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ABSTRACT

Achieving adversarial robustness is a critical aspect of ensuring the security and
reliability of machine learning models, particularly in applications where trustwor-
thiness is paramount. This paper delves into the theoretical aspects and impact of
width of the local minima and learning parameters on adversarial robustness in
Deep Neural Networks (DNNs) for image classification tasks. Through our inves-
tigation of gradient learning methods, we identify that certain optimization param-
eters can enhance robustness without compromising prediction quality. Building
on these findings, we introduce a novel adversarial defense technique aimed at
improving the model’s resilience against attacks.

1 INTRODUCTION

Adversarial robustness (Khamaiseh et al. 2022, Bountakas et al. 2023) of a machine learning model
refers to the ability of the model to maintain its performance even when it is presented with inten-
tionally crafted inputs designed to deceive or mislead the model. These inputs, known as adversarial
examples, are purposefully perturbed data points that are indistinguishable to humans but can cause
the model to make incorrect predictions.

Adversarial attacks on machine learning models can be used to exploit edge cases, leading to po-
tential incorrect responses and security breaches. In this case robustness of the model protects from
such manipulation of the responses. As a result, adversarial robustness is included as one of the im-
portant quality characteristics of trustworthiness of a machine learning system (Zhang & Li, 2019;
Hu et al., 2021; Akhtar et al., 2021) so that the system behaves predictably and consistently even in
the presence of adversarial inputs.

Adversarial training (Madry et al., 2017; Kannan et al., 2018) is one of popular methods to improve
robustness. Such training involves augmenting the training data with adversarial examples gener-
ated during training with FGSM (Goodfellow et al., 2014), PGA (Zhu et al., 2024), MIM (Dong
et al., 2018), ALP (Goodman et al., 2019). As a result, the model learns to better generalize and
make accurate predictions (Bai et al., 2021) even on adversarial inputs. Adversarial detection meth-
ods (Cohen et al., 2020; Aldahdooh et al., 2022) help protect the model during inference. Feature
squeezing reduces the precision of the inputs, defensive distillation methods smoothes out decision
boundaries, input randomization makes more difficult to input adversarial examples, outlier detec-
tion methods (Deng et al., 2021) help identify adversarial inputs, activation clustering monitors the
neuron activations in the model to detect the adversarial inputs (Zhang et al., 2020).

Adversarial robustness is commonly evaluated by comparing the performance of the model on clean
data with the performance in presence of adversarial inputs (Zhu et al., 2024; Dong et al., 2018).
Adversarial inputs can be produced by black-box methods, which only use inputs and outputs of
the model during inference, and white-box methods that have access to the model structure and
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parameters. Overall, white-box methods such as FGSM (Goodfellow et al., 2014), PGA (Zhu et al.,
2024) produce more powerful adversarial examples with fewer interactions with the model.

In this paper, we investigate whether the properties of the loss function near the minimum found by
the training procedure influence the robustness of the model, so that selecting a specific minimum
from a range of many similar ones helps improve the adversarial robustness.

The approach we propose differs from the adversarial training in that we do not change nor augment
the input training data, the loss function and the optimizer remain the same. It is applied during
training only and as such differs from adversarial detection and evasion methods that protect the
model during inference. As the proposed approach only concerns finding appropriate minima of the
given loss function, it could be well combined with other defense methods thus further improving
the robustness.

The rest of the paper is organized as follows. In the next Section 2, we briefly provide a background
on adversarial defense methods and position the proposed approach among them, in Section 3 we
describe the motivation and research methodology and provide a more formal explanation of the
method in Section 4. An experimental evaluation on an image classification task on a popular
MNIST dataset with FGSM attack is given in Section 5 and additional details in Appendix A.

2 BACKGROUND

Adversarial attacks are widely studied in the literature. There are several surveys (Khamaiseh et al.,
2022; Liang et al., 2022; Bountakas et al., 2023) that propose similar classifications for attacks
and defense methods. In this study we are concerned only with white-box attacks, that is when an
adversary has complete knowledge about the structure and parameters of the predictive model, the
optimization algorithm, the loss function and the training dataset (Biggio et al., 2013; Papernot et al.,
2017; Khamaiseh et al., 2020). The goal of a white-box attack is to add a small perturbation ρ to
the original item x to get an adversarial example x̂ = x+ ρ, so that the model predicts an incorrect
class or specific target class. We briefly cover some of the methods to obtain x̂.

The untargeted C&W attacks (Carlini & Wagner, 2017) generate adversarial examples by solving
the following optimization problem:

min
ρ

∥ρ∥p + c · g(x+ ρ),

s.t. x+ ρ ∈ [0; 1]n,

where ∥·∥p is the Lp norm and g is penalty function to avoid solving a constrained problem f(θ, x+
ρ) = ŷ (Carlini & Wagner, 2017). An example of such function could be g(x) = 1 − L(x, ŷ; θ)
for a loss function L. A Fast Gradient Sign method (FGSM) is more computationally efficient
(Goodfellow et al., 2014). For item x and a small parameter ε it solves the problem

x̂ = x− ε · sign {∇XL(x, y; θ)} ,

Defense methods against adversarial attacks could be divided into three groups (Liang et al., 2022;
Bountakas et al., 2023). Methods in the first group modify the structure of the predictive model to
improve adversarial robustness. Papernot et al. (Papernot et al., 2016) introduced defensive distil-
lation, that is transfer knowledge from a non-robust teacher neural network to a more simple but
robust student network. Gradient regularization (Addepalli et al., 2020; Ma et al., 2020) penal-
izes slight variations in the input data during training, so that the model becomes immune to small
perturbations.

Methods in the second group change the input data. In adversarial training, the training data is
augmented with adversarial examples (Szegedy et al., 2013; Madry et al., 2018; Sinha et al., 2018),
so that the learned model is more robust to the included types of attacks. Online defense methods
remove the adversarial noise from the input data (Samangouei et al., 2018). For instance, PuVAE
method (Hwang et al., 2019) denoises inputs with a pretrained variational autoencoder.

The third method group add another network to the given model to defend it from adversarial ex-
amples. Some of them detect and remove adversarial examples in the training data (Meng & Chen,
2017; Cohen et al., 2020). The integrated defense technique (He et al., 2017; Yu et al., 2019) splits
the model into two parts. The first is public and it is the original model known to the attacker. The
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second is private and combines a few neural networks unknown to the attacker. As a result a pure
white-box attack is complicated.

Properties of the local minima of the loss function have been studied in the context of adversarial
training (Madry et al., 2018; Sinha et al., 2018). This study takes on a different way and relies on
the stochasticity of the gradient during training instead of adding adversarial examples to the data.
As a result the overall process and input data does not change. However, some theoretical findings
could also be applied in this study.

The ”flatness” of a local minimum is usually defined as max∥δ∥∞≤ε{L(f(x+δ, θ), y)} (Stutz et al.,
2021). The authors also show that achieving flat minima helps with the adversarial robustness (Stutz
et al., 2021; Izmailov et al., 2018). They, however, do not propose any methods for avoiding sharp
minima, and the relationship between the minimum on the model weights and the input data is not
explored. Learning rate or batch size may better correlate with generalization than non-flatness or
sharpness (Andriushchenko et al., 2023).

A Stochastic Averaging Method (SAM) (Foret et al., 2020) for finding flat minima looks for parame-
ters that lie in neighbourhoods with uniformly low loss by solving a min-max optimization problem.
Flooding method (Liu et al., 2022) is to correct the loss function to L̃ = |L − b| + b, so that the
model reaches sharp minima rarely. A role of the noise in SGD is important for generalization (Wu
et al., 2022). The authors explore a special SGD noise structure: concentrated in sharp directions of
the local landscape and proportional to the loss function.

Compared to the aforementioned groups of methods, the approach taken in this study does not easily
fit into any of them. The practical value of the study is the training technique applied at the training
stage, with the optimizer, the model architecture, and the loss function remain unchanged.

The question of why achieving flatter minima may lead to better generalization, adversarial robust-
ness or both is studied empirically (Stutz et al., 2021; Izmailov et al., 2018; Foret et al., 2020;
Andriushchenko et al., 2023). We propose our theoretical argument on the matter in this paper.

3 METHODOLOGY

Let us start with the motivation and rationale for this research and then briefly describe the research
methodology. In a classification task the loss function L(X, y; θ) has many local minima with
similar loss value but different boundary surfaces. Let us look for a “wide” local minima in terms
of model parameters θ. We hypothesize that under certain conditions such minima also provide for
“wider” gap between different classes for variations in the input data X .

The underspecified (D’Amour et al., 2022) learning pipelines, as commonly found in the industrial
settings, may result in different trained models and thus provide an opportunity to improve adver-
sarial robustness.

The main research question of this study can be stated as follows. Is it possible to improve the
specification of a learning pipeline so that the training process results in a model whose parameters
lie in the aforementioned local minima and thus have better adversarial robustness?

It seems that the simplest approach to select appropriate minima θ0 without modifying the loss
function, the pipeline and training data is to tune the hyperparameters of the learning algorithm.

We argue that if the training procedure utilizing an stochastic gradient descent or a similar algorithm
converges with a higher learning rate and smaller mini-batch size near a local minimum, then the
model parameters lie in a “wider” local minimum and therefore the trained model would be more
robust to adversarial examples.

The overall research methodology is as follows. First, we formally define such ”wide” local minima
and explain why selection of such minima leads to better adversarial robustness. Second, we con-
sider an image classification task on MNIST dataset with a convolution network model and solve it
using Adam and SGD optimizer for a range of mini-batch size and learning rate parameters.

The image classification task on MNIST is frequently used to evaluate adversarial defense methods
(Goodfellow et al., 2014; Carlini & Wagner, 2017; Kannan et al., 2018). Other defense techniques
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have been investigated for this task and we have relevant references (Hwang et al., 2019; Zhu et al.,
2024) to compare with.

For each set of hyper-parameters we measure adversarial robustness of the model during training as
its prediction accuracy on a set of adversarial examples generated with FGSM for the test set. Better
accuracy compared to other hyper-parameter set would mean higher adversarial robustness. We
select the FGSM white-box gradient-based method to generate the adversarial examples because the
method is well-known and often used in benchmarks on adversarial robustness (Madry et al., 2017;
Cohen et al., 2020; Deng et al., 2021).

4 LEARNING RATE AND ADVERSARIAL ROBUSTNESS

Let us first formally define what a ”wide” local minimum is. Recall, that a level set V (c) of a
real-valued function ϕ(x) : Rd → R is a set where the function takes on a given constant value
ϕ(x) = c. Let x∗ be a local minimum, ϕ(x∗) < c, then the distance from x∗ to the level set is
d(c) = minx∈V (c){∥x− x∗∥}.

Definition 1 (width of a minimum) The width wx(x
∗, c) of a local minimum at x∗ of ϕ(x) with

respect to x for some c is a function

wx(x
∗, c) =

d(c)

c− ϕ(x∗)
.

So that, larger d(c) for given c corresponds to a wider minimum. We may write simply w(c) or
w(x∗, c) instead of full wx(x

∗, c).

Consider a loss function L(X, y; θ). If x∗ is a tight local minimum with w(x∗, c) smaller than for
other minima, then a smaller perturbation ∥δ∥∞ is sufficient for an adversarial example x∗ + δ to
cause a prediction error. On the other hand, if the minimum is wider, larger perturbations are needed.
The following Theorem 1 relates the width of the minimum to a Lipschitz constant of the function
near the minimum.

Theorem 1 For all subsets S ⊂ Rd such that maxx∈S{∥x− x∗∥} ≤ d(c) it holds that

1. If ϕ is continuous on S, then for all x ∈ S it holds that |ϕ(x)| ≤ |c|.

2. If ϕ is convex on S, then for all x ∈ S it holds that

ϕ(x)− ϕ(x∗) ≤ 1

w(x∗, c)
· ∥x− x∗∥.

Let gt be an estimator of the gradient ∇θL(X, y; θ) and γt be the learning rate parameter. Then, for
a classical stochastic gradient descent (SGD) algorithm (Bengio et al., 2009; Danilova et al., 2022)
the update is defined as follows

θt+1 = θt − γtg
t,

The algorithm and its variants have been studied extensively with various loss functions L(X, y; θ).
In a typical computer vision problem the loss usually has many minima and locally quasi-convex
(Konnov, 2003; Ke & Kanade, 2007) nearby as SGD tends to avoid saddles.

Following the results (Hazan et al., 2015; Mertikopoulos et al., 2020) show that SGD converges to
narrow local minima θ∗ with smaller learning rates γt for c < ϵ, where ϵ is the solution accuracy

γt ∼ K−1
L ∼ w(θ∗, c),

where KL is the Lipschitz constant of the loss function L. According to the Theorem 1 it holds that
KL ∼ w(θ∗, c)−1.

As we can see, the width of a minimum w(θ∗, c) as defined in Definition 1 is directly related to the
learning rate γt needed for the SGD algorithm to stay near the minimum θ∗. Such definition is easier
to interpret than the classical flatness (Stutz et al., 2021).
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Let M be the upper bound of the loss L near the minimizer θ∗. For SGD convergence, the size of the
mini-batch has to be large enough to compensate for the noise in estimator gt (Hazan et al., 2015),

B ∼ M2 ∼ c2 ∼
(

d(c)

w(θ∗, c)

)2

∼ w(θ∗, c)−2.

According to Theorem 1 M ∼ c2, and according to Definition 1 M ∼ 1/w(θ∗, c), if d(c) is given.

Therefore, the width of the local minimum w(θ∗, c) an SGD algorithm converges to, depends on
both mini-batch size B and the learning rate γ. While the exact relation between them is not yet
established, we could expect SGD does not converge to a narrow minima when either learning rate
γ is large or the mini-batch size B is small.

We now informally state the theoretical result, that justifies the training technique for adversarial
robustness. The following Theorem 2 relates the weight robustness achieved during training with
the input data robustness of a predictive model.

Theorem 2 (wide minima training) Let θ∗ be a minimizer to the loss L(X, y; θ) < ϵ for a small ϵ
and given X∗, y∗ an SGD algorithm converges to. If the predictor f(x; θ) is a function of the inner
product of its parameters f(x; θ) = f(xT θ), then the following holds around X∗, y∗, θ∗:

1. L is locally quasi-convex w.r.t. θ and w.r.t. X ,

2. width wθ w.r.t. to θ and the width wX w.r.t. X have a common non-negative multiplier,

3. the larger the width wθ, the larger the width wX .

The idea of the proof is to show that second derivatives of the loss with respect to X and θ have a
common multiplier ∇2

zzf = ∂2f/∂z2, z = Xθ. If a minimum X∗, y∗, θ∗ is global, then consider
a small enough neighbourhood, in which L is locally quasi-convex, thereby ∇2

zzf ≥ 0. Therefore,
finding a wider minimum for L with respect to θ ensures smaller ∇2

zzf , so that the corresponding
minimum with respect to θ is also wider.

Theorem 2 can be demonstrated in simple cases analytically. Let us estimate the width w(x∗, c)
and show that the larger the distance dθ(c) with respect to model parameters θ only, the larger the
distance with respect to the inputs dX(c). Let X be the feature matrix, y be the target vector in a
binary classification task. Let L be the log-loss function for a single layer perceptron model with a
sigmoid pi = σ(XT

i θ) activation function:

L(X, y; θ) = − 1

n
·

n∑
i=1

[yi ln(pi) + (1− yi) · ln(1− pi)].

Then the first and the second partial derivatives of the loss L w.r.t. model parameters θ and inputs
X are given by:

∇θ L =
1

n
XT (p− y), ∇2

θ L =
1

n
XTD ·X,

∇XL =
1

n
(p− y)θT , ∇2

XL =
1

n
D ⊗ θ · θT ,

where D = diag(p⊙ (1− p)).

Here, we use ’⊙’ symbol for the element-wise product of two vectors and ’⊗’ for the outer product,
so that a⊗ b =

∑
ij aibj . Now, if we found a local minimum θ0, we get ∇θ L = XT (p−y)/n = 0,

then either of the following holds a) p− y is in ker(XT ) or b) p− y = 0 and the minimum is global.
If p ≈ y, then it is a minimum ∇θL ≈ 0.

Near a global minimum, D = diag(p⊙ (1− p)) and p ∈ (0, 1), so that L is quasi-convex and ∇2
θ L

is positive semi-definite with a maximum eigenvalue λ > 0. Eigenvalues for both ∇2
X L and ∇2

θ L
are proportional to elements of D.

In case of an overparameterized model p − y ≈ 0 is reachable (Wu et al., 2018). Following the
Taylor expansion of L near θ∗, the minimum distance dθ(c) to the level set is given by

dθ(c) ≈
√

2(c− L)

λ
≈

√
2c

λ
.
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Batch
Size

Learning Rate
0.0003 0.0006 0.001 0.003 0.006 0.01 0.03 0.06 0.1

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

1
epoch 117 1 116 3 41 18 4 5 5 3 0 1 0 1 0 0 0 1

acc 98.81 0.09 98.74 0.07 97.52 0.35 94.70 1.47 69.04 33.26 39.98 39.69 11.14 0.48 10.92 0.59 10.72 0.58
adv acc 87.33 3.40 96.70 0.53 43.19 6.72 30.60 10.11 15.47 4.62 20.47 13.41 11.14 0.48 10.92 0.59 10.72 0.58

2
epoch 116 1 114 4 117 1 31 40 23 15 3 4 1 1 0 0 0 0

acc 98.84 0.06 98.78 0.08 98.64 0.21 95.56 3.14 91.50 2.88 71.46 33.76 11.14 0.48 10.89 0.64 10.92 0.59
adv acc 63.91 7.13 93.94 0.41 96.83 0.37 32.95 13.27 22.32 5.92 21.25 10.76 11.14 0.48 10.89 0.64 10.92 0.59

4
epoch 117 2 114 4 115 3 34 40 57 42 23 28 1 1 2 1 0 1

acc 98.91 0.07 98.73 0.13 98.72 0.08 97.06 0.69 89.52 5.88 73.53 35.26 22.71 26.01 11.14 0.48 10.72 0.58
adv acc 38.24 2.80 80.62 5.57 95.51 0.67 32.86 9.72 30.60 7.42 25.37 16.97 22.61 25.77 11.14 0.48 10.72 0.58

8
epoch 94 24 112 3 114 4 111 10 45 53 60 26 2 1 1 1 1 1

acc 98.83 0.15 98.81 0.08 98.69 0.10 98.16 0.17 94.29 4.32 89.35 1.95 53.28 38.34 11.14 0.48 11.14 0.48
adv acc 28.24 3.52 54.98 3.84 88.08 1.55 78.91 11.67 33.83 8.28 54.19 23.63 16.90 14.15 11.14 0.48 11.14 0.48

16
epoch 88 20 108 3 117 1 114 3 68 43 78 22 4 3 2 1 2 1

acc 98.90 0.05 98.82 0.22 98.80 0.10 98.60 0.16 96.62 0.70 94.54 2.38 41.94 41.92 11.14 0.46 10.72 0.57
adv acc 25.23 2.65 36.12 5.12 64.02 3.45 90.93 6.07 46.73 13.12 56.59 25.80 19.72 11.49 11.14 0.46 10.72 0.57

32
epoch 106 13 97 19 101 17 116 3 115 2 109 4 34 41 2 1 2 1

acc 98.81 0.10 98.88 0.10 98.78 0.07 98.69 0.10 97.99 0.23 94.62 1.28 57.50 42.64 11.14 0.48 11.14 0.48
adv acc 25.94 3.09 32.85 3.68 41.51 3.13 93.16 2.18 72.56 6.52 70.24 22.27 33.79 25.75 11.14 0.48 11.14 0.48

64
epoch 99 17 90 25 93 19 116 2 115 3 113 3 24 14 1 1 1 2

acc 98.81 0.07 98.80 0.10 98.83 0.07 98.67 0.08 98.39 0.16 97.46 0.34 90.69 4.63 11.14 0.48 10.93 0.58
adv acc 23.02 2.46 28.42 3.13 36.16 3.44 79.43 5.45 82.93 8.08 82.25 7.88 29.81 25.63 11.14 0.48 10.93 0.58

128
epoch 98 11 100 10 103 16 115 3 117 2 115 4 71 36 1 0 1 0

acc 98.81 0.08 98.79 0.12 98.83 0.11 98.71 0.12 98.60 0.11 98.12 0.11 92.87 3.25 26.13 33.04 25.92 32.58
adv acc 18.33 3.56 25.03 4.51 30.86 4.31 59.12 5.30 86.06 4.99 89.87 3.90 44.96 29.18 10.46 2.00 10.55 1.80

Table 1: Accuracy on adversarial test set (FGSM) for Adam optimizer. Average (AVG) and ap-
proximate standard deviation (STD) over five runs. For each mini-batch size B and learning rate γ:
epoch when the best adversarial accuracy is achieved (epoch), the corresponding neutral accuracy
(acc) and the adversarial accuracy (adv acc).

As we can see, larger wθ(X
∗, c) w.r.t θ gives smaller λ in D and if p− y ≈ 0 for an overparameter-

ized model, dim(ker(X)) > 0, then eigenvalues of ∇2
X L are non-negative and also smaller, and L

is quasi-convex near the given training data X∗ and wX(X∗, c) is larger. Thus the model is expected
to have higher adversarial robustness, and the higher dim(ker(X)), the more there are such θ∗.

Based on the findings, the proposed training technique could be stated as follows. By tuning the
mini-batch size B and learning rate γ, find the convergency edge for the chosen optimizer. Adjust
the parameters within the edge to maintain f(X; θ) − y ≈ 0 and 0 < L(X, y; θ) < ϵ as long as
possible during training while still converging. Pick the snapshot of the model with the best accuracy
and adversarial accuracy.

5 EXPERIMENTAL RESULTS

We evaluate our theoretical hypotheses in a series of experiments. We consider an image classi-
fication task on a well-known MNIST dataset. Following the results of the previous sections, we
specifically check that the bigger the step, and the smaller the mini-batch size, the higher would be
the adversarial accuracy. The architecture of the neural network architecture is typical for the 2D
image classification tasks: two convolutional layers, each followed by a ReLU activation function
and a max pooling layer, two fully connected layers, the first with 100 output features followed by a
ReLU activation, the final layer outputs logits for the target ten classes. No dropout layers or batch
normalization applied during training.

We compare Adam and SGD optimizers as implemented in PyTorch. Both algorithms are run with
a fixed mini-batch sizes B. For each set of parameters we run the experiment for at most 120 epochs
for five times. During training, we save the model parameters θk every 1024 samples seen by the
optimizer, so that we store θ1024∗k−1 and θ1024∗k. After each epoch the model was evaluated on the
test samples and on the adversarial samples derived from the same test samples by FGSM method
for the currently available model parameters θ.

Experiments are run on a single HPC node with the following setup: CentOS 7, 2 x Intel Xeon
E5 2680 v4 (2,40 GHz, 14 cores), 128 Gb RAM. The experiment source code is implemented in
Python 3.12.4, IBM Adversarial Robustness Toolbox 1.18.1 (Nicolae et al., 2018), PyTorch 2.3.1
and GNU Parallel 20240722 (Tange, 2023).

At Table 1 we see that the Adam optimizer achieves maximum accuracy (acc) for different mini-
batch sizes B and learning rates γ. Whereas, the adversarial accuracy (adv acc) for a given batch
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Batch
Size

Learning Rate
0.003 0.006 0.01 0.03 0.06 0.1 0.3 0.6 1

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

1
epoch 47 19 117 1 48 8 1 2 1 1 0 1 0 0 1 1 2 1

acc 98.90 0.12 97.87 0.38 96.53 1.36 66.09 31.50 11.14 0.46 11.14 0.48 10.72 0.57 10.47 0.50 10.43 0.52
adv acc 55.19 2.91 89.48 2.01 82.27 2.52 31.63 15.20 11.14 0.46 11.14 0.48 10.72 0.57 10.47 0.50 10.43 0.52

2
epoch 35 6 41 11 115 2 16 7 0 0 1 1 0 0 0 0 1 1

acc 98.92 0.09 98.88 0.11 98.30 0.21 95.53 0.82 84.31 8.39 11.14 0.46 10.92 0.59 10.72 0.57 10.47 0.50
adv acc 40.94 4.44 53.45 3.08 83.80 3.80 67.99 3.97 37.36 6.22 11.14 0.46 10.92 0.59 10.72 0.57 10.47 0.50

4
epoch 45 5 35 4 33 3 97 10 12 4 1 1 1 1 0 0 0 0

acc 98.89 0.09 98.93 0.07 98.93 0.15 96.78 0.71 96.42 1.22 90.44 4.84 11.14 0.48 10.92 0.59 10.72 0.58
adv acc 33.58 2.03 39.44 2.78 48.60 3.89 89.26 1.12 71.90 4.99 43.61 8.11 11.14 0.48 10.92 0.59 10.72 0.58

8
epoch 78 15 47 10 37 3 75 38 86 9 25 8 2 1 1 1 0 0

acc 98.84 0.13 98.87 0.11 98.86 0.12 98.71 0.27 97.29 1.02 96.69 1.01 11.14 0.46 11.14 0.48 10.92 0.59
adv acc 27.71 2.64 33.45 3.04 38.81 3.75 66.06 8.72 89.38 1.23 77.04 4.52 11.14 0.46 11.14 0.48 10.92 0.59

16
epoch 103 9 74 3 51 13 30 6 100 35 115 1 4 3 2 1 1 1

acc 98.72 0.09 98.77 0.13 98.83 0.19 98.80 0.13 98.60 0.17 97.77 0.25 94.98 1.16 11.14 0.46 11.14 0.48
adv acc 22.57 2.84 27.36 2.51 32.99 1.50 43.05 3.15 70.23 7.32 89.87 1.59 54.90 4.52 11.14 0.46 11.14 0.48

32
epoch 45 61 103 11 87 19 39 7 35 6 41 8 44 14 2 1 2 1

acc 60.26 35.63 98.79 0.10 98.78 0.12 98.87 0.09 98.89 0.15 98.85 0.07 97.64 0.36 11.14 0.46 11.14 0.46
adv acc 17.99 5.37 22.13 2.78 27.53 2.95 35.43 1.52 44.67 4.19 55.18 6.14 80.06 6.51 11.14 0.46 11.14 0.46

64
epoch 0 0 44 60 108 8 72 19 41 10 31 4 112 6 21 28 1 1

acc 40.88 16.53 60.36 35.45 98.36 0.59 98.83 0.15 98.86 0.15 98.80 0.06 98.34 0.14 45.62 46.93 11.14 0.46
adv acc 17.02 7.32 18.23 5.14 21.61 3.09 29.00 1.30 33.98 1.56 42.44 2.22 81.70 2.36 40.16 39.46 11.14 0.46

128
epoch 2 1 0 0 65 59 99 12 66 24 43 4 35 5 50 48 1 1

acc 37.47 14.20 40.95 16.54 71.57 37.34 98.79 0.09 98.90 0.06 98.85 0.15 98.93 0.09 80.31 38.57 11.35 0.00
adv acc 17.48 6.06 17.02 7.22 16.27 6.51 24.41 2.35 29.28 1.56 32.69 2.26 49.63 7.58 40.40 31.97 11.35 0.00

Table 2: Accuracy on adversarial test set (FGSM) for SGD optimizer. Average (AVG) and approx-
imate standard deviation (STD) over five runs. For each mini-batch size B and learning rate γ:
epoch when the best adversarial accuracy is achieved (epoch), the corresponding neutral accuracy
(acc) and the adversarial accuracy (adv acc).

Figure 1: Learning curves for Adam (γ = 0.001, B = 2). The loss on the training data (blue), the
step norm ∥θk− θk−1∥ (black), accuracy on the adversarial examples derived from the test set using
FGSM (green), accuracy on the clean test data (red).

size is high only for the most one or two highest learning rates while the training still converges.
The highest adversarial accuracy is attained for B = 2 and γ = 0.001. Note that when learning rate
is high, the variation in the adversarial accuracy between runs is also very large, so that the standard
deviation (STD) is not meaningful.

At Table 2 we see that the SGD optimizer achieves the same high accuracy on clean data (acc) than
that of Adam. The adversarial accuracy for some batch size B is only high when the learning rate γ
is the maximum while the training still converges. Training with lower learning rates still achieves
good accuracy, but not the adversarial accuracy. The highest adversarial accuracy is achieved for a
range of batch size and learning rates, lower than that of Adam optimizer, however. Also note, that
compared to the Adam optimizer, the variation in the adversarial accuracy is much lower.

Let us now take a look at the learning curves. At Fig. 1 the learning curve (blue) shows that the zero
loss is achieved in the first three to five epochs and then the training continues with loss mostly zero
so that the model parameters may still experience a random walk (Ishida et al., 2020). The step norm
∥θk − θk−1∥ (black) gradually decreases while the accuracy on clean data remains the same (red)
and accuracy on adversarial data (green) grows and reaches maximum near the end of the training.
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Figure 2: Learning curves for SGD (γ = 0.1, B = 16). The loss on the training data (blue), the
step norm ∥θk− θk−1∥ (black), accuracy on the adversarial examples derived from the test set using
FGSM (green), accuracy on the clean test data (red)

A somewhat similar picture can be seen at Fig. 2 for the SGD optimizer. The loss (blue) reaches
very low values quickly during the first five to ten epochs. Due to the stochasticity of the gradient
and the fixed learning rate, the loss does not get very close to zero for the SGD optimizer. The step
norm (black) remains almost the same for the duration of the training, while the training eventually
tends to diverge as the epochs grow. The adversarial accuracy (green) grows faster at first than that
of Adam optimizer, but the maximum accuracy is still lower.

The adversarial accuracy that could be achieved by an optimizer depends on of the size of the
model. At Fig. 3 we show the best adversarial accuracy during training while varying the number
of the output features in the first connected layer from the original 100. During the most runs for
large models, the model achieved the accuracy more than 0.98 on the clean test data. Adversarial
accuracy increases as the number of parameters grows. When the model is too large, third layer
output dimension equals 1000 with batch size B = 16, the loss and gradient reach zero during
training. In this case, the training stops and adversarial accuracy stops growing. It is possible to
increase the accuracy by reducing the batch size, thereby introducing more noise into the gradient.

In order to minimize threats to internal validity, that is that the measurements are actually results
of the predicted effect, we take the following steps. First, we study two different optimizers with
different learning regimes. Second, we repeat the same experiment five times to limit confoundness
on unknown factors. Third, we run full factorial experiments so that no parameter values are left

Figure 3: Adversarial accuracy for SGD with λ = 0.1 and B = 16, varying the number of parame-
ters in a fully connected layer of the model. For layer size 1000, the B is given in parentheses.
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out. Threats to external validity still remain, as we consider only a single image classification task
and ∥ · ∥∞ perturbations via the FGSM method. However, this task is often used in benchmarking
the attack and defense methods. As we can see in the literature, better results on this task often
correspond to better results in others.

6 DISCUSSION AND CONCLUSION

We study the adversarial robustness problem, we investigate whether a specifically tuned learning
regimes could improve the adversarial robustness. Theoretically, our results are based on the findings
that so called ”wide” local minima with respect to model parameters are also provide for wide with
respect to input data. We derive this property in a basic case of a single-layer network. We also relate
the width of the minimum with the Hessian norm and Lipschitz constants for the loss function.

Compared to the earlier results on flat minima, we are able to relate training for wide minima with
adversarial robustness both theoretically and empirically.

In the experiments we demonstrate that at least for some neural network models just training with
high learning rates and small mini-batch sizes long enough results in the state-of-the-art adversarial
robustness earlier achieved only by data augmentation, modifying the loss function, distillation and
other complex methods.

For the image classification problem at hand, a much more complex PuVAE (Hwang et al., 2019)
and BPFC (Addepalli et al., 2020) methods give around 81% accuracy for a similar predictive model
in the ∥ · ∥∞ setting. While the proposed method with the Adam and SGD optimizers achieve 96%
and 89% correspondingly for the same task and the same FGSM (ε = 0.3) attack without sacrifing
the prediction quality.

As a consequence, the proposed technique could be used as a basic baseline to compare with, that is,
adversarial defense methods should demonstrate better performance than just finding a good ”wide”
minimum in the original loss function.

Future research could be driven towards reducing the number of steps needed to achieve maximum
robustness. In the experiments, the SGD algorithm tends to attain the robustness quicker, while the
Adam algorithm generally achieves slightly higher adversarial accuracy. Smarter learning sched-
ules may also take into account that accuracy on the adversarial data depend on the width of the
minimum, so that the range of parameters where high adversarial robustness is achieved is larger.

Another important finding is that when reporting results on adversarial robustness, the authors
should either use reproducible runs, either obtain reliable statistical estimates as the results greatly
depend on particular minimum θ and random seed values.

Finally, the ability of the model to generalize and its adversarial robustness seem to be related, so
that training predictive models after reaching full accuracy prior to near-zero loss on the training
data improves both.
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A ADVERSARIAL EXAMPLES FOR ROBUST MODELS

In this section we provide more details for the experiments. At Fig. 4 we show the adversarial
accuracy curves for the FGSM method for ϵ ∈ [0, 1] for SGD and Adam optimizers. The increased
robustness of the neural network trained with tuned parameters is evident (orange) compared to
early-stopping (blue).

We compare adversarial examples generated by FGSM at ϵ = 0.3 for the models trained with
SGD and Adam optimizers. As the Adam optimizer finds sharp minima with early-stopping, the
corresponding adversarial example is ”off-manifold” (Stutz et al., 2019). Whereas examples for the
models trained with SGD optimizer resemble the original item more closely.

From these examples we may conclude that adversarial examples produced by FGSM for predictive
models with high adversarial robustness are more likely resemble the original items thus, possibly,
reducing the label noise and relating the adversarial robustness with the generalization.

Figure 4: Adversarial accuracy as a function of ϵ (FGSM). Left: SGD optimizer (γ = 0.1, B = 16)
after 5 epochs (blue) and the same optimizer after 100 epochs (orange). Right: Adam optimizer
(γ = 0.001, B = 16) after 5 epochs (blue), and SGD optimizer (γ = 0.1, B = 16) after 100 epochs
(orange).

Figure 5: Adversarial examples for ϵ = 0.3 (FGSM). Left: SGD optimizer (γ = 0.1, B = 16) after
100 epochs. Middle: SGD optimizer (γ = 0.1, B = 16) after 5 epochs. Right: Adam optimizer
γ = 0.001, B = 16) after 5 epochs.
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