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A.1 PROOF OF THEOREM 1

(i) The first result follows from the fact that the cross-entropy loss is a proper composite loss [Williamson et al., 2016] with
the softmax function as the associated (inverse) link function.

(ii) For a proof of the second result, please see Menon et al. [2021b].

(iii) Below, we provide a proof for the third result.

The minimization of the robust objective in (3) over f can be re-written as a min-max optimization problem:

min
f :X→Rm

Lrob(f) = min
f :X→Rm

max
λ∈∆m

m∑
y=1

λy
πy

E [ηy(X) `(y, f(X))]︸ ︷︷ ︸
ω(λ,f)

. (1)

The min-max objective ω(λ, f) is clearly linear in λ (for fixed f ) and with ` chosen to be the cross-entropy loss, is convex
in f (for fixed λ), i.e., ω(λ, κf1 + (1− κ)f2) ≤ κω(λ, f1) + (1− κ)ω(λ, f2), ∀f1, f2 : X → Rm, κ ∈ [0, 1]. Furthermore,
∆m is a convex compact set, while the domain of f is convex. It follows from Sion’s minimax theorem [Sion, 1958] that:

min
f :X→Rm

max
λ∈∆m

ω(λ, f) = max
λ∈∆m

min
f :X→Rm

ω(λ, f). (2)

Let (λ∗, f∗) be such that:

λ∗ ∈ argmax
λ∈∆m

min
f :X→Rm

ω(λ, f); f∗ ∈ argmin
f :X→Rm

max
λ∈∆m

ω(λ, f),

Such a λ∗ exists for the following reason: for any fixed λ ∈ ∆m, owing to the use of the cross-entropy loss, a minimizer over
always exists for ω(λ, f), and is given by fy(x) = log

(
λy

πy
ηy(x)

)
+C, for some C ∈ R; therefore minf :X→Rm ω(λ, f) is

bounded above for any λ, and ∆m being compact set gives us there exits a maximizer λ∗ over this set. Similarly, such an f∗

exists for the following reason: the objective maxλ∈∆m
ω(λ, f) takes a bounded value when f = η, and any minimizer of

maxλ∈∆m ω(λ, f) yields a value below that; because ω(λ, f) ≥ 0 and is convex in f , the minimizer f∗ exits.

We then have from (2):

ω(λ∗, f∗) ≤ max
λ∈∆m

ω(λ, f∗)

= min
f :X→Rm

max
λ∈∆m

ω(λ, f) = max
λ∈∆m

min
f :X→Rm

ω(λ, f)

= min
f :X→Rm

ω(λ∗, f) ≤ ω(λ∗, f∗),
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which tells us that there exists (λ∗, f∗) is a saddle-point for (1), i.e.,

ω(λ∗, f∗) = max
λ∈∆m

ω(λ, f∗) = min
f :X→Rm

ω(λ∗, f).

Consequently, we have:

Lrob(f∗) = max
λ∈∆m

ω(λ, f∗) = min
f :X→Rm

max
λ∈∆m

ω(λ, f) = min
f :X→Rm

Lrob(f).

We thus have that f∗ is a minimizer of Lrob(f). Furthermore, because f∗ is also a minimizer of ω(λ∗, f) over f , i.e.,

f∗ ∈ argmin
f :X→Rm

m∑
y=1

λ∗y
πy

E [ηy(X) `(y, f(X))] ,

it follows that:

softmaxy(f∗(x)) ∝
λ∗y
πy
ηy(x).

(iv) For the fourth result, we expand the traded-off objective, and re-write it as:

Ltdf(f) = (1− α)Lbal(f) + αLrob(f)

= (1− α)
1

m

m∑
y=1

1

πy
E [ηy(X) `(y, f(X))] + α max

λ∈∆m

m∑
y=1

λy
πy

E [ηy(X) `(y, f(X))]

= max
λ∈∆m

m∑
y=1

(
(1− α)

1

m
+ αλy

)
1

πy
E [ηy(X) `(y, f(X))]︸ ︷︷ ︸

ω(λ,f)

.

For a fixed λ, ω(λ, f) is convex in f (as the loss ` is the cross-entropy loss), and for a fixed f , ω(λ, f) is linear in λ.
Following the same steps as the proof of (iii), we have that there exists (λ∗, f∗) such that

Ltdf(f∗) = max
λ∈∆m

ω(λ, f∗) = min
f :X→Rm

Ltdf(f),

and

f∗ ∈ argmin
f :X→Rm

m∑
y=1

(
(1− α)

1

m
+ αλ∗y

)
1

πy
E [ηy(X) `(y, f(X))] ,

which, owing to the properties of the cross-entropy loss, then gives us the desired form for f∗.

A.2 PROOF OF THEOREM 2

Proof. Expanding the left-hand side, we have:

|L̂rob-d(f)− Lrob(f)| ≤ |L̂rob-d(f)− Lrob-d(f) + Lrob-d(f)− Lrob(f)|
≤ |L̂rob-d(f)− Lrob-d(f)|+ |Lrob-d(f)− Lrob(f)|

= |L̂rob-d(f)− Lrob-d(f)|+

∣∣∣∣∣max
y∈[m]

Ex
[
pty(x) `(y, f(x))

]
Ex
[
pty(x)

] − max
y∈[m]

Ex [ηy(x) `(y, f(x))]

πy

∣∣∣∣∣
≤ |L̂rob-d(f)− Lrob-d(f)|+ max

y∈[m]

∣∣∣∣∣Ex
[
pty(x) `(y, f(x))

]
Ex
[
pty(x)

] − Ex [ηy(x) `(y, f(x))]

πy

∣∣∣∣∣
≤ |L̂rob-d(f)− Lrob-d(f)|+B max

y∈[m]
Ex

[∣∣∣∣∣ pty(x)

Ex
[
pty(x)

] − ηy(x)

πy

∣∣∣∣∣ `(y, f(x))

]

≤ |L̂rob-d(f)− Lrob-d(f)|+B max
y∈[m]

Ex

[∣∣∣∣∣ pty(x)

Ex
[
pty(x)

] − ηy(x)

πy

∣∣∣∣∣
]
,



where the second-last step uses Jensen’s inequality and the fact that `(y, f(x)) ≥ 0, and the last step uses the fact that
`(y, f(x)) ≤ B.

Further expanding the first term,

|L̂rob-d(f)− Lrob(f)| ≤
∣∣∣∣max
y∈[m]

φy(f) − max
y∈[m]

φ̂y(f)

∣∣∣∣+B max
y∈[m]

Ex

[∣∣∣∣∣ pty(x)

Ex
[
pty(x)

] − ηy(x)

πy

∣∣∣∣∣
]

≤ max
y∈[m]

∣∣∣φy(f) − φ̂y(f)
∣∣∣+B max

y∈[m]
Ex

[∣∣∣∣∣ pty(x)

Ex
[
pty(x)

] − ηy(x)

πy

∣∣∣∣∣
]
,

as desired.

A.3 CALIBRATION OF MARGIN-BASED LOSS

To show that minimizer of the margin-based objective in (9) also minimizes the balanced objective in (6), we state the
following general result:

Lemma 1. Suppose pt ∈ F and F is closed under linear transformations. Let

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

Lmar (pt(xi), f(xi); c
)

(3)

for some cost vector c ∈ Rm+ . Then:

f̂y(xi) = log
(
cyp

t
y(xi)

)
+ Ci, ∀i ∈ [n],

for some example-specific constant constants Ci ∈ R,∀i ∈ [n]. Furthermore, for any assignment of example weights of
w ∈ Rn+, f̂ is also the minimizer of the weighted objective:

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

wi

m∑
y=1

cy p
t
y(xi) ` (y, f(xi)) . (4)

Proof. Following Menon et al. [2021b] (e.g. proof of Theorem 1), we have that for class probabilities p ∈ ∆m and costs
c ∈ Rm+ , the margin-based loss in (9)

Lmar (p, f ; c) =
1

m

∑
y∈[m]

py log

(
1 +

∑
j 6=y

exp (log(cy/cj) − (fy − fj))
)
.

is minimized by:
f∗y = log (cypy) + C,

for any C > 0. To see why this is true, note that the above loss can be equivalently written as:

Lmar (p, f ; c) = − 1

m

∑
y∈[m]

py log

(
exp (fy − log(cy))∑m
j=1 exp (fj − log(cj))

)
.

This the same as the softmax cross-entropy loss with adjustments made to the logits, the minimizer for which is of the form:

f∗y − log(cy) = log (py) + C or f∗y = log (cypy) + C.

It follows that any minimizer f̂ of the average margin-based loss in (3) over sample S, would do so point-wise, and therefore

f̂y(xi) = log
(
cyp

t
y(xi)

)
+ Ci, ∀i ∈ [n],

for some example-specific constant constants Ci ∈ R,∀i ∈ [n].



To prove the second part, we note that for the minimizer f̂ to also minimize the weighted objective:

1

n

n∑
i=1

wi

m∑
y=1

cy p
t
y(xi) ` (y, f(xi)) ,

it would also have to do so point-wise for each i ∈ [m], and so as long the weights wi are non-negative, it suffices that

f̂(xi) ∈ argmin
f∈Rm

m∑
y=1

cy p
t
y(xi) ` (y, f(xi)) .

This is indeed the case when ` is the softmax cross-entropy loss, where the point-wise minimizer for each i ∈ [m] would be
of the form softmaxy(f(x)) = cyp

t
y(x), which is satisfied by f̂ .

A similar result also holds in the population limit, when (3) and (4) are computed in expectation, and the per-example
weighting in (4) is replaced by an arbitrary weighting function w(x) ∈ R+. Any scorer of the following form would then
minimize both objectives:

f̂y(x) = log
(
cyp

t
y(x)

)
+ C(x), ∀x ∈ X ,

where C(x) is some example-specific constant.

A.4 PROOF OF PROPOSITION 3

Proposition (Restated). Suppose pt ∈ F and F is closed under linear transformations. Then the final scoring function
f̄s(x) = 1

K

∑K
k=1 f

k(x) output by Algorithm 1 is of the form:

softmaxj(f̄s(x)) ∝ λ̄jptj(x), ∀j ∈ [m], ∀(x, y) ∈ S,

where λ̄y =
(∏K

k=1 λ
k
y/π

t
y

)1/K

.

Proof. The proof follows from Lemma 1 with the costs c set to λk/πt for each iteration k. The lemma tells us that each fk

is of the form:

fk(x′) = log

(
λky
πty
pty(x′)

)
+ C(x′), ∀(x′, y′) ∈ S,

for some example-specific constant C(x′) ∈ R. Consequently, we have that:

f̄sy (x′) = log(λ̄yp
t
y(x′)) + C̄(x′), ∀(x′, y′) ∈ S,

where λ̄y =
(∏K

k=1 λ
k
y/π

t
y

)1/K

and C̄(x′) ∈ R. Applying a softmax to f̄s results in the desired form.

A.5 PROOF OF THEOREM 4

Theorem (Restated). Suppose pt ∈ F and F is closed under linear transformations. Suppose ` is the softmax cross-entropy
loss `xent, `(y, z) ≤ B and maxy∈[m]

1
πt
y
≤ Z, for some B,Z > 0. Furthermore, suppose for any δ ∈ (0, 1), the following

bound holds on the estimation error in Theorem 2: with probability at least 1− δ (over draw of S ∼ Dn), for all f ∈ F ,

max
y∈[m]

∣∣φy(f)− φ̂y(f)
∣∣ ≤ ∆(n, δ),



for some ∆(n, δ) ∈ R+ that is increasing in 1/δ, and goes to 0 as n → ∞. Fix δ ∈ (0, 1). Then when the step size

γ = 1
2BZ

√
log(m)
K and nval ≥ 8Z log(2m/δ), with probability at least 1− δ (over draw of S ∼ Dn and Sval ∼ Dnval

)

Lrob(f̄s) ≤ min
f∈F

Lrob(f) + 2B max
y∈[m]

Ex
[∣∣∣∣pty(x)

πty
− ηy(x)

πy

∣∣∣∣]︸ ︷︷ ︸
Approximation error

+ 2∆(nval, δ/2) + 2∆(n, δ/2)︸ ︷︷ ︸
Estimation error

+ 4BZ

√
log(m)

K︸ ︷︷ ︸
EG convergence

.

Before proceeding to the proof, we will find it useful to define:

φ̂val
y (fs) =

1

π̂t,val
y

1

nval

∑
(x′,y′)∈Sval

pty(x′) ` (y, fs(x′)) .

We then state a useful lemma.

Lemma 2. Suppose the conditions in Theorem 4 hold. Then with probability ≤ 1 − δ (over draw of S ∼ Dn and
Sval ∼ Dnval

), at each iteration k,

m∑
y=1

λk+1
y φy(fk+1) − min

f∈F

m∑
y=1

λk+1
y φy(f) ≤ 2∆(n, δ);

and for any λ ∈ ∆m: ∣∣∣∣∣
m∑
y=1

λyφ̂
val
y (fk+1) −

m∑
y=1

λyφy(fk+1)

∣∣∣∣∣ ≤ ∆(nval, δ).

Proof. We first note that by applying Lemma 1 with wi = 1,∀i, we have that fk+1 is the minimizer of
∑m
y=1 λ

k+1
y φ̂y(f)

over all f ∈ F , and therefore:
m∑
y=1

λk+1
y φ̂y(fk+1) ≤

m∑
y=1

λk+1
y φ̂y(f), ∀f ∈ F . (5)

Further, for a fixed iteration k, let us denote f̃ ∈ argmin
f∈F

∑m
y=1 λ

k+1
y φy(f). Then for the first part, we have:

m∑
y=1

λk+1
y φy(fk+1) −

m∑
y=1

λk+1
y φy(f̃)

≤
m∑
y=1

λk+1
y φy(fk+1) −

m∑
y=1

λk+1
y φ̂y(fk+1) +

m∑
y=1

λk+1
y φ̂y(fk+1) −

m∑
y=1

λk+1
y φy(f̃)

≤
m∑
y=1

λk+1
y φy(fk+1) −

m∑
y=1

λk+1
y φ̂y(fk+1) +

m∑
y=1

λk+1
y φ̂y(f̃) −

m∑
y=1

λk+1
y φy(f̃)

≤ 2 sup
f∈F

∣∣∣∣∣
m∑
y=1

λk+1
y φ̂y(f) −

m∑
y=1

λk+1
y φy(f)

∣∣∣∣∣
≤ 2 sup

f∈F
max
λ∈∆m

∣∣∣∣∣
m∑
y=1

λyφ̂y(f) −
m∑
y=1

λyφy(f)

∣∣∣∣∣
≤ 2 sup

f∈F
max
λ∈∆m

m∑
y=1

λy

∣∣∣φ̂y(f) − φy(f)
∣∣∣

= 2 sup
f∈F

max
y∈[m]

∣∣φ̂y(f)− φy(f)
∣∣.



where for the second inequality, we use (5). Applying the generalization bound assumed in Theorem 4, we have with
probability ≤ 1− δ (over draw of S ∼ Dn), for all iterations k ∈ [K],

m∑
y=1

λk+1
y φy(fk+1) −

m∑
y=1

λk+1
y φy(f̃) ≤ 2∆(n, δ),

For the second part, note that for any λ ∈ ∆m,∣∣∣∣∣
m∑
y=1

λyφ̂
val
y (fk+1) −

m∑
y=1

λyφy(fk+1)

∣∣∣∣∣ ≤
m∑
y=1

λy

∣∣∣φ̂val
y (fk+1) − φy(fk+1)

∣∣∣
≤ max
y∈[m]

∣∣∣φ̂val
y (fk+1) − φy(fk+1)

∣∣∣
≤ sup
f∈F

max
y∈[m]

∣∣∣φ̂val
y (f) − φy(f)

∣∣∣ .
An application of the generalization bound assumed in Theorem 4 to empirical estimates from the validation sample
completes the proof.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Note that because miny∈[m] π
t
y ≥ 1

Z and nval ≥ 8Z log(2m/δ), we have by a direct application of
Chernoff’s bound (along with a union bound over all m classes) that with probability at least 1− δ/2:

min
y∈[m]

π̂t,val
y ≥ 1

2Z
,∀y ∈ [m]

and consequently, φ̂val
y (f) ≤ 2BZ, ∀f ∈ F . The boundedness of φ̂val

y will then allow us to apply standard convergence

guarantees for exponentiated gradient ascent [Shalev-Shwartz et al., 2011]. For γ = 1
2BZ

√
log(m)
K , the updates on λ will

give us with probability at least 1− δ/2:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyφ̂
val
y (fk) ≤ 1

K

K∑
k=1

m∑
y=1

λkyφ̂
val
y (fk) + 4BZ

√
log(m)

K
(6)

Applying the second part of Lemma 2 to each iteration k, we have with probability at least 1− δ:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyφy(fk) ≤ 1

K

K∑
k=1

m∑
y=1

λkyφy(fk) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2),

and applying the first part of Lemma 2 to the RHS, we have with the same probability:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyφy(fk)

≤ 1

K

K∑
k=1

min
f∈F

m∑
y=1

λkyφy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

≤ min
f∈F

1

K

K∑
k=1

m∑
y=1

λkyφy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2).

Note that we have taken a union bound over the high probability statement in (6) and that in Lemma 2. Using the convexity
of φ(·) in f(x) and Jensen’s inequality, we have that

∑m
y=1 λyφy(f̄s) ≤ 1

K

∑K
k=1

∑m
y=1 λyφy(fk). We use this to further

lower bound the LHS in terms of the averaged scoring function f̄s(x) = 1
K

∑K
k=1 f

k(x):

max
λ∈∆m

m∑
y=1

λyφy(f̄s)



≤ min
f∈F

1

K

K∑
k=1

m∑
y=1

λkyφy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

= min
f∈F

m∑
y=1

λ̃yφy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

≤ max
λ∈∆m

min
f∈F

m∑
y=1

λyφy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

= min
f∈F

max
λ∈∆m

m∑
y=1

λyφy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

= min
f∈F

max
y∈[m]

φy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2), (7)

where in the second step λ̃y = 1
K

∑K
k=1 λ

k
y ; in the fourth step, we swap the ‘min’ and ‘max’ using Sion’s minimax theorem

[Sion, 1958]. We further have from (7),

max
y∈[m]

φy(f̄s) ≤ min
f∈F

max
y∈[m]

φy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2).

In other words,

Lrob-d(f̄s) ≤ min
f∈F

Lrob-d(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2).

To complete the proof, we need to turn this into a guarantee on the original robust objective Lrob in (3):

Lrob(f̄s)

≤ min
f∈F

Lrob(f) + 2 max
f∈F

∣∣Lrob(f)− Lrob-d(f)
∣∣ + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

≤ min
f∈F

Lrob(f) + 2B max
y∈[m]

Ex
[∣∣∣∣pty(x)

πty
− ηy(x)

πy

∣∣∣∣] + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2),

where we have used the bound on the approximation error in the proof of Theorem 2. This completes the proof.

B STUDENT ESTIMATION ERROR

We now provide a bound on the estimation error in Theorem 4 using a generalization bound from Menon et al. [2021a].

Lemma 3. Let F ⊆ RX be a given class of scoring functions. Let V ⊆ RX denote the class of loss functions v(x, y) =
`(y, f(x)) induced by scorers f ∈ F . Let Mn = N∞( 1

n ,V, 2n) denote the uniform L∞ covering number for V . Fix
δ ∈ (0, 1). Suppose `(y, z) ≤ B, πty ≤ 1

Z ,∀y ∈ [m], and the number of samples n ≥ 8Z log(4m/δ). Then with probability
≥ 1− δ over draw of S ∼ Dn, for any f ∈ F and y ∈ [m]:

∣∣∣φy(f)− φ̂y(f)
∣∣∣ ≤ CZ

(√
Vn,y(f)

log(mMn/δ)

n
+

log(mMn/δ)

n
+ B

√
log(m/δ)

n

)
,

where Vn,y(f) denotes the empirical variance of the loss values {pty(xi) · `(y, f(xi))}ni=1 for class y, and C > 0 is a
distribution-independent constant.

Notice the dependence on the variance that the teacher’s predictions induce on the loss. This suggests that the lower the
variance in the teacher’s predictions, the better is the student’s generalization. Similar to Menon et al. [2021a], one can
further show that when the teacher closely approximates the Bayes-probabilities η(x), the distilled loss pty(xi) · `(y, f(xi))
has a lower empirical variance that the loss `(yi, f(xi)) computed from one-hot labels.



Proof of Lemma 3. We begin by defining the following intermediate term:

φ̃y(f) =
1

πty

1

n

n∑
i=1

pty(xi) ` (y, f(xi)) .

Then for any y ∈ [m], ∣∣∣φy(f)− φ̂y(f)
∣∣∣ ≤ ∣∣∣φy(f)− φ̃y(f)

∣∣∣+
∣∣∣φ̃y(f)− φ̂y(f)

∣∣∣ . (8)

We next bound each of the terms in (8), starting with the first term:∣∣∣φy(f)− φ̃y(f)
∣∣∣ =

1

πty

∣∣∣∣∣Ex [pty(x) ` (y, f(x))
]
− 1

n

n∑
i=1

pty(xi) ` (y, f(xi))

∣∣∣∣∣
≤ Z

∣∣∣∣∣Ex [pty(x) ` (y, f(x))
]
− 1

n

n∑
i=1

pty(xi) ` (y, f(xi))

∣∣∣∣∣ ,
where we use the fact that πty ≤ 1

Z ,∀y. Applying the generalization bound from Menon et al. [2021a, Proposition 2], along
with a union bound over all m classes, we have with probability at least 1− δ/2 over the draw of S ∼ Dn, for all y ∈ [m]:∣∣∣φy(f)− φ̃y(f)

∣∣∣ ≤ C ′Z (√Vn,y(f)
log(mMn/δ)

n
+

log(mMn/δ)

n

)
, (9)

for a distribution-independent constant C ′ > 0.

We next bound the second term in (8):∣∣∣φ̃y(f)− φ̂y(f)
∣∣∣ =

∣∣∣∣ 1

πty
− 1

π̂ty

∣∣∣∣ 1

n

n∑
i=1

pty(xi) · ` (y, f(xi))

≤ B
∣∣∣∣ 1

πty
− 1

π̂ty

∣∣∣∣
=

B

πtyπ̂
t
y

∣∣πty − π̂ty∣∣ ,
where in the second step we use the fact that `(y, f(x)) ≤ B and pty(x) ≤ 1.

Further note that because miny∈[m] π
t
y ≥ 1

Z and n ≥ 8Z log(4m/δ), we have by a direct application of Chernoff’s bound
(and a union bound over m classes) that with probability at least 1− δ/4:

min
y∈[m]

π̂ty ≥
1

2Z
,∀y ∈ [m]. (10)

Therefore for any y ∈ [m]: ∣∣∣φ̃y(f)− φ̂y(f)
∣∣∣ ≤ 2BZ2

∣∣πty − π̂ty∣∣ .
Conditioned on the above statement, a simple application of Hoeffding’s inequality and a union bound over all y ∈ [m]
gives us that with probability at least 1− δ/4 over the draw of S ∼ Dn, for all y ∈ [m]:∣∣∣φ̃y(f)− φ̂y(f)

∣∣∣ ≤ 2BZ2

(
1

Z

√
log(8m/δ)

2n

)
= 2BZ

√
log(8m/δ)

2n
. (11)

A union bound over the high probability statements in (9–11) completes the proof. To see this, note that, for any ε > 0 and
y ∈ [m],

P
(∣∣∣φy(f)− φ̂y(f)

∣∣∣ ≥ ε)



Algorithm 1 Distilled Margin-based DRO with One-hot Validation Labels

Inputs: Teacher pt, Student hypothesis class F , Training set S, Validation set Sval, Step-size γ ∈ R+, Number of
iterations K, Loss `
Initialize: Student f0 ∈ F , Multipliers λ0 ∈ ∆m

For k = 0 to K − 1
λ̃k+1
j = λkj exp

(
γR̂j

)
,∀j ∈ [m]

where R̂j =
1

nval

1

π̂val
j

∑
(x,y)∈Sval

`(y, fk(x)) and π̂val
j =

1

nval

∑
(x,y)∈Sval

1(y = j)

λk+1
y =

λ̃k+1
y∑m

j=1 λ̃
k+1
j

,∀y

fk+1 ∈ argmin
f∈F

1

n

n∑
i=1

Lmar
(
pt(xi), f(xi);

λk+1

π̂t

)
// Replaced with a few steps of SGD

End For
Output: f̄s : x 7→ 1

K

∑K
k=1 f

k(x)

≤ P
((∣∣∣φy(f)− φ̃y(f)

∣∣∣ ≥ ε) ∨ (∣∣∣φ̃y(f)− φ̂y(f)
∣∣∣ ≥ ε))

≤ P
(∣∣∣φy(f)− φ̃y(f)

∣∣∣ ≥ ε) + P
(∣∣∣φ̃y(f)− φ̂y(f)

∣∣∣ ≥ ε)
≤ P

(∣∣∣φy(f)− φ̃y(f)
∣∣∣ ≥ ε) + P

(
π̂ty ≤

1

Z

)
· P
(∣∣∣φ̃y(f)− φ̂y(f)

∣∣∣ ≥ ε ∣∣∣∣ π̂ty ≤ 1

Z

)
+ P

(
π̂ty ≥

1

Z

)
· P
(∣∣∣φ̃y(f)− φ̂y(f)

∣∣∣ ≥ ε ∣∣∣∣ π̂ty ≥ 1

Z

)
≤ P

(∣∣∣φy(f)− φ̃y(f)
∣∣∣ ≥ ε) + P

(
π̂ty ≤

1

Z

)
+ P

(∣∣∣φ̃y(f)− φ̂y(f)
∣∣∣ ≥ ε ∣∣∣∣ π̂ty ≥ 1

Z

)
,

which implies that a union bound over (9–11) would give us the desired result in Lemma 3.

C DRO WITH ONE-HOT VALIDATION LABELS

The updates on λ in Algorithm 1 use a validation set labeled by the teacher. One could instead perform these updates with a
curated validation set containing the original one-hot labels. Each of these choices presents different merits. The use of a
teacher-labeled validation set is useful in many real world scenarios where labeled data is hard to obtain, while unlabeled
data abounds. In contrast, the use of one-hot validation labels, although more expensive to obtain, may make the student
more immune to errors in the teacher’s predictions, as the coefficients λs are now based on an unbiased estimate of the
student’s performance on each class.

Algorithm 1 contains a version of the margin-based DRO described in Section 3.1, where instead of teacher labels the
original one-hot labels are used in the validation set.

Before proceeding to providing a convergence guarantee for this algorithm, we will find it useful to define the following
one-hot metrics:

φoh
y (fs) =

1

πy
Ex [ηy(x) ` (y, fs(x))]

φ̂oh,val
y (fs) =

1

π̂y

1

nval

∑
(x′,y′)∈Sval

1(y′ = y) ` (y′, fs(x′)) .

Theorem 4. Suppose pt ∈ F and F is closed under linear transformations. Then the final scoring function f̄s(x) =
1
K

∑K
k=1 f

k(x) output by Algorithm 1 is of the form:

softmaxy(f̄s(x′)) ∝ λ̄ypty(x′), ∀(x′, y′) ∈ S,



where λ̄y =
(∏K

k=1 λ
k
y/π

t
y

)1/K

. Furthermore, suppose ` is the softmax cross-entropy loss in `xent, `(y, z) ≤ B, for some

B > 0, and maxy∈[m]
1
πy
≤ Z, for some Z > 0. Suppose for any δ ∈ (0, 1), the following holds: with probability at least

1− δ (over draw of S ∼ Dn), for all f ∈ F ,

max
y∈[m]

∣∣φoh
y (f)− φ̂oh

y (f)
∣∣ ≤ ∆oh(n, δ); max

y∈[m]

∣∣φy(f)− φ̂y(f)
∣∣ ≤ ∆(n, δ),

for some ∆oh(n, δ),∆(n, δ) ∈ R+ that is increasing in 1/δ, and goes to 0 as n→∞. Fix δ ∈ (0, 1). Then when the step

size γ = 1
2BZ

√
log(m)
K and nval ≥ 8Z log(2m/δ), with probability at least 1− δ (over draw of S ∼ Dn and Sval ∼ Dnval

),
for any τ ∈ R+,

Lrob(f̄s) ≤ min
f∈F

Lrob(f) + 2B max
y∈[m]

Ex
[∣∣∣∣τ · pty(x)

πty
− ηy(x)

πy

∣∣∣∣]︸ ︷︷ ︸
Approximation error

+ 2τ ·∆oh(nval, δ/2) + 2∆(n, δ/2)︸ ︷︷ ︸
Estimation error

+ 4BZ

√
log(m)

K︸ ︷︷ ︸
EG convergence

.

Comparing this to the bound in Theorem 4, we can see that there is an additional scaling factor τ against the teacher
probabilities pty(x) and in the approximation error. When we set τ = 1, the bound looks very similar to Theorem 4,
except that the estimation error term ∆oh now involves one-hot labels. Therefore the estimation error may incur a slower
convergence with sample size as it no longer benefits from the lower variance that the teacher predictions may offer (see
Appendix B for details).

The τ -scaling in the approximation error also means that the teacher is no longer required to exactly match the (normalized)
class probabilities η(x). In fact, one can set τ to a value for which the approximation error is the lowest, and in general to a
value that minimizes the upper bound in Theorem 4, potentially providing us with a tighter convergence rate than Theorem
4.

The proof of Theorem 4 is similar to that of Theorem 4, but requires a modified version of Lemma 2:

Lemma 5. Suppose the conditions in Theorem 4 hold. With probability ≤ 1− δ (over draw of S ∼ Dn and Sval ∼ Dnval
),

at each iteration k and for any τ ∈ R+,

m∑
y=1

λk+1
y φoh

y (fk+1) − min
f∈F

m∑
y=1

λk+1
y φoh

y (f) ≤ 2τ ·∆(n, δ) + 2B max
y∈[m]

Ex
[∣∣∣∣τ pty(x)

πty
− ηy(x)

πy

∣∣∣∣] .
Furthermore, with the same probability, for any λ ∈ ∆m:∣∣∣∣∣

m∑
y=1

λyφ̂
oh,val
y (fk+1) −

m∑
y=1

λyφ
oh
y (fk+1)

∣∣∣∣∣ ≤ ∆oh(nval, δ).

Proof. We first note from Lemma 1 that because fk+1 ∈ argmin
f∈F

1

n

n∑
i=1

Lmar
(
pt(xi), f(xi);

λk+1

π̂

)
, we have for the

example-weighting wi = τ,∀i:

τ

m∑
y=1

λk+1
y φ̂y(fk+1) ≤ τ

m∑
y=1

λk+1
y φ̂y(f), ∀f ∈ F . (12)

For a fixed iteration k, let us denote f̃ ∈ argmin
f∈F

∑m
y=1 λ

k+1
y φy(f). Then for the first part, we have for any τ ∈ R+:

m∑
y=1

λk+1
y φoh

y (fk+1) −
m∑
y=1

λk+1
y φoh

y (f̃)



≤ τ

(
m∑
y=1

λk+1
y φy(fk+1) −

m∑
y=1

λk+1
y φy(f̃)

)
+

m∑
y=1

λk+1
y

∣∣φoh
y (fk+1)− τφy(fk+1)

∣∣
+

m∑
y=1

λk+1
y

∣∣∣φoh
y (f̃)− τφy(f̃)

∣∣∣
≤ τ

(
m∑
y=1

λk+1
y φy(fk+1) −

m∑
y=1

λk+1
y φy(f̃)

)
+ 2 max

f∈F

m∑
y=1

λk+1
y

∣∣φoh
y (f)− τφy(f)

∣∣
≤ τ

(
m∑
y=1

λk+1
y φy(fk+1) −

m∑
y=1

λk+1
y φy(f̃)

)
+ 2 max

f∈F
max
λ∈∆m

m∑
y=1

λ
∣∣φoh
y (f)− τφy(f)

∣∣
≤ τ

(
m∑
y=1

λk+1
y φy(fk+1) −

m∑
y=1

λk+1
y φy(f̃)

)
+ 2 max

f∈F
max
y∈[m]

∣∣φoh
y (f)− τφy(f)

∣∣
≤ 2τ sup

f∈F
max
y∈[m]

∣∣φ̂y(f)− φy(f)
∣∣ + 2 max

f∈F
max
y∈[m]

∣∣φoh
y (f)− τφy(f)

∣∣ .
where the last inequality re-traces the steps in Lemma 2. Further applying the generalization bound assumed in Theorem 4,
we have with probability ≤ 1− δ (over draw of S ∼ Dn), for all iterations k ∈ [K] and any τ ∈ R+,

m∑
y=1

λk+1
y φoh

y (fk+1) −
m∑
y=1

λk+1
y φoh

y (f̃) ≤ 2τ∆(n, δ) + 2 max
f∈F

max
y∈[m]

∣∣φoh
y (f)− τφy(f)

∣∣ . (13)

All that remains is to bound the second term in (13). For any f ∈ F and y ∈ [m],

∣∣φoh
y (f)− τφy(f)

∣∣ ≤ ∣∣∣∣ 1

πy
Ex [ηy(x) ` (y, f(x))] − τ

πty
Ex
[
pty(x) ` (y, f(x))

]∣∣∣∣
≤ Ex

[∣∣∣∣ 1

πy
ηy(x) ` (y, f(x)) − τ

πty
pty(x) ` (y, f(x))

∣∣∣∣]
= Ex

[∣∣∣∣ 1

πy
ηy(x) − τ

πty
pty(x)

∣∣∣∣ ` (y, fs(x))

]
≤ BEx

[∣∣∣∣ηy(x)

πy
− τ

pty(x)

πty

∣∣∣∣] ,
where we use Jensen’s inequality in the second step, the fact that `(y, z) ≤ B is non-negative in the second step, and the fact
that `(y, z) ≤ B in the last step. Substituting this upper bound back into (13) completes the proof of the first part.

The second part follows from a direct application of the bound on the per-class estimation error maxy∈[m]

∣∣φoh
y (f) −

φ̂oh,val
y (f)

∣∣.
Proof of Theorem 4. The proof traces the same steps as Proposition 3 and Theorem 4, except that it applies Lemma 5 instead
of Lemma 2.

Note that because miny∈[m] πy ≥ 1
Z and nval ≥ 8Z log(2m/δ), we have by a direct application of Chernoff’s bound (along

with a union bound over all m classes) that with probability at least 1− δ/2:

min
y∈[m]

π̂oh,val
y ≥ 1

2Z
,∀y ∈ [m],

and consequently, φ̂oh,val
y (f) ≤ 2BZ, ∀f ∈ F . The boundedness of φ̂oh,val

y will then allow us to apply standard convergence

guarantees for exponentiated gradient ascent [Shalev-Shwartz et al., 2011]. For γ = 1
2BZ

√
log(m)
K , the updates on λ will

give us:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyφ̂
oh,val
y (fk) ≤ 1

K

K∑
k=1

m∑
y=1

λkyφ̂
oh,val
y (fk) + 4BZ

√
log(m)

K



Algorithm 2 Distilled Margin-based DRO for Traded-off Objective

Inputs: Teacher pt, Student hypothesis class F , Training set S, Validation set Sval, Step-size γ ∈ R+, Number of
iterations K, Loss `, Trade-off parameter α
Initialize: Student f0 ∈ F , Multipliers λ0 ∈ ∆m

For k = 0 to K − 1

λ̃k+1
j = λkj exp

(
γαR̂j

)
,∀j ∈ [m] where R̂j =

1

nval

1

π̂t,val
j

∑
(x,y)∈Sval

ptj(xi) `(j, f
k(x))

λk+1
y =

λ̃k+1
y∑m

j=1 λ̃
k+1
j

,∀y

βk+1
y = (1− α) 1

m + αλk+1
y

fk+1 ∈ argmin
f∈F

1

n

n∑
i=1

Lmar
(
pt(xi), f(xi);

βk+1

π̂t

)
// Replaced with a few steps of SGD

End For
Output: f̄s : x 7→ 1

K

∑K
k=1 f

k(x)

Applying the second part of Lemma 2 to each iteration k, we have with probability at least 1− δ:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyφ
oh
y (fk) ≤ 1

K

K∑
k=1

m∑
y=1

λkyφ
oh
y (fk) + 4BZ

√
log(m)

K
+ 2∆oh(nval, δ/2),

and applying the first part of Lemma 2 to the RHS, we have with the same probability, for any τ ∈ R+:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyφ
oh
y (fk) ≤ 1

K

K∑
k=1

min
f∈F

m∑
y=1

λkyφ
oh
y (f) + 4BZ

√
log(m)

K
+ 2∆oh(nval, δ/2)

+ 2τ∆(n, δ/2) + 2B max
y∈[m]

Ex
[∣∣∣∣τ pty(x)

πty
− ηy(x)

πy

∣∣∣∣]

≤ min
f∈F

1

K

K∑
k=1

m∑
y=1

λkyφ
oh
y (f) + 4BZ

√
log(m)

K
+ 2∆oh(nval, δ/2)

+ 2τ∆(n, δ/2) + 2B max
y∈[m]

Ex
[∣∣∣∣τ pty(x)

πty
− ηy(x)

πy

∣∣∣∣] .
Using the convexity of φ(·) in f(x) and Jensen’s inequality, we have that

∑m
y=1 λyφy(f̄s) ≤ 1

K

∑K
k=1

∑m
y=1 λyφy(fk).

We use this to further lower bound the LHS in terms of the averaged scoring function f̄s(x) = 1
K

∑K
k=1 f

k(x), and re-trace
the steps in Theorem 4 to get"

max
y∈[m]

φoh
y (f̄s) ≤ min

f∈F
max
y∈[m]

φoh
y (f) + 4BZ

√
log(m)

K
+ 2∆oh(nval, δ/2)

+ 2τ∆(n, δ/2) + 2B max
y∈[m]

Ex
[∣∣∣∣τ pty(x)

πty
− ηy(x)

πy

∣∣∣∣] .
Noting that Lrob(f) = maxy∈[m] φ

oh
y (f) completes the proof.

D DRO FOR TRADED-OFF OBJECTIVE

We present a variant of the margin-based DRO algorithm described in Section 3.1 that seeks to minimize a trade-off between
the balanced and robust student objectives:

L̂tdf-d(fs) = (1− α)L̂bal-d(fs) + αL̂rob-d(fs),



for some α ∈ [0, 1].

Expanding this, we have:

Ltdf-d(f) = (1− α)
1

m

m∑
y=1

1

π̂ty

1

n

n∑
i=1

pty(xi) `(y, f(xi)) + α max
y∈[m]

m∑
y=1

1

π̂ty

1

n

n∑
i=1

pty(xi) `(y, f(xi))

= (1− α)
1

m

m∑
y=1

1

π̂ty

1

n

n∑
i=1

pty(xi) `(y, f(xi)) + α max
λ∈∆m

m∑
y=1

λy
π̂ty

1

n

n∑
i=1

pty(xi) `(y, f(xi))

= max
λ∈∆m

m∑
y=1

(
(1− α)

1

m
+ αλy

)
1

π̂ty

1

n

n∑
i=1

pty(xi) `(y, f(xi)).

The minimization of Ltdf-d(f) over f can then be a cast as a min-max problem:

min
f :X→Rm

Ltdf-d(f) = min
f :X→Rm

max
λ∈∆m

m∑
y=1

(
(1− α)

1

m
+ αλy

)
1

π̂ty

1

n

n∑
i=1

pty(xi) `(y, f(xi)).

Retracing the steps in the derivation of Algorithm 1 in Section 3.1, we have the following updates on λ and f to solve the
above min-max problem:

λ̃k+1
y = λky exp

(
γα

1

nπ̂ty

n∑
i=1

pty(xi) `
(
y, fk(xi)

))
,∀y

λk+1
y =

λ̃k+1
y∑m

j=1 λ̃
k+1
j

,∀y

βk+1
y = (1− α)

1

m
+ αλk+1

y

fk+1 ∈ argmin
f∈F

∑
y∈[m]

βk+1
y

nπ̂ty

n∑
i=1

pty(xi) ` (y, f(xi)) ,

for step-size parameter γ > 0. To better handle training of over-parameterized students, we will perform the updates on λ
using a held-out validation set, and employ a margin-based surrogate for performing the minimization over f . This procedure
is outlined in Algorithm 2.

D.1 CONNECTION TO POST-HOC ADJUSTMENT

The form of the student in Proposition 3 raises an interesting question. Instead of training an explicit student model, why not
directly construct a new scoring model by making post-hoc adjustments to the teacher’s predictions? Specifically, one could
optimize over functions of the form fsy (x) = log(γyp

t
y(x)), where the teacher pt is fixed, and pick the coefficients γ ∈ Rm

so that resulting scoring function yields the best worst-class accuracy on a held-out dataset. This simple post-hoc adjustment
strategy may not be feasible if the goal is to distill to a student that is considerably smaller than the teacher. Often, this is the
case in settings where distillation is used as a compression technique. Yet, this post-hoc method serves as good baseline to
compare with.

E ADDITIONAL EXPERIMENT DETAILS

This section contains further experiment details about the datasets, hyperparameters, and baselines.

E.1 ADDITIONAL DETAILS ABOUT DATASETS

E.1.1 Building long tailed datasets

The long-tailed datasets were created from the original datasets following Cui et al. [2019] by downsampling examples
with an exponential decay in the per-class sizes. As done by Narasimhan and Menon [2021], we set the imbalance ratio



maxi P (y=i)
mini P (y=i) to 100 for CIFAR-10 and CIFAR-100, and to 83 for TinyImageNet (the slightly smaller ratio is to ensure that
the smallest class is of a reasonable size). We use the long-tail version of ImageNet generated by Liu et al. [2017].

E.1.2 Dataset splits

The original test samples for CIFAR-10, CIFAR-10-LT, CIFAR-100, CIFAR-100-LT, TinyImageNet (200 classes),
TinyImageNet-LT (200 classes), and ImageNet (1000 classes) are all balanced. Following Narasimhan and Menon [2021],
we randomly split them in half and use half the samples as a validation set, and the other half as a test set. For the CIFAR
and TineImageNet datasets, this amounts to using a validation set of size 5000. For the ImageNet dataset, we sample a
subset of 5000 examples from the validation set each time we update the Lagrange multipliers in Algorithm 1.

In keeping with prior work Menon et al. [2021b], Narasimhan and Menon [2021], Lukasik et al. [2022], we use the same
validation and test sets for the long-tailed training sets as we do for the original versions. For the long tailed training sets,
this simulates a scenario where the training data follows a long tailed distribution due to practical data collection limitations,
but the test distribution of interest still comes from the original data distribution. In plots, the “balanced accuracy” that we
report for the long-tail datasets (e.g., CIFAR-10-LT) is actually the standard accuracy calculated over the balanced test set,
which is shared with the original balanced dataset (e.g., CIFAR-10).

Both teacher and student were always trained on the same training set.

The CIFAR datasets had images of size 32 × 32, while the TinyImageNet and ImageNet datasets dataset had images of size
224 × 224.

These datasets do not contain personally identifiable information or offensive content. The CIFAR-10 and CIFAR-100
datasets are licensed under the MIT License. The terms of access for ImageNet are given at https://www.image-net.
org/download.php.

E.2 ADDITIONAL DETAILS ABOUT TRAINING AND HYPERPARAMETERS

E.2.1 Training details and hyperparameters

Temperature hyperparameters. We apply temperature scaling to the teacher scores on both the training set and validation
set when training the student, i.e., compute pt(x) = softmax(f t(x)/γ), and vary the temperature parameter γ over a range
of {1, 3, 5}. When training with teacher labels on the validation set (Algorithm 1), we vary the temperature parameters
independently for the training set and the validation set. That is, we apply pt(x) = softmax(f t(x)/γtrain) over the training
set and pt(x) = softmax(f t(x)/γval) over the validation set. When teacher labels are applied to the validation set, we
additionally include a temperature of 0.1 on the teacher’s validation set labels to approximate a hard thresholding of the
teacher probabilities. Thus, the final hyperparameter search spaces are γtrain ∈ {1, 3, 5}, and γval ∈ {0.1, 1, 3, 5}.

Unless otherwise specified, in all tables, the temperature hyperparameters were chosen to achieve the best worst-class
accuracy on the validation set. In all scatter plots such as Figure 1, for each αt, αs combination, temperature hyperparameters
were selected to achieve the best worst-class accuracy on the validation set.

Learning rate hyperparameters. All models were trained using SGD with momentum of 0.9 [Lukasik et al., 2022,
Narasimhan and Menon, 2021].

The learning rate schedule were chosen to mimic the settings in prior work Narasimhan and Menon [2021], Lukasik et al.
[2022]. For CIFAR-10 and CIFAR-100 datasets, we ran the optimizer for 450 epochs, linearly warming up the learning rate
till the 15th epoch, and then applied a step-size decay of 0.1 after the 200th, 300th and 400th epochs, as done by Lukasik
et al. [2022]. For the long-tail versions of these datasets, we trained for 256 epochs, linearly warming up the learning rate till
the 15th epoch, and then applied a step-size decay of 0.1 after the 96th, 192nd and 224th epochs, as done by Narasimhan and
Menon [2021]. Similarly, for the TinyImageNet datasets, we train for 200 epochs, linearly warming up the learning rate till
the 5th epoch, and then applying a decay of 0.1 after the 75th and 135th epochs, as done by Narasimhan and Menon [2021].
For ImageNet, we train for 90 epochs, linearly warming up the learning rate till the 5th epoch, then applying a decay of 0.1
after the 30th, 60th and 80th epochs, as done by Lukasik et al. [2022]. We used a batch size of 128 for the CIFAR-10 and the
long-tailed TinyImageNet datasets [Narasimhan and Menon, 2021], a batch size of 512 for the balanced ImageNet dataset, a
batch size of 2048 for the balanced TinyImageNet dataset, and a batch size of 1024 for other datasets Lukasik et al. [2022].

https://www.image-net.org/download.php
https://www.image-net.org/download.php


We apply an L2 weight decay of 10−4 in all our SGD updates Lukasik et al. [2022]. This amounts to applying an L2

regularization on the model parameters, and has the effect of keeping the model parameters (and as a result the loss function)
bounded.

When training with the margin-based robust objective (see Algorithm 1), a separate step size α was applied for training the
main model function f , and for updating the multipliers λ. We set α to 0.1 in all experiments.

Hardware. Model training was done using TPUv2.

E.2.2 Repeats

For all comparative baselines without distillation (Group DRO, Post shift, and all teachers alone), we provide average results
over m retrained models (m = 5 for ImageNet / TinyImageNet, or m = 10 for CIFAR datasets). For students on all CIFAR*
datasets, unless otherwise specified, we train the teacher once and run the student training 10 times using the same arbitrarily
chosen fixed teacher. We compute the mean and standard error of metrics over these m = 10 runs. For the resource-heavy
TinyImageNet and ImageNet students, we reduce the number of repeats to m = 5. This methodology captures variation
in the student retrainings while holding the teacher fixed. To capture the end-to-end variation in both teacher and student
training, we include Appendix F.4 and Table 3 which contains a rerun of the CIFAR experiments in Table 1 using a distinct
teacher for each student retraining. The overall best teacher/student objective combinations did not change for most datasets,
with the only exception coming from a difference in the use of validation set labels.

E.3 ADDITIONAL DETAILS ABOUT ALGORITHMS AND BASELINES

E.3.1 Practical improvements to Algorithms 1–2

Algorithms 1–2 currently return a scorer that averages over all K iterates f̄s(x) = 1
K

∑K
k=1 f

k(x). While this averaging
was required for our theoretical robustness guarantees to hold, in our experiments, we find it sufficient to simply return
the last model fK . Another practical improvement that we make to these algorithms following Cotter et al. [2019], is to
employ the 0-1 loss while performing updates on λ, i.e., set ` = `0-1 in the λ-update step. We are able to do this because the
convergence of the exponentiated gradient updates on λ does not depend on ` being differentiable. This modification allows
λs to better reflect the model’s per-class performance on the validation sample.

E.3.2 Discussion on post-shifting baseline

We implement the post-shifting method in Narasimhan and Menon [2021] (Algorithm 3 in their paper), which provides for an
efficient way to construct a scoring function of the form fsy (x) = log(γyp

t
y(x)), for a fixed teacher pt, where the coefficients

γ ∈ Rm are chosen to maximize the worst-class accuracy on the validation dataset. Interestingly, in our experiments, we
find this approach to do exceedingly well on the validation sample, but this does not always translate to good worst-class test
performance. In contrast, some of the teacher-student combinations that we experiment with were seen to over-fit less to the
validation sample, and as a result were able to generalize better to the test set. This could perhaps indicate that the teacher
labels we use in these combinations benefit the student in a way that it improves its generalization. The variance reduction
effect that Menon et al. [2021a] postulate may be one possible explanation for why we see this behavior.

F ADDITIONAL EXPERIMENTAL RESULTS

This section contains additional experimental results.

F.1 EXTENDED TABLES FOR OBJECTIVE COMBINATIONS

We include extended tables comparing worst-class performance for different combinations of teacher and student objectives.
The mean and standard errors are reported over repeat trainings as described in Appendix E.2.2.

Table 1 is an extended version of Table 1 that includes standard errors for both worst-k accuracy and average accuracy.



Table 2 includes similar comparisons when the student is compressed – that is, the student’s architecture is smaller than the
teacher’s architecture.

Table 1: Worst-class accuracy comparison of self-distilled teacher/student combos on test. The “none” row indicates the
performance of the teacher alone. Worst-class accuracy is shown above (or worst-10 accuracy for TinyImageNet-LT), and
average is accuracy shown in parentheses below. The combination with the best worst-class accuracy is in bold. We include
results for the robust student using either a teacher labeled validation set (“teacher val”), or true one-hot class labels in the
validation set (“one-hot val”), as outlined in Appendix C. Perhaps counterintuitively, the teacher with the best worst-class
accuracy alone (the “none” row) did not always produce the student with the highest worst-class accuracy.

CIFAR-10 Teacher Obj. CIFAR-100 Teacher Obj. TinyImageNet Teacher Obj.
Lstd Lrob Lstd Lrob Lstd Lrob

St
ud

en
tO

bj
.

none 86.48± 0.32 90.09± 0.22 42.22± 0.90 43.42± 1.03 8.42± 1.88 11.87± 1.74
(93.74± 0.05) (92.67± 0.09) 72.42± 0.16 68.81± 0.11 (56.79± 0.33) (48.40± 0.15)

Lstd-d 87.66± 0.40 90.12± 0.23 43.81± 0.58 48.20± 1.15 6.32± 2.31 10.53± 1.49
(94.34± 0.07) (94.07± 0.07) (74.61± 0.15) (73.23± 0.07) (57.83± 0.13) (55.36± 0.16)

Lrob-d 90.94± 0.16 85.14± 0.47 39.18± 1.58 30.42± 1.30 9.98± 1.87 16.58± 1.23
(teacher val) (92.54± 0.05) (89.58± 0.11) (63.49± 0.29) (55.77± 0.39) (49.84± 0.21) (46.11± 0.37)

Lrob-d 89.37± 0.17 87.32± 0.21 44.61± 1.55 42.68± 0.74 16.27± 0.43 17.36± 1.32
(one-hot val) (91.63± 0.06) (91.16± 0.10) (69.02± 0.30) (62.03± 0.24) (48.06± 0.24) (43.92± 0.30)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.
Lstd Lbal Lrob Lstd Lbal Lrob

St
ud

en
tO

bj
.

None 57.26± 0.55 68.52± 0.52 74.8± 0.30 0.00± 0.00 3.75± 0.62 10.33± 0.82
(76.27± 0.20) (79.85± 0.20) (80.29± 0.12) (43.33± 0.16) (47.55± 0.17) (44.27± 0.13)

Lstd-d 36.67± 0.28 66.96± 0.43 71.15± 0.24 0.00± 0.00 2.39± 0.24 7.32± 0.47
(69.5± 0.13) (79.25± 0.10) (80.95± 0.11) (43.86± 0.14) (48.95± 0.15) (47.93± 0.11)

Lbal-d 71.23± 0.44 70.52± 0.20 72.96± 0.53 4.39± 0.65 7.08± 0.80 7.19± 0.79
(80.5± 0.12) (81.12± 0.08) (80.71± 0.07) (50.4± 0.11) (50.1± 0.09) (47.51± 0.20)

Lrob-d 63.85± 0.21 75.56± 0.19 69.21± 0.45 9.05± 0.71 12.52± 0.98 10.32± 0.76
(teacher val) (76.81± 0.08) (80.81± 0.08) (76.72± 0.19) (33.75± 0.10) (34.05± 0.09) (36.83± 0.15)

Lrob-d 73.59± 0.25 75.43± 0.38 74.7 ±0.19 12.28± 0.46 11.94± 0.80 13.18± 0.61
(one-hot val) (77.92± 0.05) (79.02± 0.07) (77.99± 0.10 (30.79± 0.18) (29.8± 0.20) (31.88± 0.20

TinyImageNet-LT Teacher Obj.
Lstd Lbal Lrob

St
ud

en
tO

bj
.

None 0.00± 0.00 2.11± 0.37 4.92± 0.66
(33.15± 0.17) (35.96± 0.12) (27.23± 0.15)

Lstd-d 0.00± 0.00 0.00± 0.00 1.87± 0.23
(26.05± 0.18) (27.21± 0.15) (25.34± 0.13)

Lbal-d 0.20± 0.18 2.82± 0.14 4.77± 0.41
(30.43± 0.06) (39.41± 0.15) (38.41± 0.15)

Lrob-d 0.00± 0.00 4.93± 0.38 3.32± 0.43
(teacher val) (22.66± 0.08) (35.43± 0.18) (25.11± 0.17)

Lrob-d 1.55± 0.37 6.11± 0.39 6.19± 0.25
(one-hot val) (21.59± 0.19) (28.24± 0.17) (25.30± 0.18)

F.1.1 Robust distillation with a onehot-labeled validation set

Tables 1 and 2 also include results when the robust student is trained using a validation set using onehot labels, as described
in Appendix C. We report the accuracies for this robust student for different teachers trained with the standard, balanced,
and robust objectives in the last rows of Tables 1 and 2 (Lrob-d (one-hot val)). We compare these to the robust student trained
using teacher labels on the validation set (Lrob-d (teacher val)), which require less labeled data.



Table 2: Comparison of ResNet-56→ResNet-32 distilled teacher/student combos on test on CIFAR datasets. Worst-class
accuracy shown above, and average accuracy shown in parentheses below. The combination with the best worst-class
accuracy is bolded. Mean and standard error are reported over 10 repeats. We include results for the robust student using
either a teacher labeled validation set (“teacher val”), or true one-hot class labels in the validation set (“one-hot val”), as
outlined in Section 3.1.

CIFAR-10 Teacher Obj. CIFAR-100 Teacher Obj.
Lstd Lrob Lstd Lrob

St
ud

en
tO

bj
.

(R
es

N
et

-3
2)

Lstd-d 86.4± 0.27 89.56± 0.20 41.82± 1.12 45.7± 1.13
(93.73 ± 0.05) (93.38 ± 0.05) 73.19 ± 0.10 71.42 ± 0.22

Lrob-d 89.61± 0.27 83.8± 0.95 38.94± 2.61 19.15± 0.00
(teacher val) (92.20 ± 0.08) (88.71 ± 0.24) (62.28 ± 0.40) (52.9 ± 0.00)

Lrob-d 87.92± 0.23 86.57± 0.24 33.19± 1.29 41.23± 0.84
(one-hot val) (90.89 ± 0.12) (90.54 ± 0.11) (57.43 ± 0.29) (61.14 ± 0.24)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.
Lstd Lbal Lrob Lstd Lbal Lrob

St
ud

en
tO

bj
.

(R
es

N
et

-3
2)

Lstd-d 57.23± 0.53 66.80± 0.25 72.36± 0.39 0.00± 0.00 1.38± 0.39 7.99± 0.48
(75.76 ± 0.12) (78.99 ± 0.06) (80.74 ± 0.09) (44.33 ± 0.11) (47.28 ± 0.13) (47.34 ± 0.08)

Lbal-d 71.37± 0.50 71.00± 0.45 72.17± 0.40 3.57± 0.58 4.28± 0.45 5.58± 0.53
(81.13 ± 0.12) (81.12 ± 0.15) (79.91 ± 0.08) (49.21 ± 0.10) (46.56 ± 0.13) (48.58 ± 0.09)

Lrob-d 64.1± 0.36 73.51± 0.33 69.90± 0.42 10.24± 0.71 13.41± 0.72 11.27± 0.61
(teacher val) (76.34 ± 0.12) (80.10 ± 0.10) (76.37 ± 0.14) (33.55 ± 0.16) (33.37 ± 0.17) (36.14 ± 0.19)

Lrob-d 72.65± 0.27 74.39± 0.34 74.45± 0.26 10.93± 0.65 12.2± 0.65 12.93± 0.62
(one-hot val) (77.69 ± 0.11) (78.68 ± 0.16) (77.97 ± 0.10 (29.48 ± 0.22) (30.27 ± 0.18) (31.83 ± 0.17

Perhaps surprisingly, it did not always benefit the robust student to utilize the true one-hot labels in the validation set. Instead,
training the robust student with teacher labels on the validation set was often sufficient to achieve the best or close to the
best worst-class performance. This is promising from a data efficiency standpoint, since it can be expensive to build up a
labeled dataset for validation, especially if the training data is long-tailed.

F.2 ADDITIONAL PLOTS FOR ALL TRADE-OFF PARAMETER COMBINATIONS

Figure 1 show accuracies for all αt, αs the equivalent of Figure 1 but for all datasets.

F.3 COMPARISON TO BASELINES OF ALL PARETO EFFICIENT TRADE-OFF PARAMETERS

To supplement the comparison to baselines in Table 2, Figures 2 and 3 show all Pareto efficient αt and αs combinations on
test. Whereas only a single αt, αs combination was selected on the validation set and reported in Table 2, Figures 2 and 3
show that there were many more combinations of αt, αs that could have Pareto dominated all baselines.

Figures 2 and 3 also give more insight into which values of αt work best for different values of αs. Whereas Figure 1 shows
that αs is highly correlated with average accuracy, the same is not true for αt. Worst-class accuracy generally increases
with αs, but the teachers that achieve the Pareto efficient points all have αt < 1. This reveals counter-intuitively that the
teacher’s worst-class accuracy is not a direct predictor of the robustness of a subsequent student. This couples with our
theoretical understanding in Section 5, which showed that the ability of a teacher to train robust students is determined by
the calibration of scores within each class.

Trading off average vs. worst-class accuracy. Figures 2 and 3 show that when we allow for more nuanced Ltdf objective
combinations, the resulting models may have higher average accuracy and worst-class accuracy than standard distillation.
Interestingly, the models with the most “even” trade-offs between average accuracy and worst-class accuracy tend to have
low αt (around 0.25) and low αs (also around 0.25). Higher values of αt tended to lead to more extreme points on the
trade-off curve, either with higher average accuracy at the expense of worst-class accuracy, or vice versa. Overall, the
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Figure 1: All αt, αs combinations for all datasets on test. The black line traces out the Pareto frontier. Average accuracy is
roughly determined by αs. The labeled point corresponds to the “best” combination selected in Table 2 based on validation
criteria, but other domain-specific trade-off criteria could yield any of these other points.

robust Ltdf combinations also Pareto dominated most of the baselines that all used the standard teacher. Together, these
results highlight the fact that in robust distillation, the teacher’s training objective is important and should be tailored to the
desired final accuracy/robustness trade-off (perhaps using a held-out validation sample with some domain-specific criteria
in practice). Figure 4 confirms that these results also hold up in a compression setting, where the compressed models can
actually even beat their larger teachers.

F.4 DIFFERENT TEACHERS ON REPEAT TRAININGS

Distillation experimental results in the main paper use the same teacher for all repeat trainings of the student. This captures
the variance in the student training process while omitting the variance in the teacher training process. To capture the variance
in the full training pipeline, we ran an additional set of experiments where students were trained on different retrained
teachers, rather than on the same teacher. We report results on all CIFAR datasets in Table 3. The best teacher/student
combinations are identical for all datasets except for CIFAR-10-LT, for which the best teacher/student combinations from
Table 3 and Table 1 were both a robust student trained with a balanced teacher, and only differed in whether the validation
set contained teacher labels or one-hot labels (Lbal/Lrob-d (one-hot val) in Table 3 vs. Lbal/Lrob-d (teacher val) in Table 1).
Note that the first and second rows of Table 1 are already averaged over m retrained teachers (m = 5 for TinyImageNet, or
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Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.75 0.25 93.81± 0.07 90.68± 0.20
0.50 0.25 93.82± 0.09 90.54± 0.22
0.25 0.25 93.87± 0.08 90.50± 0.18
1.00 0.00 94.07± 0.07 90.12± 0.23
0.75 0.00 94.25± 0.05 90.00± 0.17
0.25 0.00 94.34± 0.06 89.10± 0.31

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 94.34± 0.07 87.66± 0.40
Post shift [NM’21] 92.16± 0.18 88.60± 0.35
Robust student [NM’21] 92.72± 0.05 89.90± 0.21
AdaMargin [LBMK’21] 93.69± 0.06 88.42± 0.36
AdaAlpha [LBMK’21] 94.31± 0.01 88.33± 0.14
Group DRO [SKHL’20] 92.34± 0.07 89.32± 0.21

CIFAR-100 ResNet56→ ResNet56
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Post shift [NM′21]
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Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
1.00 0.25 70.45± 0.16 48.99± 0.72
1.00 0.00 73.23± 0.07 48.20± 1.15
0.25 0.00 74.57± 0.12 46.99± 1.09
0.25 0.00 74.59± 0.09 44.37± 0.58
0.00 0.00 74.61± 0.15 43.81± 0.58

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 74.61± 0.15 43.81± 0.58
Post shift [NM’21] 61.22± 0.36 38.19± 0.40
Robust student [NM’21] 68.45± 0.13 43.62± 1.27
AdaMargin [LBMK’21] 73.58± 0.11 43.91± 1.11
AdaAlpha [LBMK’21] 74.15± 0.08 45.46± 0.67
Group DRO [SKHL’20] 65.18± 0.08 43.89± 1.12

TinyImageNet ResNet18→ ResNet18
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Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.50 0.75 51.88± 0.18 19.29± 1.27
0.75 0.50 53.60± 0.31 18.98± 0.86
0.25 0.25 56.99± 0.14 18.83± 0.85
0.00 0.25 57.26± 0.15 14.44± 0.91
0.75 0.00 57.35± 0.17 9.47± 1.76
0.50 0.00 57.74± 0.20 8.22± 1.09

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 57.83± 0.13 6.32± 2.31
Post shift [NM’21] 43.02± 0.79 14.39± 1.13
Robust student [NM’21] 48.06± 0.24 16.27± 0.43
AdaMargin [LBMK’21] 52.45± 0.08 15.41± 0.71
AdaAlpha [LBMK’21] 57.22± 0.08 7.62± 2.17
Group DRO [SKHL’20] 48.78± 0.21 11.38± 1.79

Figure 2: Trade-offs in worst-class test accuracy vs. average test accuracy for CIFAR-10 and CIFAR-100 distilling from
ResNet-56 to ResNet-56, and TinyImageNet distilling from ResNet-18 to ResNet-18. All baseline results that require a
teacher use the “standard teacher” (trained using Lstd), as done in the original papers. For methods run multiple times with
multiple hyperparameters (e.g. temperatures), all Pareto efficient results are shown in the plot, but the tables show only the
baseline results with the best worst-class accuracy (on the validation set). The highlighted row indicates the model with
the highest worst-class accuracy that also achieves at least as high average accuracy as standard distillation.



CIFAR-10-LT ResNet56→ ResNet56
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Post shift [NM′21]
Robust student [NM′21]
AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
Group DRO [SKHL′20]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.75 0.75 80.86± 0.09 75.58± 0.17
0.75 0.50 81.12± 0.11 75.52± 0.22
0.00 0.75 81.40± 0.10 75.15± 0.38
0.00 0.50 81.82± 0.11 75.13± 0.24
0.00 0.25 81.89± 0.08 73.09± 0.32
0.00 0.00 81.94± 0.16 70.61± 0.39

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 77.39± 0.10 60.12± 0.56
Post shift [NM’21] 78.28± 0.05 74.33± 0.09
Robust student [NM’21] 80.05± 0.13 74.91± 0.24
AdaMargin [LBMK’21] 72.69± 0.24 47.52± 0.95
AdaAlpha [LBMK’21] 70.83± 0.28 43.64± 1.09
Group DRO [SKHL’20] 74.39± 0.17 59.93± 0.59

CIFAR-100-LT ResNet56→ ResNet56
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Standard teacher
Post shift [NM′21]
Robust student [NM′21]
AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
Balanced student [MJRJVK′21]
Group DRO [SKHL′20]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.75 0.50 41.91± 0.15 16.08± 0.52
0.00 0.50 43.82± 0.14 16.06± 0.89
0.25 0.25 48.01± 0.09 15.52± 0.41
0.25 0.25 48.20± 0.11 15.26± 0.73
0.50 0.00 50.41± 0.11 7.49± 0.72
0.75 0.00 50.57± 0.18 5.55± 0.54

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 46.01± 0.16 0.00± 0.00
Post shift [NM’21] 29.88± 0.61 10.01± 0.72
Robust student [NM’21] 30.79± 0.18 12.28± 0.46
AdaMargin [LBMK’21] 31.26± 0.21 0.00± 0.00
AdaAlpha [LBMK’21] 42.52± 0.08 0.00± 0.00
Balanced student [MJRJVK’21] 50.40± 0.12 4.39± 0.66
Group DRO [SKHL’20] 40.47± 0.17 0.19± 0.17

TinyImageNet-LT ResNet18→ ResNet18
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Standard teacher
Post shift [NM′21]
Robust student [NM′21]
AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
Balanced student [MJRJVK′21]
Group DRO [SKHL′20]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-10 acc.
1.00 0.25 36.28± 0.17 7.98± 0.21
0.75 0.25 37.62± 0.15 6.25± 0.12
0.00 0.25 38.44± 0.13 5.90± 0.45
0.50 0.00 39.29± 0.09 4.17± 0.34
0.25 0.00 39.57± 0.06 3.68± 0.30

Baseline results (test)
Baseline Average acc. Worst-10 acc.
Standard distillation 26.05± 0.18 0.00± 0.00
Post shift [NM’21] 21.32± 0.49 2.58± 0.42
Robust student [NM’21] 21.59± 0.19 1.55± 0.37
AdaMargin [LBMK’21] 4.41± 0.09 0.00± 0.00
AdaAlpha [LBMK’21] 27.95± 0.14 0.00± 0.00
Balanced student [MJRJVK’21] 30.43± 0.06 0.20± 0.18
Group DRO [SKHL’20] 27.78± 0.13 0.00± 0.00

Figure 3: Trade-offs in worst-class test accuracy vs. average test accuracy for CIFAR-10-LT, CIFAR-100-LT, and
TinyImageNet-LT under self-distillation. All baseline results that require a teacher use the “standard teacher” (trained using
Lstd), as done in the original papers. For methods run multiple times with multiple hyperparameters (e.g. temperatures), all
Pareto efficient results are shown in the plot, but the tables show only the baseline results with the best worst-class accuracy
(on the validation set). The highlighted row indicates the model with the highest worst-class (or worst-10) accuracy that
also achieves at least as high average accuracy as standard distillation (within error margins). Note that the for the LT
datasets, Ltdf mixes between Lbal and Lrob.



CIFAR-10 ResNet56→ ResNet32
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Standard teacher
Robust student [NM′21]
Robust ResNet32 alone
AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.00 0.25 93.08± 0.07 89.85± 0.22
1.00 0.00 93.38± 0.05 89.56± 0.20
0.75 0.00 93.58± 0.09 88.91± 0.25
1.00 0.00 93.59± 0.06 88.88± 0.36
0.75 0.00 93.61± 0.05 88.44± 0.33
0.25 0.00 93.74± 0.07 88.41± 0.32

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 93.71± 0.05 86.98± 0.36
Robust student [NM’21] 91.57± 0.08 88.57± 0.18
AdaMargin [LBMK’21] 92.09± 0.09 83.57± 0.64
AdaAlpha [LBMK’21] 93.52± 0.11 85.41± 0.45

CIFAR-100 ResNet56→ ResNet32
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Robust student [NM′21]
Robust ResNet32 alone
AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.75 0.25 70.42± 0.14 48.57± 0.55
0.75 0.00 72.84± 0.22 45.74± 1.57
0.75 0.00 72.97± 0.18 43.73± 1.72

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 73.19± 0.10 41.82± 1.12
Robust student [NM’21] 65.17± 0.11 40.87± 0.89
AdaMargin [LBMK’21] 71.92± 0.17 42.22± 1.65
AdaAlpha [LBMK’21] 72.93± 0.09 41.50± 1.14

Figure 4: Trade-offs in worst-class test accuracy vs. average test accuracy for CIFAR-10 and CIFAR-100 distilling from
ResNet-56 to ResNet-32. All baseline results that require a teacher use the “standard teacher” (trained using Lstd), as
done in the original papers. For methods run multiple times with multiple hyperparameters (e.g. temperatures), all Pareto
efficient results are shown in the plot, but the tables show only the baseline results with the best worst-class accuracy (on the
validation set). The highlighted row indicates the model with the highest worst-class accuracy that also achieves at least as
high average accuracy as standard distillation (within error margins).



m = 10 for CIFAR datasets), and those same m teachers are used in the repeat trainings in Table 3.

Table 3: Comparison using different teachers for student retrainings for self-distilled teacher/student combos on test. For
each student/teacher objective pair, we train m = 10 students total on each of m = 10 distinct retrained teachers. For
comparability, the same set of m teachers is used for each student. This differs from Table 1 in that in Table 1, the students
are retrained on each repeat using the same teacher (arbitrarily selected). Otherwise, setups are the same as in Table 1.

CIFAR-10 Teacher Obj. CIFAR-100Teacher Obj.
Lstd Lrob Lstd Lrob

St
ud

en
tO

bj
. L

std-d 87.09± 0.51 89.68± 0.20 44.21± 0.57 47.79± 0.82
(93.78 ± 0.22) (93.74 ± 0.07) 74.6 ± 0.11 73.48 ± 0.11

Lrob-d 90.62 ± 0.19 87.12± 0.38 39.7± 1.32 31.09± 1.21
(teacher val) (92.58 ± 0.08) (90.46 ± 0.08) (64.28 ± 0.41) (55.39 ± 0.28)

Lrob-d 88.15± 0.66 86.44± 0.52 39.44± 0.94 39.65± 0.59
(one-hot val) (91.03 ± 0.47) (90.16 ± 0.42) (61.23 ± 0.36) (60.89 ± 0.29)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.
Lstd Lbal Lrob Lstd Lbal Lrob

St
ud

en
tO

bj
. L

std-d 60.12± 0.56 66.13± 0.47 69.75± 0.52 0.00± 0.00 1.41± 0.41 9.17± 0.74
(77.39 ± 0.10) (79.16 ± 0.20) (80.73 ± 0.08) (45.84 ± 0.13) (49.67 ± 0.20) (48.55 ± 0.14)

Lbal-d 72.41± 0.52 71.49± 0.30 71.70± 0.33 5.83± 0.54 5.94± 0.50 8.37± 0.72
(81.97 ± 0.11) (81.20 ± 0.15) (80.29 ± 0.11) (50.58 ± 0.15) (50.85 ± 0.14) (48.16 ± 0.20)

Lrob-d 62.77± 0.58 73.09± 0.34 68.04± 0.47 10.53± 0.76 12.04± 0.89 9.66± 1.15
(teacher val) (77.18 ± 0.15) (80.03 ± 0.22) (75.36 ± 0.25) (33.69 ± 0.14) (34.08 ± 0.12) (37.10 ± 0.15)

Lrob-d 75.10± 0.36 75.10± 0.50 74.16± 0.34 10.74± 0.44 11.95± 0.69 12.87± 0.81
(one-hot val) (79.27 ± 0.13) (79.07 ± 0.20) (78.11 ± 0.14 (30.36 ± 0.39) (31.00 ± 0.16) (31.62 ± 0.34

F.5 ADAALPHA AND ADAMARGIN COMPARISONS WITH DIFFERENT TEACHERS

We include and discuss additional comparisons to the AdaMargin and AdaAlpha methods Lukasik et al. [2022], which each
define additional ways to modify the student training algorithm (see Section 4). In Table 2, we show results with each of
these methods using the standard teacher, as done in the original paper. However, in this section we extend these results by
also applying AdaMargin and AdaAlpha with different teachers trained with the robust and balanced objectives. Table 4
compares the results of AdaMargin and AdaAlpha for these different teachers under the same self distillation setup as Table
1.

Overall, the use of a robust teacher leads to marked improvements for students trained by AdaMargin and AdaAlpha. For
the balanced datasets, AdaMargin was competitive with the robust and standard students: on CIFAR-100 and TinyImageNet,
AdaMargin combined with the robust teacher and the standard teacher (respectively) achieved worst-class accuracies that
are statistically comparable to the best worst-class accuracies in Table 1. However, on the long-tailed datasets, AdaAlpha
and AdaMargin did not achieve worst-class accuracies as high as other teacher/student combinations. This suggests that the
AdaMargin method can work well on balanced datasets in combination with a robust teacher, but other combinations of
standard/balanced/robust objectives are valuable for long-tailed datasets.

Relative to each other, AdaMargin usually achieved higher worst-class accuracy than AdaAlpha, whereas AdaAlpha often
achieved higher average accuracy.

F.6 GROUP DRO COMPARISON

Sagawa et al. [2020] propose a group DRO algorithm to improve long tail performance without distillation. In this section
we present additional experimental comparisons to Algorithm 1 from Sagawa et al. [2020]. This differs from our robust
optimization methodology in Section 3.1 in two key ways: (i) we apply a margin-based surrogates of Menon et al. [2021b],
and (ii) we use a validation set to update the Lagrange multipliers λ in Algorithm 2. Table 5 shows results from running
group DRO directly as specified in Algorithm 1 in Sagawa et al. [2020], as well as a variant where we use the validation set



Table 4: Results for AdaAlpha and AdaMargin baselines for different teachers under self-distillation. For all CIFAR
datasets, self-distillation is done from ResNet56→ ResNet56. For TinyImageNet, self-distillation is done from ResNet18
→ ResNet18. Worst-class accuracy shown above (or worst-10 accuracy for TinyImageNet-LT), and average accuracy is
shown in parentheses below. The temperature hyperparameter was tuned to maximize worst-class accuracy on the held-out
validation set. Mean and standard error are reported over 5 repeats for all datasets.

CIFAR-10 Teacher Obj. CIFAR-100 Teacher Obj. TinyImageNet Teacher Obj.
Lstd Lrob Lstd Lrob Lstd Lrob

Ada 88.33± 0.14 89.96± 0.44 43.50± 0.62 45.59± 0.82 11.11± 1.29 16.58± 1.67
Alpha (94.31 ± 0.01) (93.97 ± 0.07) 73.96 ± 0.09 71.42 ± 0.14 61.13 ± 0.09 56.84 ± 0.15

Ada 87.36 ±0.06 90.37±0.26 43.91 ±1.11 47.78 ±0.96 18.17 ±3.89 17.84 ±1.77

Margin (94.25 ± 0.02) (94.02 ± 0.12) (73.58 ± 0.11) (70.92 ± 0.09) (61.3 ± 0.28) (55.77 ± 0.32)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.
Lstd Lbal Lrob Lstd Lbal Lrob

Ada 41.90± 0.44 66.23± 0.39 71.17± 0.32 0.00± 0.00 1.46± 0.61 9.15± 0.54
Alpha (71.67 ± 0.08) (77.87 ± 0.16) (79.66 ± 0.13) (42.52 ± 0.08) (45.44 ± 0.14) (45.64 ± 0.11)

Ada 47.52 ±0.95 66.74 ±0.35 70.33 ±0.50 0.00 ±0.00 0.00 ±0.00 12.46 ±0.36

Margin (72.69 ± 0.24) (78.20 ± 0.09) (78.87 ± 0.12) (31.26 ± 0.21) (34.06 ± 0.12) (42.90 ± 0.07)

TinyImageNet-LT Teacher Obj.
Lstd Lbal Lrob

Ada 0.00± 0.00 0.00± 0.00 0.00± 0.00
Alpha (28.14 ± 0.12) (0.50 ± 0.00) (0.50 ± 0.00)

Ada 0.00± 0.00 0.00± 0.00 0.41± 0.17
Margin (9.18 ± 0.09) (7.92 ± 0.10) (23.08 ± 0.15)

to update Lagrange multipliers in group DRO (labeled as “with vali” in Table 5). Table 5 shows that this latter variant “with
vali” performs better than the original version without a validation set; thus, for the results in Figures 2 and 3, we report
these better results marked in Table 5 as “with vali.” Overall, this comparison shows that Lrob is comparable to group DRO,
and that robust distillation protocols can outperform group DRO alone.

Table 5: Results from comparison to group DRO (Algorithm 1 in Sagawa et al. [2020]) without distillation. “No vali” uses
the training set to update group Lagrange multipliers, as done originally by Sagawa et al. [2020]. “With vali” uses the
validation set to compute group Lagrange multipliers as done in all other experiments in our paper. Worst-class accuracy is
shown above, and balanced accuracy is shown in parentheses below. Mean and standard error are shown over 5 repeats.

CIFAR-10 group DRO CIFAR-100 group DRO TinyImageNet group DRO
No vali With vali No vali With vali No vali With vali

86.65 ±0.49 89.32 ±0.21 40.35 ±1.18 43.89 ±1.12 0.00 ±0.00 9.17 ±1.55

(93.61 ± 0.09) (92.34 ± 0.07) 70.25 ± 0.17 65.18 ± 0.08 (6.55 ± 0.41) (47.67 ± 0.22)

CIFAR-10-LT group DRO CIFAR-100-LT group DRO TinyImageNet-LT group DRO
No vali With vali No vali With vali No vali With vali

51.59 ±2.49 59.93 ±0.59 0.00 ±0.00 0.19 ±0.17 0.00 ±0.00 0.00 ±0.00

(71.94 ± 0.75) (74.39 ± 0.17) (39.81 ± 0.23) (40.47 ± 0.17) (9.79 ± 0.40) (22.49 ± 0.10)

F.7 ADDITIONAL IMAGENET COMPARISONS

Here we present additional results when training ResNet-18 teachers and students on ImageNet. Table 6 includes measures
of worst-1 accuracy, worst-10 accuracy, worst-50 accuracy, and worst-100 accuracy.



Table 6: ImageNet comparison of ResNet-18 teacher/student combos on test. Average worst-1/10/100 accuracy shown above,
standard accuracy shown in parentheses below. The combination with the best worst-class accuracy is bolded. Mean and
standard error are reported over up to 5 repeats.

Worst-1 Accuracy Worst-10 Accuracy Worst-50 Accuracy Worst-100 Accuracy

ImageNet Teacher Obj. ImageNet Teacher Obj. ImageNet Teacher Obj. ImageNet Teacher Obj.
Lstd Lrob Lstd Lrob Lstd Lrob Lstd Lrob

St
ud

en
tO

bj
.

none 0.00 10.71 11.54 17.13 24.01 25.08 30.35 29.96
(67.29) (63.10) (67.29) (63.10) 67.29 63.10 (67.29) (63.10)

Post 8.70 3.57 16.15 11.64 21.85 18.86 25.58 23.17
shift (48.62) (48.83) (48.62) (48.83) (48.62) (48.83) (48.62) (48.83)

Lstd-d 3.20± 1.33 3.79± 0.11 10.07± 0.27 10.22± 0.33 20.30± 0.39 22.61± 0.32 26.45± 0.25 29.01± 0.21
(65.46 ± 0.05) (64.54 ± 0.01) (65.46 ± 0.05) (64.54 ± 0.01) (65.46 ± 0.05) (64.54 ± 0.01) (65.46 ± 0.05) (64.54 ± 0.01)

Lrob-d 0.00± 0.00 0.00± 0.00 1.18± 0.02 1.47± 0.04 13.02± 0.16 6.85± 0.13 21.00± 0.19 11.26± 0.16
(teacher val) (59.60 ± 0.10) (51.01 ± 0.12) (59.60 ± 0.10) (51.01 ± 0.12) (59.60 ± 0.10) (51.01 ± 0.12) (59.60 ± 0.10) (51.01 ± 0.12)

Lrob-d 0.00± 0.00 0.00± 0.00 8.32± 1.04 5.99± 0.00 18.77± 0.03 16.82± 0.00 23.95± 0.31 22.16± 0.00
(one-hot val) (59.65 ± 0.01) (55.34 ± 0.00) (59.65 ± 0.01) (55.34 ± 0.00) (59.65 ± 0.01) (55.34 ± 0.00) (59.65 ± 0.01) (55.34 ± 0.00)
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