11.89˘1.51 10.26˘4.61 18.04˘1.8 17.11 ˘ 4.45

FetchPick 1.89 ˘ 1.22 3.30 ˘ 0.66 0.42 ˘ 0.29 0.41 ˘ 0.22 7.90 ˘ 1.22

FetchPush 6.44 ˘ 3.64 6.43 ˘ 0.56 1.69 ˘ 1.56 2.63˘ 3.04 7.11 ˘ 2.60

FetchSlide 1.77 ˘ 0.24 1.11˘ 0.26 0.0 ˘ 0.0 0.10 ˘ 0.11 0.80 ˘ 0.48

Table 8: Discounted Return for the offline GCRL benchmark with 1% expert data. Results are averaged over 10
seeds.

D.4 HOW MUCH DOES HER CONTRIBUTE TO THE PERFORMANCE IMPROVEMENTS OF
SMORE?

GoFAR demonstrated improved performance without relying on HER. The authors also demonstrated
that HER is detrimental to GoFAR’s performance. In this section, we aim to conduct a similar
stufy and see how much HER contributed to SMORe’s performance. Table 12 shows that HER gives
SMORe a small performance boost and show that SMORe is still able to outperform GoFAR without
HER.

D.5 COMPARISON TO VARIANTS OF GOFAR

GoFAR formulates GCRL as an occupancy matching problem, but it is also suggested that using a
discriminator is optional. Without a discriminator, GoFAR reduces to a sparse reward RL problem.
Table 13 shows that GoFAR achieves poor performance when a reward function is substituted in
place on an discriminator. We also study if the performance benefits we obtain are due to the offline
learning strategy we used from IQL. We modify GoFAR with discriminator reward to use expectile
loss for value learning and AWR for policy learning. Results in Table 13 shows that no performance
gains were observed.

D.6 OFFLINE GCRL WITH PURELY SUBOPTIMAL DATA

In this experiment, we study offline GCRL from purely suboptimal datasets. Except FetchReach,
these datasets provide very sparse coverage of goals expected to reach in evaluation. Table 14 shows
the robustness of SMORe even in the setting of poor quality offline data.

D.7 COMPARISON WITH IN-SAMPLE LEARNING METHODS

In-sample learning methods perform value improvement using bellman backups without OOD action
sampling. This makes them a particularly suitable candidate for offline setting. We compare against
a number of recent in-sample learning methods, IQL (Kostrikov et al., 2021), SQL/EQL Xu et al.
(2023) and XQL (Garg et al., 2023). Table 15 compares SMORe to in-sample learning methods
adapted to GCRL.

D.8 ABLATING COMPONENTS OF SMORE FOR OFFLINE SETTING

In offline setting, it is well known that bellman backups suffer from overestimation and results in
poor policy performance. We validate the utility of the components used in this work in Table 16 :
expectile loss function and constrained policy optimization with AWR.
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Task β “ 0.5 β “ 0.7 β “ 0.8 β “ 0.9

FetchReach 35.08 ˘ 0.54 36.57 ˘ 0.20 36.59˘ 0.30 36.30˘ 0.30

FetchPick 26.47˘ 0.34 27.04˘ 0.81 27.43˘ 0.97 27.89 ˘ 1.19

FetchPush 26.83 ˘ 1.21 16.20˘ 1.11 11.50˘ 1.19 13.85˘ 5.53

FetchSlide 4.99˘ 0.40 3.76˘ 0.75 3.43˘ 2.4 4.10˘ 1.20

Table 9: Discounted Return for the offline GCRL benchmark with varying mixture coefficients in offline dataset.
Results are averaged over 10 seeds.

Task Occupancy Matching Behavior cloning Contrastive RL RL+sparse reward
SMORe GoFAR WGCSL GCSL CRL AM IQL

Reacher 0.875˘0.07 0.90˘0.01 0.97˘0.014 0.92 ˘0.08 0.76˘0.74 1.0˘0.1 0.26 ˘ 0.06

SawyerReach 0.98˘0.014 0.75˘0.04 1.0˘0.0 0.98˘0.02 0.98˘0.018 1.0˘0.1 0.81 ˘ 0.01

SawyerDoor 0.875˘0.038 0.5˘0.12 0.78 ˘0.10 0.5˘0. 12 0.22˘0.11 0.3˘0.11 0.84 ˘ 0.06

FetchReach 1.0˘ 0.0 1.0 ˘ 0.0 1.0˘ 0.0 0.98 ˘ 0.05 1.0˘ 0.0 1.0˘ 1.0 1.0 ˘ 0.0

FetchPick 0.925 ˘ 0.045 0.84 ˘ 0.09 0.54˘ 0.16 0.54 ˘ 0.20 0.42 ˘ 0.29 0.78 ˘ 0.15 0.86 ˘ 0.11

FetchPush 0.90˘ 0.07 0.88˘ 0.09 0.76˘ 0.12 0.72 ˘ 0.15 0.06˘ 0.03 0.67˘ 0.14 0.65 ˘ 0.052

FetchSlide 0.315˘ 0.07 0.18 ˘ 0.12 0.18˘ 0.14 0.17˘ 0.13 0.0 ˘ 0.0 0.11˘ 0.09 0.26˘ 0.057

HandReach 0.47˘ 0.11 0.40 ˘ 0.20 0.25˘ 0.23 0.047˘ 0.10 0.0˘ 0.0 0.0 ˘ 0.0 0.0 ˘ 0.0

Table 10: Success Rate for the offline GCRL benchmark with 10% expert data. Results are averaged over 10
seeds.

Task Occupancy Matching Behavior cloning Contrastive RL RL+sparse reward
SMORe GoFAR WGCSL GCSL CRL AM IQL

Reacher 0.02˘0.01 0.03˘0.01 0.011˘0.01 0.016 ˘0.00 0.05˘0.03 0.013˘0.00 0.12˘ 0.005

SawyerReach 0.008˘0.004 0.04˘0.00 0.004˘0.00 0.00˘0.00 0.01˘0.01 0.01 ˘0.00 0.053 ˘ 0.004

SawyerDoor 0.02˘0.029 0.18˘0.00 0.011˘0.00 0.017˘0.01 0.14˘0.07 0.06 ˘0.01 0.019 ˘ 0.01

FetchReach 0.004˘ 0.0012 0.018˘ 0.003 0.007˘ 0.0043 0.008 ˘ 0.008 0.007 ˘ 0.001 0.007 ˘ 0.001 0.002˘ 0.001

FetchPick 0.04˘ 0.018 0.036 ˘ 0.013 0.094˘ 0.043 0.108˘ 0.06 0.25 ˘ 0.025 0.04˘ 0.02 0.04˘ 0.012

FetchPush 0.03˘ 0.003 0.033˘ 0.008 0.041˘ 0.02 0.042˘ 0.018 0.15˘ 0.036 0.07˘0.039 0.05˘ 0.006

FetchSlide 0.09˘ 0.012 0.12 ˘ 0.02 0.173˘ 0.04 0.204˘ 0.051 0.42˘ 0.05 0.198˘ 0.059 0.09˘ 0.013

HandReach 0.039˘ 0.0108 0.024˘ 0.009 0.035 ˘ 0.012 0.038˘ 0.013 0.04 ˘ 0.005 0.037 ˘0.004 0.08 ˘ 0.005

Table 11: Final distance to goal for the offline GCRL benchmark with 10% expert data. Results are averaged
over 10 seeds.

Task SMORe SMORe w/o HER GoFAR

FetchReach 35.08 ˘ 0.54 34.86˘ 1.03 28.2˘0.61

SawyerReach 37.67˘ 0.12 37.34˘ 0.36 15.34˘0.64

SawyerDoor 31.48˘ 0.46 31.53˘ 0.62 18.94˘0.01

FetchPick 26.47˘ 0.34 25.72˘ 3.88 19.7˘2.57

FetchPush 26.83 ˘ 1.21 25.62˘ 1.67 18.2˘3.00

FetchSlide 4.99˘ 0.40 4.09˘ 0.33 2.47˘1.44

Table 12: Performance gains using HER (resampling ratio=0.8) on SMORe. All other hyperparameters are kept
the same between SMORe and SMORe w/o HER.

Task SMORe GoFAR (discriminator) GoFAR (sparse reward) r-GoFAR (sparse reward) GoFAR (expectile loss+AWR)

FetchReach 35.08 ˘ 0.54 28.2˘0.61 26.1˘1.14 0.30˘0.43 26.90˘0.41

SawyerReach 37.67˘ 0.12 15.34˘0.64 — 0.34˘0.33 16.17˘3.02

SawyerDoor 31.48˘ 0.46 18.94˘0.01 — 10.36˘3.27 22.47˘1.13

FetchPick 26.47˘ 0.34 19.7˘2.57 17.4˘1.78 0.25˘ 0.02 18.46˘ 2.72

FetchPush 26.83 ˘ 1.21 18.2˘3.00 17.4˘2.67 4.23˘3.96 17.39˘5.44

FetchSlide 4.99˘ 0.40 2.47˘1.44 5.13˘4.05 0.29˘0.03 3.59˘2.30

Table 13: Ablation comparison with GoFAR: a) a sparse binary reward is used in place of a learned discriminator
in GoFAR b) The policy and value update is replaced by AWR and expectile loss respectively. The main
difference with SMORe remains the use of discriminator for training. — indicates these environments were not
considered in (Ma et al., 2022). Our reproduced results (denoted by r-) with the official code base for binary
results did not match up to the reported results.
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Task SMORe GoFAR WGCSL GC-IQL

FetchReach 35.01˘ 0.47 27.37˘0.4 21.65˘0.61 23.72˘1.18

SawyerReach 36.26˘ 0.93 5.89˘1.36 7.27˘1.14 33.08˘0.81

SawyerDoor 20.28˘ 2.65 15.33˘1.30 13.81˘2.72 16.05˘4.97

FetchPick 0.61˘ 0.5 0.0˘0.0 0.0˘0.0 1.31˘1.86

FetchPush 6.39˘ 0.68 4.23˘3.96 4.27˘3.9 2.63˘1.68

FetchSlide 0.42˘0.01 0.059˘0.08 0.93˘0.69 0.75˘0.58

Table 14: Discounted Return for the offline GCRL benchmark with 0% expert data. Results are averaged over
10 seeds.

Task SMORe GC-IQL GC-SQL GC-EQL GC-XQL

FetchReach 35.08 ˘ 0.54 34.43˘ 1.00 35.67˘0.70 29.23˘0.2 33.94˘0.49

SawyerReach 37.67˘ 0.12 35.18˘ 0.29 37.10˘0.24 30.19˘1.66 32.88˘2.85

SawyerDoor 31.48˘ 0.46 25.52˘ 1.45 27.96˘0.45 3.57˘3.51 5.85˘4.21

FetchPick 26.47˘ 0.34 16.8˘ 3.10 18.35˘6.67 1.31˘1.86 1.31˘1.82

FetchPush 26.83 ˘ 1.21 22.40˘ 0.74 17.19˘2.56 2.64˘1.30 3.79˘0.21

FetchSlide 4.99˘ 0.40 4.80˘ 1.59 4.68˘3.32 0.06˘0.08 0.36˘0.52

Table 15: Comparison of SMORe to in-sample RL methods - IQL (Kostrikov et al., 2021),SQL/EQL (Xu et al.,
2023), XQL (Garg et al., 2023) that learn from sparse rewards. — in EQL denotes the learning diverged. We
observed IQL to be the most stable alternative compared to SQL, EQL and XQL. SQL, EQL and XQL were
implemented using author’s official codebase

Task SMORe SMORe (w/o AWR) SMORe (w/o AWR and Expectile loss)

FetchReach 35.08 ˘ 0.54 0.30˘0.29 0.10˘0.13

SawyerReach 36.26 ˘ 0.93 29.31˘0.53 29.64˘0.62

SawyerDoor 20.28 ˘ 2.65 5.06˘0.52 2.11˘1.59

FetchPick 26.47˘ 0.34 1.79˘0.65 1.77˘1.51

FetchPush 26.83 ˘ 1.21 4.60˘2.51 2.69˘1.01

FetchSlide 4.99˘ 0.40 0.22˘0.33 0.50˘0.02

Table 16: Ablating practical components of SMORe. Without adapting for offline setting we consider in this
work by using in-sample maximization or constrained policy optimization using AWR the performance degrades
as expected. Without in-sample-maximization value function explodes in the offline setting and using policy that
maximizes Q can often select OOD actions leading to poor performance.
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