Supplementary Material

A Background on Hermite Polynomials

Recall the definition of the probabilist’s Hermite polynomials:

n_z? d2 —z2
He,(z) = (—1)"e /2~@e /2,

Under this definition, the first four Hermite polynomials are
Heo(x) = 1,He () = x, Hea(x) = 2® — 1, Hez(2) = 2* — 3.

In our work, we will consider the normalized Hermite polynomial of degree n to be h,(x) =
He,, (x
|

uct épace L2(R,N). To obtain an orthogonal basis for £2(R? Ny), we will use a multi-index
J = (ji1,-..,ja) € N? to define the d-variate normalized Hermite polynomial as H;(x) =
Hle Hj, (z;). Let the total degree of H; be |J| = Z?:l ji. Given a function f € £2(R9, Ny), we

can express it uniquely as f(x) = > ; ya f(J)H(x), where f(J) = Exen, [f(x)H(x)]. We de-
note by f[¥1(x) the degree k part of the Hermite expansion of f, i.e., fI*!(x) = 21—k f(J)HJ (x).

. These normalized Hermite polynomials form a complete orthogonal basis for inner prod-

ﬁ

Definition A.1. We say that a polynomial g in d variables is harmonic of degree k if it is a linear
combination of degree k£ Hermite polynomials. That is, g is harmonic if it can be written as

1) =M = Y erHy(x).

J:|J|=k

Notice that, since for a single-dimensional Hermite polynomial it holds A}, (x) = /mhy,—1(x),

we have that VHJ(&) (x) = /m;Hpy—p,(x), where M = (mq,...,mg). From this fact and the
orthogonality of Hermite polynomials, we obtain

Exn,[(VHy (%), VHL(x))] = [M|I[M = L] .

We will also require the following standard facts:

Fact A.2. Let p be a polynomial of degree k in d variables. Then p is harmonic of degree k if and
only iffor all x € RY it holds that kp(x) = (x, Vp(x)) — V2p(x).

Fact A.3 (see, e.g., [DKPZ21])). Let p, q be harmonic polynomials of degree k. Then,
Exon, [(VP(x), Vig(x))] = k(k = 1) ... (k = € + 1) Exon, [p(x)g(x))-

In particular,

(VEp(x), VEq(x)) = K Exn, [p(x)q(x)]-

B Omitted Proofs from

B.1 Proof of

We start with the following claim:

Claim B.1. Let p : R™ — R and q : R™ — R, where p is a polynomial of degree at most
kand q € L2(R™2,N,,,). Let U € Rm*" V € R"™X" sych that UUT = 1, ,VVT = 1,,,.

Then, we have that Ex ., [p(Ux)q(Vx)] = anzo L((UT)®mRY, (VT)®MRE"), where R =
Vrplml(x), Ry = Vgl (x).

We require the following lemma:

Lemma B.2. Let p be a harmonic polynomial of degree k. Let V. € R"™*" with VVT = 1,,,. Then
the polynomial p(Vx) is harmonic of degree k.
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Proof. Let f(x) = p(Vx). By [Fact A.2] it suffices to show that for all x € R™ it holds that
kf(x) = (x,Vf(x)) — V2f(x). Since VVT =1,,,, applylngmylelds

(x, Vf(x)) = V*f(x) = (Vx,Vp(Vx)) = V*p(Vx) = kp(Vx) = kf(x) .
O
Proof of [Claim B.1} For m € N, let f(™)(x) = pl™(Ux) and g™ (x) = ¢[™(Vx). We can write

p(Ux) ~ anzo ™ (x) and ¢(Vx) ~ >o°_; g™ (x). Then applying IFact A.3| and ILemma B.2|
yields

k oo k
B, p(Ux)a(V)] = 37 37 B, [/ ()0 ()] = 37 B, [ ()9 ™ ()]
m1=0mqo=0 m=0
= oo <me(m) (X)7vmg(m) (X)> — Z - <vmp[m] (Ux)7qu[m] (VX)> .
m=0 ' m=0 :

Denote by &/ C R" the image of the linear map UT. Applying the chain rule, for any function
h(Ux) : R™ — R, it holds Vh(Ux) = 9;h(Ux)U;; € U, where we applied Einstein’s summation
notation for repeated indices. Applying the above rule m times, we have that

V"h(Ux) = 0, ... 0, (UX)U;, 4, - .. Uy, . € US™.
Moreover, denote S,, = V"pl"(Ux) = (UT)®"R} € U®", and T,, = V"¢ (Vx) =

(VT)@mRD € Y®™ We have that

k k
1 1
B, [f()9(0)] = 3 — (V7pl")(Ux), g (Vi) ) = 37 — (S0 Ton)

m=0 m=0

b
=D (U Ry, (VI)*"RY').
m=0
This proves the claim. O

Proof of [Lemma 3.3] Applying[Claim B.T|by taking U = I,,, and V = vT, we have that
1
E,.n, p(2)f(vT2)] =) — <R vIRg),

which is a polynomial in v of degree less than k, since R¢ = V9pl?(x) and R = V4 f19(x) are
constants only depending on p and f. This completes the proof of [Cemma 3.3 m O

B.2 Proof of[Lemma 3.6)

We start by proving that “there exist non-negative weights wi, ..., w, with > ,_, w; = 1 such
that Z;=1 weq(vy) = 0 for all odd polynomials q of degree less than k” implies “there does not
exist any odd polynomial q of degree less than k such that q(v;) > 0,1 < ¢ < r.”  Suppose
for contradiction that there exists an odd polynomial ¢* of degree less than k such that ¢*(v,) >
0,1 < ¢ < r. For arbitrary non-negative weights wy, . .., w, with ZZ:l wy = 1, we have that
>y weq* (ve) > min{g*(v1),...,q*(v,)} > 0, which contradicts to the first statement.

We then prove the opposite direction. We will use the following version of Farkas’ lemma.

Fact B.3 (Farkas’ lemma). Let A € R™*" and b € R™. Then exactly one of the following two
assertions is true:

» There exists an x € R™ such that Ax = b and x > 0.

e There existsay € R™ such that yTA > 0and yTb < 0.
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Suppose for contradiction that there does not exist wy, ..., w, with >, , w, = 1 such that
> 7—1 weq(ve) = 0 holds for every odd polynomial ¢ of degree less than k. Let sy ,, denote the

total number of m-variate odd monomials of degree less than &, and {qf’m}lg j<sw... denote such
monomials. We consider the following LP with variables w = (w1, ..., w,)T: >, ; wgqj]?’m(ve) =
0,1 <5 < SkmyDopeqwe = 1Lwe > 0,1 < ¢ < r. By our assumption, the LP is infeasible. In
order to applying the Farkas Lemma (Fact B.3)), we write the linear system as Aw = b, where

) 1 ) 1 e 1 wy 1
m m C, 1
a"(vi) @ (va) e 0 (ve) w2 0
A= . . . . " , W = 5 7b =
QS;C m (Vl) QS;C m (V2) e qicémm (VT) Wy 0
By [Fact B3] the original linear system is infeasible if and only if there exists a vector u =
[uo, w1, ..., Ug, ,]T, uTA > 0and u™b < 0, Wthh is equivalent to ug + Z e u]qj "(ve) >

0,v1 < ¢ <randug < 0. Let ¢*(v) = Zé" T ujqj ™(v),v € R™, which is an odd polynomial

of degree less than k. By our definition of ¢*, we have that ¢*(v,) = Zj’“ Ty q] "(ve) > —ug >
0,V1 < ¢ < r, which contradicts to our assumption that there does not exist any odd polynomial q
of degree less than k such that q(vy) > 0,V¥1 < £ < r. This completes the proof.

B.3 Proof of

We denote by G(x) to be the standard Gaussian density. By definition, we have that

drv(Du, Do) = (1/2) / > IDu(x,y) — Do(x,y)|dx
ye{+1}

ng]l sign(v] Ux) = y] — (1/2)|dx

(=1

~am [ e IECDY

ye{£1}

Z wl[sign(v] Ux) = y] — (1/2)

{=1

- (1/2)Ex~Nn Z

ye{£1}

=(1/2) Y EXNN”[

ye{£1}

] |

] > Q(A/r), Yye {1}

ngﬂ sign(v] Ux) = y] — (1/2)

Therefore, it suffices to show that

> willsign(v]Ux) = y] - (1/2)

(=1

ExNNn [

We assume that wy, > 1/r for some ¢y € [r]. Let v* be an arbitrary vector satisfying VZOV* =0.
We denote by

X = {x € R™ | sign(vy x) > 0,sign(v;x) = sign(v;v"),£ € [r]\ {{o}},

Xy = {x € R™ | sign(vy x) < 0,sign(v)x) = sign(v;v*), € [r]\ {{o}}.
Roughly speaking, &} and &5 denote the subsets of vectors which are very close to the boundary

of the halfspace with direction v,, and maintain the same label with the boundary for the other
halfspaces. By definition, for any x; € A, x5 € Ao, we have that

Z wllfsign(v]x1) = y] — Z wel[sign(v]xz) = y]| = we, > 1/7.

=1 =1

Therefore, we have either

> willsign(v]xy) = y] — (1/2)

(=1

>1/2r, Vx; € X,
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or )
Zwﬂ[sign(v}xz) =y] —(1/2)
=1

Since Ux is a standard Gaussian for any UUT = I,,, and ||v; + v,|l2, [[vi — vj[l2 > Q(A),1 <
i < j <, we have that for y € {+1},

o [

> Prxon, [Ux € A1) - Exn, [

> 1/27’, Vxo € Xs.

" wellsign(v] Ux) = ] — (1/2)

Ux) =y] - (1/2) IUX€X1]

Ux) =y| - (1/2)

IUX S XQ]

+ Prxn, [UX S Xg Ex-n, [

> Q(A/r).

C Omitted Proofs from

C.1 Proof of[Lemma 4.5

In this section, we prove [Lemma 4.5] We start by introducing the following technical results.
Fact C.1. Lett > 2 and p,q € P{. Then, we have that

t /| x”2:1p(x)4(x)dx: ﬁ /| x|21<Vp(x),Vq(x)>dx+d+21t_2 /| xﬂﬁp(x)vz o(x)dx.

Proof of[Fact C.1} Applying the Gaussian Divergence theorem for the function p(x)Vp(x) over the
unit ball, we have that

x)q(x)dx = x)Vq(x),x)dx = V- (p(x)Va(x))dx
t‘/|x|2 lp( )Q( ) /|x|2 1<p( ) q( ) > /|x||2<1 (p( ) q( ))
_/| ” <1<Vp(x),Vq(x)>dx+/ p(x)V2q(x)dx

lIx[l2<1

1 1
:/ rd_ldr/ <Vp(rx),Vq(rx)>dx+/ rd_ldr/ p(rx)V2q(rx)dx
0 lIx|[2=1 0 lIx|l2=1

1 1
- / P28 g /| (60, Vg dx + / P23 gy /| PV a(x)dx
o x||lp=1 0 x|l2=1
1

1 2
T dt2-2 /|x|2=1<VP(X)7Vq(X)>dX + FEIDYID) /|x2=1p(x)v q(x)dx

This completes the proof. O
Fact C.2 (see, e.g., Lemma 28 in [Kanl15l]). Foranyp € Qf, we have that

sup x)| < /Ne.aVEP(x)2] = /Ny alplla-

lIxll2= 1

The following lemma provides upper and lower bounds for the expectation of the L?-norm
square of the gradient of any homogeneous polynomial p € Q¢ over the unit sphere S?~!

Lemma C.3. Let t be an odd positive integer. For any p € P{, we have that E[||V,p(x)|3] >
(d = 1)|Ipll3 and E[|Vp(x)|3] < t(d + 2t — 2)|p3.

Proof. By we have that
t(d + 2t = 2)|pll3 = E[|Vp(x)[3] + E[p(x)Vp(x)].
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We bound E[p(x)V?p(x)] as follows. We consider the linear transformations A; : P{ — P, ,, B, :
P — P, as follows: A;(p) = xTxp(x), Bi(p) = V2p(x),p € P{. We first show that for any
t > 2, both A;_»B; and B; 2. A; are symmetric. For any p, ¢ € P{, applying yields

(Ar—2Bip, @) = (Brs2Awp, q) = E[VZp(x)q(x)]
= t(d + 2t — 2)E[p(x)q(x)] — E[(Vp(x), Vq(x))]
= E[V?q(x)p(x)] = (Ai—2B:q,p) = (Brr2Aiq,p).
Therefore, by the eigendecomposition of symmetric linear transformations, we have that A1 ||p[|3 <

(Ai_2Bip,p) = E[p(x)V2p(x)] < Me|Ipll3, ¥p € QF, where A\; < --- < ); denote the eigenvalues
of A;_oB;. In addition, by elementary calculation, for any p € Ptd ,

d T
BiiaAp = V2xTxp(x) = V - (2p(x)x + xTxVp(x Z x)z; + xTx(Vp(x));

Oz;

= 2dp(x) + 4(x, Vp(x)) + xTxV?p(x) = (At,gBt +2d + 4t)p

If A;_58; has an eigenvector p* corresponding to some eigenvalue \*, then (A:Bi12)(Ap*) =
Ae Ar_oBep* + (2d + 4t) Ap* = (A* + 2d + 4t) A;p*, which implies that A;p* is an eigenvector
of A:B;15 corresponding to the eigenvalue A\* + 2d + 4¢. Note that since B;yo maps 7721+2 to
Pg, we have that ker(B;12) > Nyi24 — Ni 4, which implies that A;B; > has eigenvalue 0 with
multiplicity at least Ny; o 4 — Ny 4. Therefore, the eigenvalues of A B, 42 are 0 < Ay 4+ 2d + 4t <

- < A\ + 2d + 4t, where the multiplicity of eigenvalue 0 is N¢12 4 — Ny 4 and the multiplicity of
eigenvalue \; + 2d + 4t is the same as the multiplicity of eigenvalue \; of A;_sB;. Therefore, we
have that Ay = 0 and \; = (t — 1)(d + ¢ — 1), which implies that

E[[[Vp(x)[3] = t(d + 2t = 2)[[p]l3 — Elp(x)V?p(x)] € [(¢* +d = )Ipll3, t(d + 2t — 2) [p[13]-

Therefore, we have that E[||Vop(x)|13] = E[||Vp(x)[3 - (x, Vp(x))?] = E[[|[Vp(x)l5] - #*[p3 >
(d —1)||p||3, completing the proof.

O

We need the following technical lemma which provides a universal upper bound for the L3-
norm of the gradient of any homogeneous polynomial p € Qf.
Lemma C.4. Forany p € Q¢ and any 1 < j < t, we have that

2

< #(d+ 2t — 2) Nogy_ ) allpl2-
2

dp(y)
oyJ

sup
lIx]l2=1

Proof. Note that ||Vp(x)||3 € Qg(t_l), by , we have that

sup HVP ||2<\/N2(t 1)d\/ ||VP <\/N2(t 1), \/ ||VP / SUP ||VP

[Ix[[2=1

which implies that sup .,y [ VP(x)[13 < Na-1) B[l Vp(x)||3] < #(d + 2t — Q)NQ(t—l),deH%-

Since || 2269 ’ < |2zt ’ it suffices to obtain an upper bound for su &7p(x) :
OxJ = OxJ F’ pp pHng:l OxJ F.
; 2,

Noting that H a'a’;(f) s € Q2(t j)» by[Fact C.2} we have that

, 2 . 4
o’ oI

sup p(x) < /71\72@_]«) e p(x)

[I%[|l2=1 oxJ P ’ oxJ P

dIp(x) ?

oxJ

d7p(x)

oxJ

)

F

<A/ No—jy,aqr | E H

2
sup
F [|Ix[l2=1
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¥ p(x) 2
oxJ F

&p(x)
OxJ

which implies that sup, cga—1

by [Cemma C.3] we have that

< Nog—jy,qoE “

} Noting that (x) e0d |,

9?p(x) 2 _ 9?p(x) 2 _ d d 0 Ip(x) 2
" ’ ox? F -F ilﬂhze[d](awhal’h) _iIZZIE 1-22:1 (axw (ale ))
d 2
<e-vara-0 Y E|(22) ] < t{d+ 2t~ 2)B[IVp(x) ) < 2(d+ 2t 2ol
i1=1 1

In general, noting that % €0t j+1. by [Lemma C.3} we have that
i—1

2

&p(x) ( 9°p(x) )
B (| 2209 1om| (52
[ oxJ r ield] 8$i1 R aﬁij
d - 2
9 & 'p(x)
- X Y (5 )
i15eeeyij—1€[d] ij=1 8$ij ax“"'xij*

P px)
<(t—j+1)(d+2(t—j E|( ———
St-qen@ee-g) Y B|(Go )

i1,...,05—1€[d] 7
<t(d+2t—2)E & px) : < tI(d+ 2t —2)7|p|2
~ axj_l » = P 2 -
Therefore, we have that
p(x) ||” )| ] _ - 2
- < Noti—iy 4E | || ——— <t (d+ 2t —2)? Nogy_; .
HEHHZI; % < No(t—j),a oxi ||| = (d+ )’ Nai—jy.allpll
This completes the proof. O

Proof of[Lemma 4.5] By definition of V,p(y), we have that
ply +0-Vop(y))

p(z) —ply) = Hy+5 Vop W)

ply +9 - Voply 1

(1+ 02| Vop( > ”2 <l (1+32[Vop(y)I3 )t/?) Py)
- (()I:fsﬂvvofp ))|§ 75— (L= exp(=t8*|[Vop(y)II3/2)) Ip(v)]
= ((31—:_((552 %flf(;))é)t/(z Y) - t52||vop(y)||§\p(y)|/2 :

We bound p(y + ¢ - Vop(y)) — p(y) as follows: Let f(s) = p(y + sv) for some unit vector
v € R, Noting that p is a degree-t homogeneous polynomial, by Taylor expansion, we have that

f(s) = f0)+3 f(j)(,o)sj.B elementary calculation, we have that f/(0) = vTVp(y), f(0) =
7j=1 7! y
a2 ot
vT ()8’)73,(3'%7 o f(0) = <v®t, dapibfty)> By taking v to be the direction of V,p(y), i.e., v =

%, we have that

(Vanly )@J, g;8y>>6ﬂ‘

ply +6-Voply)) = p(y) = FIVop¥)l2) — £(0) =

J=1
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Noting that the first order term is §||V,p(y)||3, it suffices to show that the absolute value of
. < op(y)®7, B;P(Y)>5J

v

is sufficiently small. Applying|Lemma C.4]yields

j=2 Fii
, j||&’p(y)
(Vupl).Vpy)) & L O IVaply ” ’ 571,
> =2
LY p(y) [ [ 22
= [IVop()II3 > T ‘ : H
j=2 I
t . 2j—4 t 51
& Vp(y)l3 ™ ‘ oyT H
< 8|Vop)Il5 [ Y 251 2 251

=2 =2

Et: 6771 (t(d 4 2t — 2)Ny—1y,a) 2 n zt: 69719 (d 4 2t — 2)T Noy—j).a

1l 1l
= 25! = 25!

Therefore, we will have that p(y +6-V,p(y)) —p(y) > C” §||V,p(y)||3 for some universal constant
0<C"<1,aslongasd < 1/N22t’d. Thus, by , we have that
ply +0-Vop(y)) — ply)

(1482 Vop(y)[3)t/2

C'8[|Vop(y)lI3

T (1 02| Vop(y)|2)2 t0%||Vop(y)lI31p(y)] /2

= C"0||Vop(y)|3 exp(—t0*[[Vop(y)13/2) — t6*(|Vop(y) 3 Ip(y)I/2
> C'8|[Vop(y)l3 (1 = 8[| Vp(y)lI3/2 — tdlp(y)l /2C")
> 811Vop(y) I3 (C'(1 = 263(d + 2t = 2)Nor—1),4/2) — t5/Nea/2)
> C8||Vop(y)ll3 »
for some universal constant 0 < C' < 1, aslongasd <1 /N22t7 4+ This completes the proof. O

<3l Vop(y)ll3

— 6| Vop(y)lI3lp(y)] /2

p(z) —ply) >

C.2 Proof of Lemma 4.4

Let p1,...,pn €  be an orthonormal basis, i.e., E[p;(x)p;(x)] = I[i = j]. Let vector p(x) o
]

[p1(x),...,pn(x)]. We have that E[p(x )]—()andCov[ (x)] = In.

r 2

%ZP(Xz‘)

i=1

Pr >n

2

1
= Pr ﬁ

r N r 2
Zp(xz‘) >n*| =Pr %22 (ZP;‘(&)) >

9 j=1 \i=1

N r 2
1 N
< 2 Z;E <ij(xi)> =

i=1

j

We now assume that * |37, p(x;)||l, < n. Let p €  be an arbitrary polynomial. We can write
N N

p(x) =325 aypj(x ) where ||p||2 = > a?. We have that

1 r N 1 N
)= Do apix)| < ;Z|Oéj|
=1

i=1 j=1

p(x;

ij (x;)

N

< z(z i) = 25 )

where the second 1nequal1ty follows from Cauchy-Schwarz. This completes the proof.

, S nllpllz,
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C.3 Proof of [I'heorem 4.6
Let p € 0Q¢. Since

IVp(Y)II5 = [Vor(¥)13 + (y, VD)) = [IVop(¥)3 + t°p(y)* ,
by[Lemma 4.5] we have that p(z) > p(y) + C4(|Vp(y)|13 — 2p(y)?). Let

aly) = p(y) + C8||Vop(y)|I3 = ply) + C5(||Vp(y)|5 — t*p(y)?) -

By definition, we have that ¢(y) —E[q(y)] = p(y)+Co(| Vp(y) |3 —*p(y)?) — COE[|Vop(y)3].
which is a polynomial of degree at most 2¢ and contains only monomials of degree 2¢,2¢t—2,¢, 0. Let
2 be the subspace of polynomials in d-variables containing all monomials of degree 2¢, 2t — 2, ¢, 0.
In this way, the dimension of €2 is

d+2t—1 d+2t—3 d+t—1
= < .
N ( i >+< 0 )+(d_1 >+1_3N2t7d

Applying yields that with probability at least 1 — %, we have that
|7 i a(yd) — Ela)]| < nlla(y) — Elg(y)]ll2, Yg € Q. Therefore, we have that

T
=1

% >_p(z) = 1 > aly:) = Elg(y)] - nlla(y) — Elg(y)lll2 = Ela(v)] — nvEla(y)?] — Elg(y)]>-

By elementary calculation, we have that

Elq(y)’] - Eley)]* = El(p(y) + Cd]|[Vop(y)|3)*] — C*6*E[|[Vop(y)|13]*
= E[p(y)?] + 2C0E[p(y)[Vop(y)II3] + C*0*E[| Vop(y) 2] — C*8*E[||Vop(y)[13)*
= E[p(y)?] + C*6°E[|Vop(y)|l2] — C*6°E[[|Vop(y)3]*
=1+ C*6E[|[Vop(y)l2] - C*6°E[|Vop(y)13)*,
where the second equality is due to p(y) being odd and
IVor(=y)113 = IVp(=y)II3 — *p(=¥)* = [V (=p()]3 — t*(~p(¥))*
= V)3 = *p(y)* = [[Vop(¥)II3 -

By [Lemma C.3|and [Lemma C.4, we have that E[||V,p(y)||3] > d — 1 and E[||V,p(y)|3] <
E[[[Vp(y)ll3] supjy,=1 Vp(y)ll3 < t3(d + 2t — 2)>No(;_1) 4. Therefore, we have that

S p(m) 2 Bla(y)] - 0B - Bk
i=1

> COE[[[Vop(y)ll3] - n\/l + C?0°E[||Vop(y) 3] — C20°E[|[Vop(y) 3]

> Co(d — 1) — 131+ C262(2(d + 2t — 2)2Nop1y 0 — (d — 1)?)

1
=05 <d 1 ’7\/0252 +12(d+ 2t — 2)2Nygy_1).4 — (d — 1)2> .

Taking § = 1/N3, jand n = 5 chd yields that with probability at least
’ 2t,d

N 27
1-—>1-
2 = C2d2

> 99/100 ,

1 T
= p(z) > C6 (d —1- n\/N§t7d/02 12(d + 2t — 2)2Nagy_1y.0 — (d — 1)2)
=1

> C6 (d/2 =1y /2V4, ,/C?) 2 0.

21



C.4 Onmitted Calculations in Proof of [Theorem 4.2
By elementary calculation, we have that
Yi +0Vop™(yi) || _ Ilyi+0Vep™(yi) = lyi + 0Vop* (yi)ll2yill2
[y +0Vop* (yi)ll2 2 [y +0Vop* (yi)ll2
1 —ly: +0Vop™(y: 0| Vp*(yi 20(|Vp*(yi
< L= llyi + Vo' (y )*HQH Ve Gyl . _20]Vp (*y)Hz < O(1/Nowa)
1=0[Vp*(yi)l2 1= 6[IVp*(yi)ll2
where the last inequality follows from for any y € S¥1  |[Vp*(y)la <
\/t(d + 2t — 2)Nagi_1).allp* |2 < Napq by[Lemma C.3

i

25 = yills = \

C.5 Omitted Calculations in Proof of [Theorem 1.2

In this section, we provide calculation details to show that 7 > Nay, ,, and Nag , < Q((1/A)189).
We have the following chain of inequalities:

5 / 5 / / O, C/ (‘./0 (‘./
YT (O 20T a2

N3 <
2k,m _ 2k m
5clog r(log(14+2c’)+2¢" log(1+1/2¢"))

— 25m(log(l+2c/)+2c' 10g(1+1/2c/)) <9 Tog(1/2) <

f— 9

where H(p) = —plogp — (1 —p) log(1 —p), p € [0, 1], is the standard binary entropy function. On
the other hand, by our choice of m, we have that

_ / _ / _ m—1
N — <m—|—2k 1> _ <(1—|—20)m 1> > ((1+2c)m 1) > (1 4 2y
’ m— 1 m—1 m—1

1.89log r

>(1+ 20’)%_1 = ((1/6)(1/A)1/5C) log(1/4) > Q((1/A)89) |

22



