
Supplementary Materials Roadmap1

In this supplementary material, we provide “full versions” of Sections 2-4 from the main submission,2

corresponding to Sections A-C in the sequel. While it is easiest for the reader to read section 1 of3

the main submission and directly jump to Sections A-C below, we will match the names of the4

definitions/lemmas/theorems/etc. from the main submission with those in the supplement.5

In Section A we give notation and technical preliminaries that will be useful in our subsequent6

proofs. In Section B we prove our key structural results on approximating linear combinations of7

many similar neurons by small networks. Finally, in Section C, we give our full algorithm for8

learning one-hidden-layer networks from queries.9

A Preliminaries10

Notation. Given vectors u, v, let ∠(u, v) , arccos
(
〈u,v〉
‖u‖‖v‖

)
. Let ej denote the j-th standard11

basis vector in Rd. We will occasionally denote the standard Gaussian measure on R by dγ(x).12

Given a function h which is square-integrable with respect to the Gaussian measure, we will use13

‖h‖ to denote Ex∼N (0,Id)[h(x)2]1/2. Given a collection of indices S ⊆ Z, we say that i, j ∈ S are14

neighboring if there does not exist i < ` < j for which ` ∈ S.15

The following elementary fact will be useful:16

Fact A.1. |sin(x+ y)| = |sin(x) cos(y) + sin(y) cos(x)| ≤ |sin(x)|+ |sin(y)| for any x, y ∈ R17

A.1 Neural Networks, Restrictions, and Critical Points18

Definition 2.1. A neuron is a pair (v, b) where v ∈ Rd and b ∈ R; it corresponds to the function19

x 7→ σ(〈v, x〉 − b), which we sometimes denote by σ(〈v, ·〉 − b).20

As mentioned in the overview, we will be taking random restrictions of the underlying network F ,21

for which we use the following notation:22

Definition 2.2. Given a line L ⊂ Rd parametrized by L = {x0 + t · v}t∈R, and a function F :23

Rd → R, define the restriction of F to L by F |L(t) , F (x0 + t · v).24

Definition 2.3. Given a line L ⊂ Rd and a restriction F |L of a piecewise linear function F : Rd →25

R to that line, the critical points of F |L are the points t ∈ R at which the slope of F |L changes.26

A.2 Concentration and Anti-Concentration27

We will need the following standard tail bounds and anti-concentration bounds:28

Fact 2.4 (Concentration of norm of Gaussian vector). Given Gaussian vector h ∼ N (0,Σ),29

Pr
[
‖h‖ ≥ O(‖Σ1/2‖op(

√
r +

√
log(1/δ)))

]
≤ δ, where r is the rank of Σ.30

Fact 2.5 (Uniform bound on entries of Gaussian vector). For covariance matrix Σ ∈ Rm×m, given31

h ∼ N (0,Σ) we have that |hi| ≤ O
(√

Σi,i

√
log(m/δ)

)
for all i ∈ [m] with probability at least32

1− δ.33

Proof. For every i ∈ [m], hi ∼ N (0,Σi,i), so |hi| ≤ O(Σ
1/2
i,i

√
log(m/δ)) with probability at least34

1− δ/m, from which the claim follows by a union bound and the fact that the largest diagonal entry35

of a psd matrix is the largest entry of that matrix.36

Fact A.2 (Carbery-Wright [CW01]). There is an absolute constant C > 0 such that for any ν > 037

and quadratic polynomial p : Rd → R, Prg∼N (0,Id)[|p(g)| ≤ ν · V[p(g)]1/2] ≤ C
√
ν.38

Lemma 2.6 (Anti-concentration of norm of Gaussian vector). There is an absolute constant C > 039

such that given any Gaussian vector h ∼ N (µ,Σ), Pr
[
‖h‖ ≥

√
ν‖Σ‖1/2F

]
≥ 1− C

√
ν.40
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Proof. Define the polynomial p(g) , (g + µ)>Σ(g + µ). Note that for g ∼ N (0, Id), p(g) is41

distributed as ‖h‖2 for h ∼ N (µ,Σ). We have Eg∼N (0,Id)[p(g)] = Tr(Σ) + µ>Σµ, so42

V[p(g)] = E[(g>Σg + 2g>Σµ− Tr(Σ))2]

= E[(g>Σg)2] + E[(2g>Σµ− Tr(Σ))2] + 2E[(g>Σg)(2g>Σµ− Tr(Σ))]

=
(
2 Tr(Σ2) + Tr(Σ)2

)
+
(
4 Tr(Σµµ>Σ) + Tr(Σ)2

)
− 2 Tr(Σ)2

= 2
〈
Σ2, Id +2µµ>

〉
≥ ‖Σ‖2F ,

so by Fact A.2 we conclude that Pr[p(g) ≤ ν‖Σ‖F ] ≤ C
√
ν.43

Lemma 2.7 (Anti-concentration for random unit vectors). For random v ∈ Sd−1,44

Pr

[
|v1| < δ

2
√
d+O(
√

log(1/δ))

]
≤ δ.45

Proof. For g ∼ N (0, Id), g/‖g‖ is identical in distribution to v. ‖g‖ ≤
√
d + O(

√
log(1/δ)) with46

probability at least 1−δ/2 for absolute constant c > 0, and furthermore Prγ∼N (0,1)[|g| > t] ≥ 1−t47

for any t > 0, from which the claim follows by a union bound.48

B ReLU Networks with Cancellations49

In the following section we prove several general results about approximating one hidden-layer50

networks with many “similar” neurons by much smaller networks.51

B.1 Stability Bounds for ReLUs52

The main result of this subsection will be the following stability bound for (non-homogeneous)53

ReLUs with the same bias.54

Lemma B.1. Fix any ∆ < 1. For orthogonal v, v′ ∈ Rd for which ‖v − v′‖ ≤ ∆‖v‖, and b ∈ R,55

we have56

E[(σ(〈v, x〉 − b)− σ(〈v′, x〉 − b))2] ≤ O
(

∆2/5‖v‖2
)

To prove this, we will need to collect some standard facts about stability of homogeneous ReLUs57

and affine threshold functions, given in Fact B.2, Lemma B.3, Lemma B.4, and Lemma B.5.58

The following formula is standard [CS09]:59

Fact B.2. E[σ(〈v, x〉)σ(〈v′, x〉)] = 1
2π‖v‖‖v

′‖ (sin∠(v, v′) + (π − ∠(v, v′)) cos∠(v, v′)). For60

〈v, v′〉 ≥ 0, note that this is at least 1
6‖v‖‖v

′‖+ 1
3 〈v, v

′〉.61

As a consequence, we obtain the following stability result for homogeneous ReLUs:62

Lemma B.3. For any v, v′ ∈ Rd for which 〈v, v′〉 ≥ 0, we have63

E[(σ(〈v, x〉)− σ(〈v′, x〉))2] ≤ 1

2
‖v − v′‖2 +

2

3
‖v‖‖v′‖(1− cos∠(v, v′))

Proof. We can expand the expectation and apply Fact B.2 to get64

E[(σ(〈v, x〉)− σ(〈v′, x〉))2] = E[σ(〈v, x〉)2] + E[σ(〈v′, x〉)2]− 2E[σ(〈v, x〉)σ(〈v′, x〉)]

≤ 1

2
‖v‖2 +

1

2
‖v′‖2 − 2

(
1

6
‖v‖‖v′‖+

1

3
〈v, v′〉

)
=

1

2
‖v − v′‖2 +

2

3
(‖v‖‖v′‖ − 〈v, v′〉)

=
1

2
‖v − v′‖2 +

2

3
‖v‖‖v′‖(1− cos∠(v, v′))

as claimed.65

We will also need the following stability result for affine linear thresholds.66
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Lemma B.4 (Lemma 5.7 in [CM20]). Given v, v′ ∈ Rd and b ∈ R,67

Pr[〈v, x〉 > b ∧ 〈v′, x〉 ≤ b] ≤ O(‖v − v′‖/b).

Lemma B.5. For any v ∈ Rd and b ≤ b′,68

E
[
(σ(〈v, x〉 − b)− σ(〈v, x〉 − b′))2

]
≤ (b′ − b)2

Proof. Note that 〈v, x〉 ∼ N (0, ‖v‖2), so it suffices to show that for the univariate function f(z) ,69

σ(z − b) − σ(z − b′), Ez∼N (0,‖v‖2)[f(z)2] ≤ (b′ − b)2. Observe that f(z) = b′ − b for z > b′,70

f(z) = 0 for z < b, and f(z) = z − b for z ∈ [b, b′]. In particular, |f(z)| ≤ b′ − b, from which the71

claim follows.72

The following basic lemma giving L2 bounds for Lipschitz functions which are bounded with high73

probability will be useful throughout.74

Lemma B.6. Let ε(x) : Rd → R≥0 be any square-integrable function with respect to the Gaus-75

sian measure. If f : Rd → R is an L-Lipschitz continuous piecewise linear function and76

satisfies Prx∼N (0,Id)[|f(x)| ≤ ε(x)] ≥ 1 − ζ and |f(0)| ≤ M , then Ex∼N (0,Id)[f(x)2] ≤77

2ζM2 + L2ζ1/2(d2 + 2d) + E[ε(x)4]1/2.78

Proof. Because f is L-Lipschitz, f(x)2 ≤ (M + L‖x‖)2 ≤ 2M2 + L2‖x‖2. Then79

E[f(x)2] ≤ E[f(x)21[f(x) > ε(x)]] + E[ε(x)21[f(x) ≤ ε(x)]]

≤ 2ζM2 + L2 E[‖x‖21[f(x) > ρ‖x‖]] + E[ε(x)4]1/2(1− ζ)1/2

≤ 2ζM2 + L2ζ1/2 E[‖x‖4] + E[ε(x)4]1/2(1− ζ)1/2

= 2ζM2 + 3L2ζ1/2d2 + E[ε(x)4]1/2,

as claimed.80

Putting all of these ingredients together, we can now complete the proof of the main Lemma B.1 of81

this subsection.82

Proof. Suppose b ≥ ∆1/5‖v‖. By Lemma B.4, sgn(〈v, x〉 − b) 6= sgn(〈v′, x〉 − b) with probability83

at most O(∆‖v‖/b). So with probability at least 1 − O(∆‖v‖/b), the function (σ(〈v, x〉 − b) −84

σ(〈v′, x〉 − b) is at most 〈v − v′, x〉 ≤ ∆‖v‖‖x‖. Furthermore, this function is L-Lipschitz for85

L = ‖v‖ + ‖v‖′ ≤ O(‖v‖). By Lemma B.6 applied to the projection of f to the two-dimensional86

subspace spanned by v, v′,87

E[(σ(〈v, x〉 − b)− σ(〈v′, x〉 − b))2] . ‖v‖2
(√

∆‖v‖/b+ ∆2
)
. ∆2/5‖v‖2.

Now suppose b < ∆1/5‖v‖. Then ‖σ(〈v, ·〉 − b) − σ(〈v, ·〉)‖2 ≤ ∆2/5‖v‖2 and ‖σ(〈v′, ·〉 − b) −88

σ(〈v′, ·〉)‖2 ≤ ∆2/5‖v′‖2. By triangle inequality, it suffices to bound ‖σ(〈v, ·〉) − σ(〈v′, ·〉)‖2. By89

Lemma B.3, we have90

‖σ(〈v, ·〉)− σ(〈v′, ·〉)‖2 . ∆2‖v‖2 + ‖v‖2 · (1− cos∠(v, v′)) . ∆2‖v‖2,

where the last step follows by the fact that ‖v−v′‖ ≤ ∆‖v‖ implies that cos∠(v, v′) ≥
√

1−∆2 ≥91

1−∆2.92

B.2 (∆, α)-Closeness of Neurons93

We now formalize a notion of geodesic closeness between two neurons and record some useful94

properties. This notion is motivated by Lemma 4.4 in Section C.1 where we study the critical points95

of random restrictions of one hidden-layer networks.96

Definition 3.1. Given v, v′ ∈ Rd and b, b′ ∈ R, we say that (v, b) and (v′, b′) are (∆, α)-close if97

the following two conditions are satisfied:98

1. |sin∠(v, v′)| ≤ ∆99
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2. ‖bv′ − b′v‖ ≤ α‖v‖‖v′‖.100

Note that this is a measure of angular closeness between (v, b), (v′, b′) ∈ Rd+1. For instance, if101

(v, b) = (λv∗, λb∗) and (v′, b′) = (λ′v∗, λ′b∗) for some (v∗, b∗), then (v, b) and (v′, b′) are (0, 0)-102

close.103

We first collect some elementary consequences of closeness. The following intuitively says that if104

we scale two (∆, α)-neurons to have similar norm, then their biases will be close.105

Lemma 3.2. If (v, b) and (v′, b′) are (∆, α)-close, and v = γv′ + v⊥ for v⊥ orthogonal to v′, then106

|γb′ − b| ≤ α‖v‖.107

Proof. We know that ‖bv′− b′v‖ ≤ α‖v‖‖v′‖. The left-hand side of this is ‖(b− γb′)v′− b′v⊥‖ ≥108

|b− γb′|‖v′‖, where the inequality follows from orthogonality of v, v′. Therefore, |γb′− b| ≤ α‖v‖109

as claimed.110

Note that when two neurons are (∆, α)-close, their weight vectors are either extremely correlated or111

extremely anti-correlated. In fact, given a collection of neurons that are all pairwise close, they will112

exhibit the following “polarization” effect.113

Lemma 3.3. Suppose ∆ <
√

2/2. If (v1, b1), . . . (vk, bk) are all pairwise (∆, α)-close for some114

α > 0, then there is a partition [k] = S1 t S2 for which 〈vi, vj〉 ≥ 0 for any i ∈ S1, j ∈ S1 or115

i ∈ S2, j ∈ S2, and for which 〈vi, vj〉 < 0 for any i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1.116

Proof. Let S1 be the set of i ∈ [k] for which 〈vi, v1〉 ≥ 0, and let S2 be the remaining indices. First117

consider any i, j ∈ S1 and note that ∠(vi, vj) ≤ ∠(vi, v1) + ∠(vj , v1) ≤ 2 arcsin ∆, and because118

〈vi, v1〉, 〈vj , v1〉 ≥ 0, this is less than π/4 for ∆ <
√

2/2. By the same reasoning, we can show that119

for any i, j ∈ S2, ∠(vi, vj) < π/2 if ∆ <
√

2/2. Finally, consider i ∈ S1 and j ∈ S2. We have120

∠(vi, vj) ≥ ∠(vj , v1) − ∠(vi, v1). If ∆ <
√

2/2, then ∠(vj , v1) > 3π/4 while ∠(vi, v1) < π/4,121

concluding the proof.122

In the rest of the paper we will take ∆ to be small, so Lemma 3.3 will always apply. As such, it will123

be useful to define the following terminology:124

Definition 3.4. Given (v1, b1), . . . , (vk, bk) which are all pairwise-close, we will call the partition125

S1 t S2 given in Lemma 3.3 the orientation induced by {(vi, bi)}.126

We note that (∆, α)-closeness satisfies triangle inequality.127

Lemma 3.5. If (v1, b1) and (v2, b2) are (∆, α)-close, and (v2, b2) and (v3, b3) are (∆′, α′)-close,128

then (v1, b1) and (v3, b3) are (∆ + ∆′, 2α+ 2α′)-close.129

Proof. As ∠(v1, v3) ≤ ∠(v1, v2)+∠(v2, v3), it is clear from Fact A.1 that |sin∠(v1, v3)| ≤ ∆+∆′.130

Now write the orthogonal decompositions v1 = γ1v2 + v⊥1 and v3 = γ3v2 + v⊥3 , noting that131

γ1‖v2‖ ≤ ‖v1‖, γ3‖v2‖ ≤ ‖v3‖. We can write132

b1v3 − b3v1 = (b1γ3 − b3γ1)v2 + (b1v
⊥
3 − b3v⊥1 ). (1)

We will handle these two terms separately. First note that (∆, α)-closeness of (v1, b1), (v2, b2) and133

Lemma 3.2 imply |b2γ1 − b1| ≤ α‖v1‖, so in particular |b2γ1γ3 − b1γ3| ≤ αγ3‖v1‖. Similarly,134

|b2γ1γ3 − b3γ1| ≤ α′γ1‖v3‖. This allows us to conclude by triangle inequality that135

|b1γ3 − b3γ1| · ‖v2‖ ≤ αγ1‖v3‖+ α′γ3‖v1‖)‖v2‖ ≤ (α+ α′)‖v1‖‖v3‖. (2)

It remains to handle the second term on the right-hand side of (1). Note that Lemma 3.2 also tells us136

that137

‖b1v⊥3 −b3v⊥1 ‖ ≤ ‖b2γ1v
⊥
3 −b1v⊥3 ‖+‖b2γ3v

⊥
1 −b3v⊥1 ‖ ≤ α‖v1‖‖v⊥3 ‖+α′‖v3‖‖v⊥1 ‖ ≤ (α+α′)‖v1‖‖v3‖,

(3)
so by (1), (2), and (3), ‖b1v3 − b3v1‖ ≤ 2(α+ α′)‖v1‖‖v3‖.138
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B.3 Merging Neurons139

In this section we begin to apply the tools we have developed in the preceding sections to show our140

main results about approximating neural networks with many close neurons by smaller networks.141

The goal of this subsection is to prove that a one hidden-layer network where all neurons are (∆, α)-142

close to some neuron can be approximated by at most two neurons:143

Lemma 3.6. Given F (x) =
∑k
i=1 siσ(〈wi, x〉−bi) for si ∈ {±1} and (v∗, b∗) ∈ Rd×R for which144

(wi, bi) is (∆, α)-close to (v∗, b∗) for all i ∈ [k], there exist coefficients a+, a− ∈ R for which145

E
x∼N (0,Id)

[(
F (x)− a+σ(〈v∗, x〉 − b∗)− a−σ(〈−v∗, x〉+ b∗)

)2] ≤ O(k2(∆2/5 + α2))‖v∗‖2.

(4)
Furthermore, we have that146

|a+|‖v∗‖, |a−|‖v∗‖ ≤
∑
i

‖wi‖ and |a+b∗|, |a−b∗| ≤ α
∑
i

‖wi‖+
∑
i

|bi|. (5)

Our starting point for showing this is the following lemma which states that given two close neurons147

whose weight vectors are correlated, we can merge them into a single neuron while incurring small148

square loss.149

Lemma B.7. Let 0 < ∆ ≤ 1. For v1, v2, v ∈ Rd, suppose we have v1 = γ1v + v⊥1 and v2 =150

γ2v + v⊥2 for 1 ≥ γ1 ≥ γ2 ≥ 0 and v⊥1 , v
⊥
2 orthogonal to v. Suppose additionally that (v1, b1) and151

(v2, b2) are both (∆, α)-close to (v, b). For s ∈ {±1}, we have that152

E
x∼N (0,Id)

[
(σ(〈v1, x〉 − b1) + sσ(〈v2, x〉 − b2)− (γ1 + sγ2)σ(〈v, x〉 − b))2

]
≤ O

(
∆2/5 + α2

)
‖v‖2

Proof. For i = 1, 2, because |sin∠(vi, v)| ≤ ∆, we find ‖v⊥i ‖ ≤ ∆‖vi‖ ≤ O(∆‖v‖) for ∆153

sufficiently small. From Lemma B.1 we have ‖σ(〈vi, ·〉 − bi) − σ(〈γiv, ·〉 − bi)‖ ≤ O(∆1/5‖v‖).154

Note that155

(γib− bi)‖v‖2 = b〈v, vi〉 − bi‖v‖2 ≤ ‖v‖‖bvi − biv‖ ≤ α‖v‖2‖vi‖,
i.e. γib − bi ≤ α‖vi‖. So by Lemma B.5, ‖σ(〈γiv, ·〉 − bi) − σ(〈γiv, ·〉 − γib)‖ ≤ α‖vi‖. The156

lemma follows by triangle inequality and the fact that ‖vi‖ ≤ ‖v‖
√

1 + ∆2 ≤ 2‖v‖.157

Lemma B.7 suggests the following binary operation.158

Definition B.8. Fix a vector v∗ ∈ Rd. Consider the set of all triples (s, v, b) for which s ∈ {±1},159

b ∈ R, and v satisfies 0 ≤ 〈v, v∗〉 ≤ ‖v∗‖2. Define the binary operator �v∗ as follows. Suppose160

v1 = γ1v + v⊥1 and v2 = γ2v + v⊥2 as in Lemma B.7, and define γ = |s1γ1 + s2γ2|. Then161

(s1, v1, b1)�v∗ (s2, v2, b2) = (si, γv, γb) for i = arg max
j
γj

Note that si corresponds to the sign of s1γ1 + s2γ2, and siγ = s1γ1 + s2γ2.162

In this notation we can restate Lemma B.7 as follows:163

Lemma B.9. For v1, v2, b1, b2, v, satisfying the conditions of Lemma B.7, if we define the tuple164

(s′, v′, b′) by (s′, v′, b′) = (s1, v1, b1)�v (s2, v2, b2) we have that165

E
x∼N (0,Id)

[
(s1σ(〈v1, x〉 − b1) + s2σ(〈v2, x〉 − b2)− s′σ(〈v′, x〉 − b′))2

]
≤ O

(
∆2/5 + α2

)
‖v‖2

It will be useful to record some basic properties of this binary operation:166

Fact B.10. �v∗ is associative and commutative. Moreover, if (s1, v1, b1)�v∗ · · ·�v∗ (sm, vm, bm) =167

(s, γv, γb) for s given by the sign of
∑
i siγi, where vi = γiv

∗ + v⊥i for v⊥i orthogonal to v∗, then168

s is the sign of
∑
siγi, and sγ =

∑
siγi.169

Proof. That �v∗ is commutative is evident from the definition. For associativity, consider170

(s1, v1, b1), (s2, v2, b2), (s3, v3, b3). Recall that if (s1, v1, b1) �v∗ (s2, v2, b2) = (si, γ12v
∗, γ12b)171
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for γ12 = |s1γ1 + s2γ2|, then si corresponds to the sign of s1γ1 + s2γ2, so siγ = s1γ1 + s2γ2. We172

conclude that173

((s1, v1, b1)�v∗(s2, v2, b2))�v∗(s3, v3, b3) = (si, γ12v
∗, γ12b)�v∗(s3, v3, b3) = (si′ , γ123v

∗, γ123b)

for γ123 = |s1γ1 + s2γ2 + s3γ3| and si′ corresponding to the sign of s1γ1 + s2γ2 + s3γ3. It is174

therefore evident that �v∗ is associative. The last part of the claim follows by induction.175

We show that merging many neurons which are all (∆, α) close to some given neuron σ(〈v∗, ·〉−b∗)176

results in a neuron which is also close to σ(〈v∗, ·〉 − b∗).177

Lemma B.11. Let m > 1. Given v1, . . . , vm, v
∗ ∈ Rd and b1, . . . , bm, b∗ for which every (vi, bi) is178

(∆, α)-close to (v∗, b∗) and satisfies 〈vi, v∗〉 ≥ 0, we have that for179

(s, v, b) , (s1, v1, b1)�v∗ · · · �v∗ (sm, vm, bm),

(v, b) is (0, 0)-close to (v∗, b∗) and satisfies 〈v, v∗〉 ≥ 0. Furthermore, ‖v‖ ≤
∑
i‖vi‖ and |b| ≤180

α
∑
i‖vi‖+

∑
i |bi|.181

Proof. Suppose first that m = 2. As usual, let Πv∗vi = γiv
∗. Recall that v = γv∗ and b = γb∗ for182

γ = |s1γ1 + s2γ2|. As a result, we clearly have that 〈v, v∗〉 ≥ 0. Furthermore,183

‖bv∗ − b∗v‖ = ‖γb∗v∗ − γb∗v∗‖ = 0.

The first part of the claim then follows by induction. For the norm bound, note that ‖v‖ = |
∑
i γi| ·184

‖v∗‖ ≤
∑
i‖vi‖. For the bound on |b|, recall from Lemma 3.2 that for every i, ‖γib∗−bi‖ ≤ α‖vi‖.185

So |b| = |
∑
i γib

∗| ≤
∑
i(|bi|+ α‖vi‖) as claimed.186

Putting everything from this subsection together, we are now ready to prove Lemma 3.6:187

Proof of Lemma 3.6. Denote �v∗ by �. Let S+ denote the set of i ∈ [k] for which 〈v∗, vi〉 ≥ 0,188

and let S− denote the remaining indices i ∈ [k]. Define F+(x) ,
∑
i∈S+ σ(〈wi, x〉 − bi) and189

F−(x) ,
∑
i∈S− σ(〈wi, x〉 − bi). By Lemma B.7, Lemma B.11, and triangle inequality, we have190

that for (s+, w+, b+) ,
⊙

i∈S+(si, wi, bi) and (s−, w−, b−) ,
⊙

i∈S−(si, wi, bi),191

‖F+ − s+σ(〈w+, ·〉 − b+)‖2, ‖F− − s−σ(〈w−, ·〉 − b−)‖2 ≤ O(k2(∆2/5 + α2))‖v∗‖2.

Recalling that (w+, b+) = (γ+v∗, γ+b∗) and (w−, b−) = (γ−v∗, γ−b∗), we conclude the proof of192

(4) with one more application of triangle inequality. For the bounds in (5), we simply apply the last193

part of Lemma B.11.194

B.4 Constructing a Close Neuron195

Note that Lemma 3.6 requires the existence of a neuron (v∗, b∗) which is close to all neurons196

{(vi, bi)}. In our algorithm, we will not have access to (v∗, b∗) but rather to some linear combi-197

nation of the neurons {(vi, bi)}. We first show that provided this linear combination is not too small198

in norm, it will also be close to all the neurons {(vi, bi)}.199

Lemma 3.7. Suppose we have vectors v1, . . . , vm, v
∗ ∈ Rd, biases b1, . . . , bm, b∗ ∈ R for which ev-200

ery (vi, bi) is (∆, α)-close to (v∗, b∗). Then for any s1, . . . , sm ∈ {±1}, if we define v ,
∑m
i=1 sivi201

and b ,
∑m
i=1 sibi, then (v, b) is (∆m,α

∑
i‖vi‖/‖v‖)-close to (v∗, b∗).202

Proof. Note that ∠(
∑
i sivi, v) ≤

∑
i∠(vi, v). By Fact A.1, we have that sin∠(

∑
i sivi, v) ≤203

∆m.204

The lemma then follows from noting that205

‖b∗v − bv∗‖ =

∥∥∥∥∥∑
i

si(biv
∗ − b∗vi)

∥∥∥∥∥ ≤ α‖v∗‖ ·∑
i

‖vi‖ = α‖v‖‖v∗‖ ·
∑
i

‖vi‖/‖v‖.

206
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B.5 A Corner Case207

This presents an issue: what if the linear combination of neurons that we get access to in our even-208

tual algorithm has small norm, in which case Lemma 3.7 is not helpful? It turns out this linear209

combination takes a very specific form (see the vector in (6)), and we argue in this section that if it210

is indeed small, then the underlying network we are trying to approximate will be close to a linear211

function! The main result of this subsection is to show:212

Lemma 3.8. Suppose (v1, b1), . . . , (vm, bm) are pairwise (∆, α)-close, and let [m] = S1 t S2213

denote the orientation induced by them (see Definition 3.4). If signs s1, . . . , sm ∈ {±1} satisfy214

‖
∑
i∈S1

sivi −
∑
i∈S2

sivi‖ ≤ (∆R)2/9, (6)

then for the network F (x) ,
∑
i siσ(〈vi, x〉−bi), there exists an affine linear function `(x) : Rd →215

R for which216

E
x∼N (0,Id)

[
(F (x)− `(x))

2
]
≤ poly(k,R,B) · (α1/2 + ∆2/9) (7)

where B , maxi‖bi‖ and R , maxi‖vi‖, and ` , 〈w∗, ·〉 − b∗ satisfying217

‖w∗‖ ≤
∑
i

‖vi‖ and |b∗| ≤
∑
i

‖bi‖. (8)

Before proceeding to the proof, we will need the following stability result for affine linear threshold218

functions with possibly different thresholds.219

Lemma B.12. Suppose (v, b) and (v′, b′) are (∆, α)-close and ‖v‖ ≥ ‖v′‖. If 〈v, v′〉 ≥ 0 then220

Pr[〈v, x〉 > b ∧ 〈v′, x〉 < b′] ≤ O
(
α+

√
∆‖v‖/‖v′‖

)
. (9)

Otherwise, if 〈v, v′〉 < 0, then221

Pr[〈v, x〉 > b ∧ 〈v′, x〉 > b′] ≤ O
(
α+

√
∆‖v‖/‖v′‖

)
.

Proof. Clearly it suffices to prove (9). Suppose ‖v′‖ ≤ ‖v‖ and write v′ = γv + v⊥ for v⊥222

orthogonal to v. Note that ‖v⊥‖ ≤ ∆‖v′‖ and that ‖v⊥‖ ≤ γ‖v‖ · tan∠(v, v′) ≤ O(γ∆‖v‖) for223

∆ sufficiently small.224

Note that225

Pr[sgn(〈v′, x〉 − γb) 6= sgn(〈v′, x〉 − b′)] ≤ Pr
g∼N (0,‖v′‖2)

[g ∈ [γb∧ b′, γb∨ b′]] ≤ |b
′ − γb|
2‖v′‖

. (10)

Because ‖bv′ − b′v‖ = ‖(bγ − b′)v + bv⊥‖ ≤ α‖v‖‖v′‖, we have that |bγ − b′| ≤ α‖v′‖. We226

conclude that Pr[sgn(〈v′, x〉 − γb) 6= sgn(〈v′, x〉 − b′)] ≤ α/2.227

So by a union bound it suffices to bound Pr[〈γv, x〉 > γb ∧ 〈v′, x〉 < γb]. By Lemma B.4, this is at228

most ‖v
′−γv‖
γb = 1

γb‖v
⊥‖ ≤ O(∆‖v‖

b ).229

We can also bound this in a different way. By a similar calculation to (10), we have Pr[sgn(〈γv, x〉−230

γb) 6= sgn(〈γv, x〉)] ≤ b
2‖v‖ and Pr[sgn(〈v′, x〉 − b) 6= sgn(〈v′, x〉)] ≤ b

2‖v′‖ . And by Sheppard’s231

formula, Pr[sgn(〈v, x〉) 6= sgn(〈v′, x〉)] ≤ ∠(v,v′)
π ≤ O(∆) for ∆ sufficiently small.232

We conclude that233

Pr[〈γv, x〉 > γb ∧ 〈v′, x〉 < γb] .
∆‖v‖
b
∧
(

b

‖v′‖
+ ∆

)
.
√

∆‖v‖/‖v′‖,

from which the claim follows.234

We can now prove Lemma 3.8.235
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Proof of Lemma 3.8. Define ω , ‖
∑
i∈S1

sivi −
∑
i∈S2

sivi‖. Let S0 ⊆ [m] denote the set of i for236

which ‖vi‖ ≤ (∆R)1/9. For i ∈ S0, note that by Lipschitz-ness of the ReLU function,237

‖σ(〈vi, ·〉 − bi)− σ(−bi)‖2 ≤ ‖〈vi, ·〉‖2 = ‖vi‖2 ≤ ∆2/9R2/9.

So by triangle inequality it suffices to show that
∑
i 6∈S0

siσ(〈vi, x〉 − bi) is well-approximated by238

some affine linear function. We will thus assume without loss of generality that S0 = ∅.239

By Lemma B.12 and a union bound over all pairs i, j ∈ [m], we have that with probability at least240

1−O(m2α+m2∆4/9R4/9) over x ∼ N (0, Id), sgn(〈vi, x〉−bi) = sgn(〈vj , x〉−bj) is the same for241

all i, j ∈ S1 and for all i, j ∈ S2, and sgn(〈vi, x〉 − bi) 6= sgn(〈vj , x〉 − bj) for all i ∈ S1, j ∈ S2.242

Let 1[x ∈ E ] denote the indicator for this event. In other words, with high probability all of the243

neurons in S1 are activated and none in S2 are, or vice versa; denote these two events by E1 and E2244

respectively.245

For j = 1, 2, note that when x ∈ Ej , F (x) =
〈∑

i∈Sj
sivi, x

〉
−
∑
i∈Sj

sibi. Define `(x) =246 〈∑
i∈S1

sivi, x
〉
−
∑
i∈S1

sibi. Obviously when x ∈ S1, F (x) = `(x). To handle x ∈ S2, we247

need to bound δ ,
∣∣∑

i∈S1
sibi −

∑
i∈S2

sibi
∣∣. Let (v, b) = (v1, b1) and note that because (vi, bi)248

is (∆, α)-close to (v, b) for all i,249

α‖v‖
∑
i

‖vi‖ ≥

∥∥∥∥∥
(∑
i∈S1

sibi −
∑
i∈S2

sibi

)
v − b

(∑
i∈S1

sivi −
∑
i∈S2

sivi

)∥∥∥∥∥ ≥ δ‖v‖ − |b|ω.
In particular, δ ≤ α

∑
i‖vi‖+ |b|ω/‖v‖ ≤ αR+Bω/(∆R)1/9.250

We would like to apply Lemma B.6 to F (x)−`(x) (projected to the span of {vi}). In that lemma, we251

can take ε(x) ≤
∣∣〈∑

i∈S1
sivi −

∑
i∈S2

sivi, x
〉∣∣+δ, for which we have E[ε(x)4]1/2 ≤ O(δ2 +ω2).252

Additionally we can naively bound F (0)− `(0) ≤ 2
∑
i |bi| and therefore take M in that lemma to253

be 2
∑
i |bi| ≤ 2mB. In addition, we can take ζ = O(m2α+m2∆4/9R4/9), L = 2mR, and d =,.254

We conclude that255

E[(F (x)− `(x))2] = E[(F (x)− `(x))21[x ∈ E2]] + E[(F (x)− `(x))21[x 6∈ E ]]

. (mα1/2 +m∆2/9R2/9) · (m2B2 +m4R2) + α2R2 +B2ω2/(∆R)2/9 + ω2.

Recalling that we paid an additionalm2(∆R)2/9 in square loss in reducing to the case where S0 = ∅,256

we obtain the desired bound in (7). The bounds in (8) follow immediately from the definition of `257

above.258

B.6 Putting Everything Together259

Putting Lemmas 3.6, 3.7, and 3.8 together, we conclude that networks whose hidden units are pair-260

wise (∆, α)-close can either be approximated by a particular size-two network, or by some affine261

linear function:262

Lemma 3.9. Suppose (v1, b1), . . . , (vk, bk) are pairwise (∆, α)-close, and let [k] = S1tS2 denote263

the orientation induced by them (see Definition 3.4). Define B , maxi‖bi‖ and R , maxi‖vi‖.264

Let s1, . . . , sm ∈ {±1}.265

Define F (x) =
∑
i siσ(〈vi, x〉 − bi), v∗ =

∑
i∈S1

sivi −
∑
i∈S2

sivi, and b∗+ =
∑
i∈S1

sibi −266 ∑
i∈S2

sibi. At least one of the following holds:267

1. There is an affine linear function ` : Rd → R for which ‖F−`‖2 ≤ poly(k,R,B)·(α1/2+268

∆2/9).269

2. There exist coefficients a+, a− ∈ R for whichG(x) , a+σ(〈v∗, x〉−b∗)−a−σ(〈−v∗, x〉+270

b∗) satisfies ‖F −G‖2 ≤ poly(k,R,B) · (∆2/5 + α2∆−4/9).271

Proof. By assumption, every (vi, bi) is (∆, α)-close to (v1, b1). By Lemma 3.7 we get that for272

(v∗, b∗) defined in the lemma statement, (v1, b1) is (∆k, αmR/‖v∗‖)-close to (v∗, b∗).273
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If ‖v∗‖ ≥ (∆R)2/9, then we conclude that (v1, b1) is (∆k, αm∆−2/9R7/9)-close to (v∗, b∗), and274

by Lemma 3.6 we find that there is a choice of a+, a− for which the function G defined in the275

lemma statement satisfies ‖F − G‖2 ≤ O(k4R2(∆2/5k2/5 + α2m2∆−4/9R14/9)) (note that we276

used ‖v∗‖ ≤
∑
i‖vi‖ ≤ kR).277

If ‖v∗‖ ≤ (∆R)2/9, then by Lemma 3.8 we find that there is an affine linear ` for which ‖F −`‖2 ≤278

poly(k,R,B) · (α1/2 + ∆2/9).279

C Learning One Hidden Layer280

In this section we give our algorithm for learning neural networks from queries. Throughout, we281

will suppose we have black-box query access to some unknown one-hidden layer neural network282

F (x) ,
k∑
i=1

siσ(〈wi, x〉 − bi), (11)

where si ∈ {±1}, wi ∈ Rd, bi ∈ R. Define the quantities R , maxi‖wi‖ and B , maxi |bi|; our283

bounds will be polynomial in these quantities, among others.284

In Section C.1, we give bounds on the separation among critical points of random restrictions of285

F . In Section C.2 we prove our main existence theorem showing that by carefully searching along286

a random restriction of F , we are able to recover a collection of neurons that can be combined to287

approximate F . In Section C.3 we show how to implement certain key steps in GETNEURONS288

involving querying the gradient and bias of F at certain points. Finally, in Section C.4 we show to289

find an appropriate combination of these neurons.290

C.1 Critical Points of One-Hidden Layer Networks291

In this section, we compute the critical points of restrictions of F and argue that they are far apart292

along random restrictions unless if the corresponding neurons were close to begin with (in the sense293

of Definition 3.1).294

First, we formalize the notion of a random restriction:295

Definition 4.1. A Gaussian line L is a random line in Rd formed as follows: sample x0 ∼ N (0, Id)296

and Haar-random v ∈ Sd−1 and form the line L , {x0 + t · v}t∈R.297

Here we compute the critical points along a restriction of F .298

Proposition 4.2. Given a line L = {x0 + t · v}t∈R, the restriction F |L(t) , F (x0 + t · v) is given299

by300

F |L(t) =

k∑
i=1

siσ (〈wi, x0〉 − bi + t〈wi, v〉) .

This function has k critical points, namely t = − 〈wi,x0〉−bi
〈wi,v〉 for every i ∈ [k].301

Proof. The critical points of F |L are precisely the points t at which a neuron changes sign. So the302

crticial point associated to the i-th neuron is the t for which 〈wi, x0〉−bi+t〈wi, v〉 = 0, from which303

the claim follows.304

We can show that these critical points are not too large, unless the norm of the corresponding weight305

vector is small. The reason for the latter caveat is that, e.g., if one took the one-dimensional neuron306

σ(εz − b) for b fixed and ε→ 0, the z at which it changes sign tends to∞).307

Lemma 4.3. With probability at least 1 − δ over the randomness of Gaussian line L, we have that308

|ti| .
k(
√
d+
√

log(1/δ))

δ‖wi‖ + k
(√

d+
√

log(1/δ)
)√

log(k/δ) for every critical point ti of F |L.309

Proof. By Lemma 2.7, with probability 1 − δ we have that |〈wi, v〉| & δ‖wi‖
k(
√
d+
√

log(1/δ))
for all310

i ∈ [k]. Also note that |〈wi, x0〉| ≤ ‖wi‖ ·
√

log(k/δ) for all i ∈ [k] by Fact 2.5. By Proposition 4.2,311
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the critical point corresponding to the i-th hidden unit satisfies312

|t| =
∣∣∣∣ 〈wi, x0〉 − bi
〈wi, v〉

∣∣∣∣ . k(
√
d+

√
log(1/δ))

δ‖wi‖

(
B + ‖wi‖

√
log(k/δ)

)
≤
k(
√
d+

√
log(1/δ))

δ‖wi‖
+ k

(√
d+

√
log(1/δ)

)√
log(k/δ).

313

Fix a separation parameter ∆ > 0 which we will tune in the sequel. We show that along Gaussian314

lines L, F |L’s critical points are well-separated except for those corresponding to neurons which are315

(∆, α)-close.316

Lemma 4.4. There is an absolute constant c > 0 for which the following holds. Given Gaussian line317

L, with probability at least 1− δ we have: for any pair of i, j for which (wi, bi) and (wj , bj) are not318

(∆, c∆
√

log(k/δ))-close, the corresponding critical points are at least Ω

(
∆δ2

k4
(√

d+
√

log(k/δ)
))-319

apart.320

Proof. For every i ∈ [k], let ti , − 〈wi,x0〉−bi
〈wi,v〉 denote the location of the critical point corresponding321

to neuron i. For any i, j ∈ [k],322

|tj − ti| =
∣∣∣∣ 〈wj , v〉(〈wi, x0〉 − bi)− 〈wi, v〉(〈wj , x0〉 − bj)

〈wi, v〉〈wj , v〉

∣∣∣∣
≥ |〈(〈wi, x0〉wj − 〈wj , x0〉wi)− (biwj − bjwi) , v〉|

‖wi‖‖wj‖
, |〈zij , v〉|.

Note that (〈wi, x0〉wj − 〈wj , x0〉wi) − (biwj − bjwi) is distributed as N (µ,Σ) for µ = −biwj +323

bjwi and Σ1/2 = wjw
>
i − wiw>j . One can verify that324

‖Σ‖1/2F = 21/4
(
‖wi‖2‖wj‖2 − 〈wi, wj〉2

)1/2
= 21/4‖wi‖‖wj‖|sin∠(wi, wj)|

For the first part of the lemma, suppose |sin∠(wi, wj)| ≥ ∆ so that ‖Σ‖1/2F ≥ Ω(∆‖wi‖‖wj‖).325

Then by Lemma 2.6 we conclude that ‖zij‖ ≥ Ω(∆δ/k2) with probability at least 1 − δ/k2. Re-326

call that v is a random unit vector drawn independently of x0, so the lemma follows by applying327

Lemma 2.7 and a union bound over all pairs i, j.328

On the other hand, suppose |sin∠(wi, wj)| ≤ ∆ but ‖µ‖ ≥ c∆
√

log(k/δ)‖wi‖‖wj‖ for c > 0329

sufficiently large. Note that Σ has rank 2, so by Fact 2.4, the norm of a sample from N (0,Σ)330

has norm at most O(‖Σ1/2‖op(
√

2 +
√

log(k/δ))) = O(∆‖wi‖‖wj‖
√

log(k/δ)) with prob-331

ability at least 1 − δ/k2. So if we take c large enough that this is at least Ω
(

∆δ2

k4
√
d

)
less332

than c∆‖wi‖‖wj‖
√

log(k/δ), we conclude that ‖zij‖ ≥ Ω(∆δ/k2) with probability at least333

1− δ/k2.334

C.2 Line Search and Existence Theorem335

At a high level, our algorithm works by searching along F |L, partitioning L into small intervals,336

and computing differences between the gradients/biases of F at the midpoints of these intervals.337

The primary structural result we must show is that there exists enough information in this set of338

differences to reconstruct F up to small error.339

As we will be working with partitions of lines, it will be convenient to define the following notation:340

Definition 4.5. Given line L ⊂ Rd and finite interval I ⊆ R corresponding to a segment I ⊂ L,341

let ∇L(I) denote the gradient of F at the midpoint of I. For tmid ∈ R the midpoint of I , define342

bL(I) , F |L(tmid) − (F |L)′(tmid) · tmid. Intuitively, this is the “y-intercept” of the linear piece343

of F |L that contains tmid. When L is clear from context, we will drop subscripts and denote these344

objects by ∇(I) and b(I).345
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Definition 4.6. Given line L ⊂ Rd and length s > 0, let {ti} denote the critical points of F |L, and346

let G+
L(s) ⊆ [k] (resp. G−L (s)) denote the set of indices a ≤ i ≤ b for which ti+1 − ti ≥ s (resp.347

ti − ti−1 ≥ s). Let G∗L(r) , G+
L(r) ∩G−L (r).348

The following observation motivates Definition 4.6:349

Observation 4.7. Given line L ⊂ Rd, let {ti} denote the critical points of F |L. Let I1, . . . , Im be350

a partition of some interval I into pieces of length r, and for ti ∈ I let `(i) denote the index of the351

interval containing I .352

Then for any i ∈ G+
L(2r) (resp. i ∈ G−L (2r)), I`(i)+1 is entirely contained within [ti, ti+1] (resp.353

I`(i)−1 is entirely contained within [ti−1, ti]). In particular, I`(i)−1 and I`(i)+1 are linear pieces of354

F |L.355

The following is the main result of this section. At a high level, it says if we partition a random line356

in Rd into sufficiently small intervals and can compute the gradient of F at the midpoint of each357

interval, then we can produce a collection of neurons which can be used to approximate F .358

Theorem 4.8. For any ε, δ > 0, define359

r , O

 ∆δ2

k4
(√

d+
√

log(k/δ)
)
 (12)

360

τ , kr + Θ

(
k(
√
d+

√
log(1/δ))

δ‖wi‖
+ k

(√
d+

√
log(1/δ)

)√
log(k/δ)

)
. (13)

Partition the interval [−τ, τ ] into intervals I1, . . . , Im of length r.361

Let L be a Gaussian line, and let S denote the set of all m(m − 1) pairs (w, b) obtained by taking362

distinct i, j ∈ [k] and forming (∇L(Ii) − ∇L(Ij), bL(Ii) − bL(Ij)). There exist {±1}-valued363

coefficients {aw,b}(w,b)∈S , vector w∗, and b∗ ∈ R for which364 ∥∥∥∥∥∥F −
∑

(w,b)∈S

aw,b · σ(〈w, ·〉 − b)− 〈w∗, ·〉 − b∗
∥∥∥∥∥∥ ≤ ε+ Pk,R,B,log(1/δ) ·∆2/9.

for Pk,R,B,log(1/δ) some absolute constant that is polynomially large in k,R,B, log(1/δ). Further-365

more, we have that366

‖aw,b · w‖ ≤ kR and |aw,b · b| ≤ c∆k2R
√

log(k/δ) + kB (14)
367

‖w∗‖ ≤ kR and |b∗| ≤ kB (15)

Proof. Condition on the outcomes of Lemma 4.4 and Lemma 4.3 holding for L. Let t1, . . . , tk368

denote the critical points associated to neurons w1, . . . , wk, and for convenience we assume without369

loss of generality that t1 ≤ · · · ≤ tk. Let a, b ∈ [k] denote the indices for which |ti| ≤ τ for370

i ∈ [a, b]. By Lemma 4.3 and the definition of τ , we have that for i 6∈ [a, b], ‖wi‖ ≤ ε/k.371

By Lipschitzness of the ReLU function,372 ∥∥∥∥∥∥
∑
i6∈[a,b]

siσ(〈wi, ·〉 − bi)−
∑
i 6∈[a,b]

siσ(−bi)

∥∥∥∥∥∥ ≤
∑
i 6∈[a,b]

‖σ(〈wi, ·〉 − bi)− σ(−bi)‖

≤
∑
i 6∈[a,b]

‖wi‖ ≤ (b− a+ 1)ε/k. (16)

Next, we handle the critical points i ∈ [a, b]. Given critical point ti, let `(i) ∈ [m] denote the373

index for which ti ∈ I`(i). For convenience, denote G+
L(2r), G−L (2r), G∗L(2r) by G+, G−, G∗.374

By Observation 4.7, we know that for i ∈ G∗, the linear piece of F |L immediately preceding375

critical point ti contains I`(i)−1, and the one immediately proceeding ti contains I`(i)+1. Therefore,376
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∇(I`(i)+1) −∇(I`(i)−1) and b(I`(i)−1) − b(I`(i)+1) are equal to wi and bi up to a sign, so S must377

contain the neurons (wi, bi) and (−wi,−bi).378

Now consider any neighboring i1 < i2 in G+∆G− for which i2 − i1 > 1; note that the latter379

condition implies that i1 ∈ G−\G+ and i2 ∈ G+\G−, or else we would have a violation of the fact380

that i1 and i2 are neighboring. Furthermore, because i1, i2 are neighboring, for all i1 ≤ i ≤ i2 we381

have that ti+1− ti ≤ 2r. By taking ∆ in (the contrapositive of) Lemma 4.4 to be ∆ ·k, we conclude382

that for any i1 ≤ i < j ≤ i2, (wi, bi) and (wj , bj) are (∆k, c∆k
√

log(k/δ))-close for all such i.383

Let {i1, . . . , i2} = S1tS2 denote the orientation induced by (wi1 , bi1), . . . (wi2 , bi2). We would like384

to apply Lemma 3.9 to the subnetwork F̃ (x) ,
∑i2
j=i1

sjσ(〈wj , x〉− bj). By another application of385

Observation 4.7, we know that ∇(I`(i2)) −∇(I`(i1)) and b(I`(i1)) − b(I`(i2)) are, up to a common386

sign, precisely the vector v∗ and bias b∗ defined in Lemma 3.9, so we conclude that either there exists387

a network G consisting of neurons σ(〈v∗, x〉 − b∗) and σ(〈−v∗, x〉 + b∗) for which ‖F̃ − G‖2 ≤388

poly(k,R,B) · (∆2/5k2/5 + c2∆14/9k2 log(k/δ)) ≤ poly(k,R,B)∆2/5 log(1/δ), or there is an389

affine linear function ` for which ‖F̃ − `‖2 ≤ poly(k,R,B) · (c1/2∆1/2 log(1/δ)1/2 + ∆2/9) ≤390

poly(k,R,B) · ∆2/9 log(1/δ)1/2. Furthermore, the bounds in (14) and (15) follow from (5) in391

Lemma 3.6 (for α = c∆k
√

log(k/δ)) and (8) in Lemma 3.8 respectively.392

We have accounted for all critical points, except in the case where the smallest index a′ in G−393

is not a, or the largest index b′ in G+ is not b. In the former (resp. latter) case, note that ta ≤394

· · · ≤ ta′−1 ≤ −τ + kr, (resp. tb ≥ · · · ≥ tb′+1 ≥ τ − kr), so by Lemma 4.3, this implies395

that ‖wa′−1‖, . . . , ‖wa‖ ≤ ε/k (resp. ‖wb′+1‖, . . . , ‖wb‖ ≤ ε/k). By Lipschitzness of the ReLU396

function, we can approximate these neurons by constants at a total cost of at most (a′−a+b−b′)ε/k397

in L2 using the same reasoning as (16).398

C.3 Gradient and Bias Oracles399

It remains to implement oracles to compute bL(I) and ∇L(I) for prescribed line L and interval I .400

It is not clear how to do this for arbitrarily small intervals because for general networks there can be401

many arbitrarily close critical points, but we will only need to do so for certain “nice” I as suggested402

by Theorem 4.8.403

To that end, first note that it is straightforward to form the quantities bL(I) for intervals I entirely404

contained within linear pieces of F |L; we formalize this in Algorithm 1.405

Algorithm 1: GETBIAS(L, I)

Input: Line L ⊂ Rd, interval I = [a, b] ⊂ R
Output: bL(I) if I is entirely contained within a linear piece of F |L

1 tmid ← midpoint of I .
2 y0 ← F |L(tmid).
3 s← F |L(b)−F |L(a)

b−a .
4 return y0 − s · tmid

It remains to demonstrate how to construct ∇L(I). Intuitively one can accomplish this via “finite406

differencing,” i.e. the gradient of a piecewise linear function F at a point x can be computed from407

queries by computing F (x+δ)−F (x)
δ several sufficiently small perturbations δ ∈ Rd and solving the408

linear system.409

With a priori precision estimates, we can similarly implement a gradient oracle, as formalized in410

Algorithm 2 and Lemma 4.9.411

Lemma 4.9. For any α > 0 and any x ∈ Rd for which412

|〈wi, x〉 − bi| ≥ α‖wi‖ ∀ i ∈ [k], (17)
GETGRADIENT(x, α) makes d queries to F and outputs ∇F (x).413

Proof. For any z ∈ Sd−1, note that414

〈wi, x+ αz〉 − bi = (〈wi, x〉 − bi) + α〈wi, z〉,
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Algorithm 2: GETGRADIENT(x, α)

Input: x ∈ Rd, α > 0 for which (17) holds
Output: ∇F (x) ∈ Rd

1 for j ∈ [d] do
2 Sample random unit vector zj ∈ Sd−1.
3 vj ← (F (x+ αzj)− F (x))/α.

4 Let w be the solution to the linear system {〈w, zj〉 = vj}j∈[d].
5 return w

and α|〈wi, z〉| ≤ α · ‖wi‖, so 〈wi, x+ αz〉 − bi and 〈wi, x〉+ bi have the same sign. As a result, if415

S ⊆ [k] denotes the indices i for which 〈wi, x〉 − bi > 0, then416

F (x+ αz)− F (x)

α
=

〈∑
i∈S

siwi, z

〉
= 〈∇F (x), z〉.

If {z1, . . . , zj} are a collection of Haar-random unit vectors, they are linearly independent almost417

surely, in which case the linear system in Step 4 of GETGRADIENT has a unique solution, namely418

∇F (x).419

In order to use GETGRADIENT to construct the vectors ∇L(I), we require estimates for α in420

Lemma 4.9. In the following lemma we show that with high probability over the randomness of421

L, if an interval I completely lies within a linear piece of F |L, then we can bound how small we422

must take α to query the gradient of F at the midpoint of that interval.423

Lemma 4.10. Let L be a Gaussian line. With probability at least 1−δ over the randomness of L, the424

following holds: in the partition [−τ, τ ] = I1∪· · ·∪Im in Theorem 4.8, for any I` which entirely lies425

within a linear piece of F |L, GETGRADIENT(tmid, α) correctly outputs ∇L(I`), where xmid is the426

midpoint of the interval I` ⊂ L that corresponds to interval I` ⊂ R and α = δ·r
4k
√
d+O(k

√
log(k/δ))

427

(where r is defined in (12)).428

Proof. Denote L = {x0 + t · v}t∈R. Let tmid ∈ R denote the value corresponding to xmid ∈ Rd on429

the line L. By Lemma 2.7 and a union bound over [k], we have that430

|〈wi, v〉| ≥
δ‖wi‖

2k
√
d+O(k

√
log(k/δ))

for all i ∈ [k]

with probability at least 1 − δ over the randomness of v ∈ Sd−1. Now take any interval I` which431

entirely lies within a linear piece of F |L. Because tmid is the midpoint of I`, it is at least r/2432

away from any critical point of F |L. In particular, |〈wi, xmid〉 − b| ≥ (r/2) · |〈wi, v〉| ≥ (r/2) ·433
δ‖wi‖

2k
√
d+O(k

√
log(k/δ))

, so we can take α = δ·r
4k
√
d+O(k

√
log(k/δ))

and invoke Lemma 4.9.434

Putting these ingredients together, we obtain the following algorithm, GETNEURONS for producing435

a collection of neurons that can be used to approximate F .436

We prove correctness of GETNEURONS in the following lemma:437

Lemma 4.11. For any ε, δ > 0, GETNEURONS(ε, δ) makes poly(k, d,R,B, 1/ε, log(1/δ)) queries438

and outputs a list S of pairs (w, b) for which there exist {±1}-valued coefficients {aw,b}(w,b)∈S as439

well as a vector w∗ and a scalar b∗ such that440 ∥∥∥∥∥∥F − 〈w∗, ·〉 − b∗ −
∑

(w,b)∈S

aw,b · σ(〈w, ·〉 − b)

∥∥∥∥∥∥ ≤ ε.
Proof. By Lemma 4.10, the choice of α in GETNEURONS is sufficiently small that for xj the mid-441

point of any interval which is entirely contained within a linear piece of F |L, GETGRADIENT(xj , α)442

succeeds by Lemma 4.9. So the estimates ∇̂ and b̂ are exactly correct for all intervals that are entirely443
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Algorithm 3: GETNEURONS(ε, δ)
Input: Accuracy ε > 0, confidence δ > 0
Output: List S of pairs (w, b) (see Theorem 4.8 for guarantee)

1 S ← ∅.
2 Sample Gaussian line L.
3 ∆← (ε/Pk,R,B,log(1/δ))

9/2. // Theorem 4.8

4 α← δ·r
4k
√
d+O(k

√
log(k/δ))

. // Lemma 4.10

5 Define r, τ according to (12), (13).
6 Partition [−τ, τ ] into disjoint intervals I1, . . . , Im of length r.
7 for all j ∈ [m] do
8 xj ← midpoint of the interval Ij ⊂ L that corresponds to Ij ⊂ R.
9 ∇̂L(Ij)← GETGRADIENT(xj , α).

10 b̂L(Ij)← GETBIAS(L, Ij).

11 for all pairs of distinct i, j ∈ [m] do
12 (vj , bj)← (∇̂L(Ii)− ∇̂L(Ij), b̂L(Ii)− b̂L(Ij)).
13 if (vj , bj) satisfies the bounds in (14) then
14 Add (vj , bj) to S.

15 return S .

contained within a linear piece of F |L. By the proof of Theorem 4.8, these are the only intervals444

for which we need∇L(I) and bL(I) in order for S to contain enough neurons to approximate F by445

some linear combination to L2 error ε.446

C.4 Linear Regression Over ReLU Features447

It remains to show how to combine the neurons produced by GETNEURONS to obtain a good ap-448

proximation to F . As Theorem 4.8 already ensures that some linear combination of them suffices,449

we can simply draw many samples (x, F (x)) for x ∼ N (0, Id), form the feature vectors computed450

by the neurons output by GETNEURONS, and run linear regression on these feature vectors.451

Formally, let S denote the set of pairs (w, b) guaranteed by Theorem 4.8. We will denote the w’s by452

{ŵj} and the b’s by {b̂j}. Consider the following distribution over feature vectors computed by the453

neurons in S:454

Definition C.1. Let D′ denote the distribution over R|S|+d+1×R of pairs (z, y) given by sampling455

x ∼ N (0, Id) and forming the vector z whose entries consist of all σ(〈ŵj , x〉 − b̂j) as well as the456

entries of x and the entry 1, and taking y to be F (x) for the ground truth network F defined in (11).457

We will also need to define a truncated version of D′: let D denote D′ conditioned on the norm of458

the |S|+1 to |S|+d-th coordinates having norm at mostM ,
√
d+O(

√
log(1/δ), which happens459

with probability at least 1− δ over D′.460

Our algorithm will be to sample sufficiently many pairs (z, y) from D′ (by querying F on random461

Gaussian inputs) and run ordinary least squares. This is outlined in LEARNFROMQUERIES below.462

To show that regression-based algorithm successfully outputs a network that achieves low population463

loss with respect to F , we will use the following standard results on generalization.464

Theorem C.2. For D a distribution over X × Y and ` : Y × Y → R a loss function that is L-465

Lipschitz in its first argument and uniformly bounded above by c. Let F be a class of functions466

X → Y such that for any f ∈ F and pairs (x1, y1), . . . , (xn, yn) drawn independently fromD, with467

probability at least 1− δ,468

E
(x,y)∼D

[`(f(x), y)] ≤ 1

n

∑
i

`(f(xi), yi) + 4L · Rn(F) + 2c ·
√

log(1/δ)

2n
,

whereRn(F) denotes the Rademacher complexity of F .469
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Algorithm 4: LEARNFROMQUERIES(ε, δ)
Input: Accuracy ε > 0, confidence δ > 0

Output: One hidden-layer network F̃ : Rd → R for which ‖F − F̃‖ ≤ O(ε)

1 S = {(ŵj , b̂j)} ← GETNEURONS(ε, δ).
2 Draw samples (z1, y1), . . . , (zn, yn) from D // Definition C.1

3 Let ṽ be the solution to the least-squares problem (19). Let b̃ denote the last entry of ṽ, and
let w̃ denote the vector given by the d entries of ṽ prior to the last.

4 Form the network F̃ (x) ,
∑
j ṽjσ(〈ŵj , x〉 − b̂j) + 〈w̃, ·〉 − b̃.

5 return F.

Theorem C.3. If X is the set of x satisfying ‖x‖ ≤ X , and F is the set of linear functions 〈w, ·〉 for470

‖w‖ ≤W , thenRn(F) ≤ XW/
√
n.471

As these apply to bounded loss functions and covariates, we must first pass from D′ to D and472

quantify the error in going from one to the other:473

Lemma C.4. For f satisfying E(z,y)∼D′ [(f(z)− y)2] ≤ ε2, we have474 ∣∣∣∣ E
(z,y)∼D′

[(f(z)− y)2]− E
(x,y)∼D

[(f(z)− y)2]

∣∣∣∣ ≤ O(ε2). (18)

Proof. Let Z denote the probability that a random draw from D′ lies in the support of D so that475

Z ≥ 1−δ; denote this event by E . Then we can write E(z,y)∼D[(f(z)−y)2] as 1
Z E(z,y)∼D′ [(f(z)−476

y)2 · 1[z ∈ E ]] and rewrite the left-hand side of (18) as477 ∣∣∣∣(1− 1

Z

)
· E

(z,y)∼D′

[
(f(z)− y)2 · 1[z ∈ E ]

]
+ E

(z,y)∼D′

[
(f(z)− y)2 · 1[z 6∈ E ]

]∣∣∣∣.
Note that |1− 1/Z| ≤ 2δ ≤ 1 for δ sufficiently small, from which the claim follows.478

We are now ready to prove the main theorem of this section:479

Theorem 4.12. Let S denote the list of pairs (ŵj , b̂j) output by GETNEURONS(ε, δ). Sample480

(z1, y1), . . . , (zn, yn) from D for n = poly(k,R,B, 1/ε, d, log(1/δ)). With probability at least481

1−O(δ) over the randomness of GETNEURONS and the samples, the following holds. Define482

ṽ , arg min
‖v‖≤W

n∑
i=1

(〈v, zi〉 − yi)2, for W ,
√
τ/r + k(R+B), (19)

let b̃ denote the last entry of ṽ, and let w̃ denote the vector given by the d entries of ṽ prior to483

the last. Then the one hidden-layer network F̃ (x) ,
∑
j ṽjσ(〈ŵj , x〉 − b̂j) + 〈w̃, ·〉 − b̃ satisfies484

‖F − F̃‖ ≤ O(ε).485

Proof. Note that over the support of D we have that the square loss ` : Y × Y → R is uniformly486

bounded above by (MkR+ kB)2 and is L = O(M · k ·R+ k ·B)-Lipschitz. Finally, note that for487

z in the support of D,488

‖z‖2 = 1 +M2 + 2M2
∑
j

(‖ŵj‖2 + b̂2j )

. (M2τ/r) · (k2R2 + ∆2k4R2 log(k/δ) + k2B2) , X2. (20)

where τ, r are defined in Theorem 4.8 and we used (14) and Step 14 in GETNEURONS to bound489

‖ŵj‖ and |̂bj |.490

By the guarantee on GETNEURONS given by Lemma 4.11, we know that there is a vector v∗ ∈491

{±1}|S| ×Bd(kR)× [−kB, kB] which achieves ε2 squared loss with respect to D′. Note that492

‖v∗‖ ≤ |S|1/2 + k(R+B) =
√
τ/r + k(R+B) ,W. (21)
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By Lemma C.4, v∗ achievesO(ε2) squared loss with respect toD. As the random variable (〈v∗, z〉−493

y)2 for (z, y) ∼ D is bounded above by494

(‖v∗‖‖z‖+ |y|)2 . poly(k,R,B, 1/ε,M),

for n ≥ poly(k,R,B, 1/ε,M) we have that the empirical loss of v∗ on (z1, y1), . . . (zn, yn) is495

O(ε2), and therefore that of the predictor ṽ is O(ε2).496

By applying Theorem C.3 with (20) and (21), we find that the Rademacher complexity Rn(F) of497

the family of linear predictors over ‖z‖ ≤ X and with norm bounded by W is C/
√
n for C which498

is polynomial in k, R, B, 1/ε , d, log(1/δ), from which the theorem follows by Theorem C.2.499
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