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Figure 1: Our AesMamba models achieve superior or highly competitive performance, in diverse Image Aesthetic Assessment
(IAA) tasks, across all the benchmark datasets. GIAA, FIAA, and PIAA sequentially indicate the generic, fine-grained, and
personalized IAA tasks. Besides, we use VIAA and MIAA to denote visual and multimodal GIAA tasks, respectively. For clarity,
the corresponding AesMamba model variants are denoted by -V, -M, -F, and -P accordingly.

ABSTRACT
Image Aesthetic Assessment (IAA) aims to objectively predict the
generic or personalized evaluations, of the aesthetic or fine-grained
multi-attributes, based on visual or multimodal inputs. Previously,
researchers have designed diverse and specialized methods, for
specific IAA tasks, based on different input-output situations. Is
it possible to design a universal IAA framework applicable for the
whole IAA task taxonomy? In this paper, we explore this issue, and
propose a modular IAA framework, dubbed AesMamba. Specially,
we use the Visual State Space Model (VMamba), instead of CNNs or
ViTs, to learn comprehensive representations of aesthetic-related
attributes; because VMamba can efficiently achieve both global and
local effective receptive fields. Afterward, a modal-adaptive module
is used to automatically produce the integrated representations,
conditioned on the type of input. In the prediction module, we pro-
pose a Multitask Balanced Adaptation (MBA) module, to boost task-
specific features, with emphasis on the tail instances. Finally, we
formulate the personalized IAA task as a multimodal learning prob-
lem, by converting a user’s anonymous subject characters to a text
prompt. This prompting strategy effectively employs the semantics
of flexibly selected characters, for inferring individual preferences.
AesMamba can be applied to diverse IAA tasks, through flexible
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combination of these modules. Extensive experiments, on numer-
ous benchmark datasets, demonstrate that our AesMamba models
consistently achieve superior or highly competitive performance,
on all IAA tasks, in comparison with state-of-the-art methods. The
code and models will be released after peer review.

CCS CONCEPTS
• Computing methodologies→ Image representations.

KEYWORDS
Image Aesthetic Assessment, State Space Model, Multimodal Learn-
ing, Multitask Learning, Imbalanced Learning

1 INTRODUCTION
Image Aesthetic Assessment (IAA) aims to prediction the quality of
an image, from the aspect of aesthetic. It has a wide range of appli-
cations in the image editing, generation, and photographing areas.
However, a human’s judgement of aesthetic is highly correlated
with diverse visual attributes (e.g. color, composition, and content),
as well as multiple personal characters [42, 79]. It is still challenging
to develop an effective and efficient method, for comprehensively
considering all this information during the inference process.

In the past decades, researchers have paid great efforts and have
proposed a mass of algorithms. Most of existing works focus on
the Generic IAA (GIAA) task, which aims to predict the average
aesthetic evaluation, assigned by multiple individuals [33, 50, 71].
Recently, researchers start to explore the Personalized IAA (PIAA),
which learns a specific model for each individual, to predict the per-
sonal aesthetic preferences [7]. In addition, several attempts have
been made for developing Fine-grained IAA (FIAA), i.e. evaluate
the quality or subjective preference of multiple visual attributes

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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[23, 31, 79]. In other words, FIAA provides a comprehensive de-
scription of aesthetic, instead of a single aesthetic score. Thus, FIAA
is of great significance in practical applications.

Existing works typically focus on one single task, and pay ef-
forts to boost the feature representations [33, 89, 92], information
fusion mechanism [4, 84], reasoning architectures [27, 45], learning
strategies [51, 71, 80, 91], and datasets [1, 24, 57, 79], etc. Inspired
by these remarkable progresses, one question arises: Is it possible to
design a universal IAA framework applicable for all these IAA tasks?
To our knowledge, there are mainly the following three challenges.

Challenge I: Efficient local and global perception. The sub-
jective judgment of image aesthetic is based on an integration of
diverse visual information, from local details (e.g. noise and color)
to global perception (e.g. composition and semantic). Thus, both
local and global reception fields are imperative for IAA. Advanced
IAA methods mainly use Convolutional Neural Networks (CNNs)
[49, 69] or Vision Transformers (ViTs) [12, 48, 72] for learning vi-
sual representations. However, neither CNNs nor ViTs can achieve
global Effective Reception Field (ERF) efficiently [47]. Recently, State
Space Models (SSMs) [19, 21] have shown superior efficiency in
modelling long-range dependence, and have achieved competitive
performance in diverse language processing tasks [17] and visual
tasks [47, 60]. Inspired by such progress, we explore to use Vi-
sion Mamba (VMamba) [47] for efficiently learning global visual
representations, while preserving local reception field.

Challenge II: Imbalanced multitask learning. A universal
IAA framework also meets the imbalance learning problem, in both
task-level and instance level. Task-level imbalance. The predic-
tion of multi-attribute evaluations is naturally a Multitask Learning
(MTL) problem. Intuitively, the required representations for these
attributes, diverse with each other. Besides, the difficulty of learning
might vary between different attributes [23, 24, 79]. In the learn-
ing process, the attribute evaluation tasks may interfere with each
other, scarifying either the stability or effectiveness of represen-
tation learning [37]. Instance-level imbalance. Besides, in the
existing datasets [57, 79], the distribution of aesthetic or attribute
scores are heavily imbalanced (Fig. 2). The IAA model would be
skewed for lower error, overwhelming the tail labels occupying
limited instances [77]. To alleviate the interference among tasks,
we propose to adapt the global features to task-specific representa-
tions, via Parameter-Efficient Fine-Tuning (PEFT) [11, 56]. Besides,
we use an auxiliary scale categorization task, and optimize it using
the Balanced Cross-Entropy (Bal-CE) loss [77], to strengthen the
contributions of tail labels. The whole solution, termed Multitask
Balanced Adaptation (MBA), will be detailed in Section 3.4.

Challenge III: Flexible design. To enable a universal IAA
framework, it’s necessary to design a unified and flexible pipeline,
which is applicable in all situations. Flexible PIAA pipeline. Al-
though there have been numerous and diverse PIAA methods
[42, 52, 61], they neglect the semantic information of subject char-
acters. Besides, it’s difficult to flexibly modify the characters, in the
recent conditional PIAA method [79]. To boost the flexibility and
precision of PIAA, in this paper, we propose to convert a user’s
multiple subject characters to a text prompt; and then predict per-
sonalized evaluations based on both the image and the text prompt
(Section 3.5). In this way, PIAA is formulated as a multimodal learn-
ing task. Besides, the text prompt allows flexible combinations of
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Figure 2: Pie charts of the imbalanced distributions of dis-
critized aesthetic and attribute scores, in PARA [79].

arbitrary subject characters. Flexible inputs and outputs. In IAA
tasks, the input might be merely an image (i.e. visual) or an image-
text pair (i.e. multimodal); and the output might be the aesthetic
evaluations (i.e. single-task) or multi-attribute labels (i.e. multitask).
We thus use a Modal-Adaptive Integration (MAI) mechanism, to
automatically integrate the input visual or multimodal features,
inspired by the Mixtures-of-Modal-Experts (MoME) [2].

Based on all the above considerations, we propose a universal
IAA framework, dubbed AesMamba, with modular design. Specif-
ically, AesMamba mainly includes: (1) a group of image-text en-
coders, (2) the MAI module for feature integration, and (3) the MBA
module for feature adaptation and balanced aesthetic/attribute eval-
uations. With a flexible combination of these modules, Aesmba
is applicable to different IAA tasks. We conduct extensive experi-
ments on diverse IAA tasks, across several IAA datasets, including
AVA [57], TAD66K [24], PARA [79], AADB [35], and Photo.Net
[8]. As shown in Fig. 1, AesMamba models show superior or at
least competitive performance across all the tasks, in comparison
with state-of-the-art (SOTA) IAA models or advanced visual back-
bones. We also conducted a series of ablation study, to verify the
effectiveness of the proposed techniques.

Our contributions in this paper are summarized as follows:
• First, we propose a universal IAA framework, AesMamba,
with modular design. AesMamba is applicable to all the IAA
tasks, by flexible combining the proposed modules.

• We propose to use Visual Mamba for efficiently achieving
both global and local ERFs. To our best knowledge, this is
the first use of SSMs in the IAA area.

• Wepropose a novel PIAA pipeline, via Subject Multi-character
Prompts (SMP) and multimodal learning. The semantic in-
formation of multiple subject characters are taken into con-
sideration in the inference stage.

• To combat the imbalance problems in IAA, we propose a
Multitask Balanced Adaptation (MBA), to learn task-adaptive
representations with emphasis on the tail instances.

• Our AesMamba models achieve superior or highly competi-
tive performance on all IAA tasks, across diverse datasets.
The code and models will be released after peer review.

2 RELATEDWORKS
Generic IAA (GIAA). Existing IAA works mainly focus on Visual
GIAA (VIAA), which predicts the average aesthetic evaluation of
human users by learning visual representations from a given im-
age. Traditional methods use manual features to describe different
elements of visual aesthetics [10, 38], such as layout, content and
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lighting. With the development of deep learning, advanced methods
usually employ CNNs [69, 71] or Transformers [6, 12, 32, 48, 72]
for aesthetic representation learning. Besides, researches propose
to use multiscale features [29], semantic [26], attributes [43], struc-
ture [89], emotion [5, 36], knowledge embedding [41] and other
auxiliary information to enhance aesthetic representation. In recent
years, researchers have begun to study multimodal GIAA (MIAA),
which uses textual comments as an auxiliary input from which
to mine high-level semantic information about human aesthetic
judgments [59, 84]. Moreover, inspired by visual-language repre-
sentation learning [63] and Large-scale Language Models (LLMs)
[3], researchers have explored the possibility of learning language
representation based on large-scale pre-training [33, 61, 65], de-
scription generation [90] and evaluation framework via LLMs [30].
However, these works require a large amount of pre-trained data
and huge computational resources.

Personalized IAA (PIAA). In addition, researchers have ex-
plored a variety of PIAA methods [94] based on aesthetic elements
and user characters [42, 45, 93] to predict individually aesthetic
preferences. Existing PIAA methods typically try to transfer a pre-
trained GIAA model to a specific user, based on collaborative fil-
tering [7, 73], user interactions [27, 52, 95], or preference diver-
gence [64, 92]. More recently, researchers have explored multitask
learning [42], meta learning [78, 91], contrast learning [80], and
reinforcement learning [51] for better discovering users’ prefer-
ences, and to use federated learning [76] for privacy protection.
Besides, researchers constructed several PIAA datasets, e.g. FLICKR-
AES [64], and PARA [79], and PR-AADB [16]. However, existing
methods typically use CNNs [92] or Transformers [78] for learning
attribute-aware features, and don’t allow flexible change of the
conditioned subject characters [79].

Fine-grained IAA (FIAA). Fine-grained IAA (FIAA) aims to
jointly evaluate the aesthetic quality from multiple aspects. Note
that previous multitask or multibranch IAA methods [24, 36] only
predict the category of an attribute. In contrast, FIAA requires to
predict a score for each aesthetic-related attribute. For now, several
attempts have been made for developing FIAA algorithms. For
example, Jin et al. [31] constructed the AMD-A dataset with three
attribute annotations, and use a combination of deep and hand-
crafted features for prediction. Soydaner et al. [70] use a naive
multitask CNN for this task. Recently, He et al. propose to evaluate
image color aesthetic via Transformers and construct a specific
dataset [23]. Besides, PARA [79] includes multi-attribute scores and
can also serve as a FIAA benchmark.

State Space Models (SSMs). State Space Models (SSMs) are re-
cently proposedmodels for solving long-range dependency problem
[18, 19, 21], and have shown inspiring performance in Natural Lan-
guage Processing (NLP) [55] and sequence reasoning [17]. Recently,
esearchers start to explore Mamba models for visual tasks [47, 96].
For example, Liu et al. [47] proposed VMamba based on the Selective
State Space Models (Mamba) [17], by designing a Cross-Scan Module
(CSM) for efficiently processing images. Besides, researchers pro-
pose to optimize the selective scanning strategies [28, 60] or the
attention mechanism [96], to further boost the efficiency. Along
with such progresses, Mamba models have been applied to image
segmentation, or multimodal large language models [62].

3 AESMAMBA
3.1 Overview
In the taxonomy of IAA tasks, the input might be merely an image
(i.e. visual) or an image-text pair (i.e. multimodal); and the output
might bemerely an aesthetic label (i.e. single-task) or multi-attribute
labels (i.e. multitask). To enable a universal IAA framework, appli-
cable to all of these situations, we modularize the IAA framework,
and proposed AesMamba. As shown in Fig. 3, AesMamba mainly
includes the following modules: (1) first, the multimodal encoders
efficiently transform the input image and text to effective repre-
sentations (Section 3.2); (2) second, the Modal-Adaptive Integration
(MAI) mechanism automatically produces integrated global fea-
tures, conditioned on the modal of input (Section 3.3); (3) finally, the
Multi-Balanced Adaptation (MBA) adapts the global feature to spe-
cific prediction tasks, and outputs the estimated labels. In MBA, we
propose to use an auxiliary balanced categorization branch to each
task, to tackle the challenge of imbalanced learning (Section 3.4).
Besides, we formulate PIAA as a multimodal task, by transferring a
user’s personal information into a prompt of subject characters (Sec-
tion 3.5). As shown in Fig. 3, AesMamba can be applied to different
IAA tasks, with flexible combinations of these modules. For clarity,
we refer to the model variants as AesMamba-𝛼 , where 𝛼 is the first
letter of the corresponding IAA task, i.e. VIAA, MIAA, FIAA, or
PIAA. Details of each module and the corresponding variants are
presented below.

3.2 multimodal Encoders
In IAA tasks, the input might be merely an image (i.e. visual) or an
image-text pair (i.e. multimodal). In AesMamba, we use VMamba
[47] as the image encoder, for efficiently gaining both local and
global Effective Reception Field (ERF). Besides, we use BERT [9] as
the text encoder, to transform the text comments or prompts of
subject characters into high-dimensional representations.

3.2.1 Image Encoder: VMamba. In the implementation, we use the
tiny version of VMamba (VMamba-T) in default, unless otherwise
specified. Fig. 4(a) shows the overall pipeline of VMamba-T. Given
an input image, VMamba first divides it into multiple patches, gen-
erating a feature map (Stem). Afterward, a stack of Visual State
Space (VSS) blocks are used to hierarchically process and down-
sample the feature map, thorough 4 stages. The final output of the
last stage is adopted as the visual representations, i.e. F𝑣 .

VSS Block. The structure of the VSS block is as shown in Fig.
4(b). The input feature is first undergone a Layer Normalization
(LN) layer, and then processed through two streams. The major
stream includes a linear layer, a Depth-wise Convolutional (DW-
Conv) layer, a SiLU activation function [66], a 2D Selective Scan
(SS2D) mechanism, and an LN layer, sequentially. The other stream
includes a linear layer, followed by the SiLU activation. Finally, the
element-wise product of these two branch outputs is fed into a
linear layer, and then added with the original input.

2D Selective Scan (SS2D). Fig. 4(c) shows the pipeline of the
SS2D mechanism. In the scan expand stage, the feature map is
scanned in each of the four directions and divided into four se-
quences. Then, the four sequences are processed separately, through
the selective scanning (S6) block [17], for capturing comprehensive
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Figure 3: Overview of AesMamba with modular design (left), and its applications in different IAA tasks (right). The Modal-
adaptive Integration (MAI) mechanism automatically switches between Adaptive Average Pooling (AAP) and Cross-modal Fusion
(CMF), based on whether the input is visual (VIAA & FIAA) or multimodal (MIAA & PIAA).Multitask Balanced Adaptation
(MBA) can be used for either aesthetic prediction (single-task) or multi-attribute evaluation (multitask). We formulate PIAA as
a multimodal learning task, by converting user’s (anonymous) attributes to the Subject Multi-character Prompts (SMP).

and diverse representations [47]. Let 𝑥 ∈ R𝐵×𝐿×𝐷 denotes an input
sequence, and 𝑥𝑘 ∈ R𝐵×𝐿×𝐷 a sampled vector within it. Here, 𝐵 is
the batch size, 𝐿 is the length of this sequence, and 𝐷 is the dimen-
sion of features. 𝑥𝑘 is mapped to 𝑦𝑘 ∈ R𝐵×𝐿×𝐷 through a hidden
state ℎ𝑘 ∈ R𝐵×𝐿×𝑁 , with the evolution parameter A ∈ R𝑁×𝑁 and
the projection parameters B ∈ R𝐵×𝐿×𝑁 , C ∈ R𝐵×𝐿×𝑁 , i.e.

ℎ𝑘 = Āℎ𝑘−1 + B̄𝑥𝑘 ,

𝑦𝑘 = Cℎ𝑘 + 𝑥𝑘 ,

with Ā = 𝑒∆A, B̄ = (𝑒∆A − I)A−1B,

(1)

where (Ā, B̄) is the discretized version of (A,B) through Zero-Order
Hold (ZOH) [20, 21]; ∆ ∈ R𝐵×𝐿×𝑁 is the timescale parameter. In
the implementation, B, C, and ∆ are derived from the input data
𝑥 , through linear layers. Following [17], the approximation of B̄ is
refined by the first-order Taylor series, i.e. B̄ = ∆B. Finally, each
processed sequence is reshaped into a feature map, and all the four
feature maps are merged to form a new one, in the scan merge stage.

3.2.2 Text Encoder: BERT. BERT [9] is based on the Transformer ar-
chitecture, and has been well pre-trained on large language corpora.
Besides, it has proven very efficient and effective in transferring
to various tasks. We therefore use BERT to transform the text to
high-dimensional representations F𝑡 . In the IAA scenario, the input
text is the users’ comment or the given prompt. We first divide
the text into a word sequence {𝑤1, ...,𝑤𝑛} of length 𝑛, using the
WordPiece Tokenizer [74]. Afterward, a [cls] token is added at the
beginning of this sequence, and is optimized to be the final textual
representation. The text encoder is initialized with weights pre-
trained on the wikipedia and bookcorpus corpora, and fine-tuned
simultaneously with the aesthetic prediction task.

3.3 Modal-adaptive Feature Integration (MAI)
To enable our model applicable in both situations, we use a Modal-
adaptive Integration (MAI) mechanism, to automatically integrate
the encoded features to an integrated representation.
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Figure 4: Architectures of (a) our visual backbone, i.e.
VMamba-T, (b) the VSS block, and (c) the SS2D process [47].

Adaptive Average Pooling (AAP). In the scenario of merely
visual input, an input image is transformed to its visual features F𝑣 ∈
R𝑚×𝑑 by the image encoder. To obtain an integrated representation,
we pool F𝑣 to a global feature vector, i.e. f𝑣 ∈ R1×𝑑 , via Adaptive
Average Pooling (AAP). In this case, the output of MAI is the same
as f𝑣 , i.e. f = f𝑣 , and will be used for quality prediction.

Cross-modal Fusion (CMF). In the multimodal scenario, we
use a Cross-modal Fusion (CMF) modal (Fig. 5) to integrate image-
text features. The key of CMF is Cross-Attention (CA). Specifically,
the global visual feature f𝑣 ∈ R1×𝑑 is linearly transformed to a
query Q ∈ R1×𝑑 , and the text feature F𝑡 ∈ R𝑛×𝑑 is transformed
to the key K ∈ R𝑛×𝑑 and value V ∈ R𝑛×𝑑 , through a linear layer,
respectively. The computation of CA is formulated as:

CA(f𝑣, F𝑡 ) = softmax(QK⊤
√
𝑑

)V = AV, (2)
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adapter in Multitask Balanced Adaptation (MBA).

Besides, the Layer Normalization (LN) and Feedforward Neural Net-
work (FFN) are used in CMF to boost the fused feature. The whole
fusion process can be expressed as:

f̃𝑣 = f𝑣 + CA(LN(f𝑣), LN(F𝑡 )),

f = f̃𝑣 + FFN(LN(f̃𝑣)).
(3)

Finally, the integrated feature f = CMF(f𝑣, F𝑡 ) is fed into subse-
quent modules for aesthetic prediction.

3.4 Multitask Balanced Adaptation (MBA)
Fine-grained aesthetic evaluation is a typical Multitask Learning
(MTL) problem. If we extend several MLPs directly after MAI, differ-
ent tasks may interfere with each other and affect the effectiveness
and stability of the integrated feature learning [37]. To address this
challenge, we propose aMultitask Balanced Adaptation (MBA) mod-
ule. Specifically, for each attribute prediction task, an independent
lightweight adapter module 𝜙𝑖 , 𝑖 = 1, 2, ..., 𝐾 is expanded after the
global features. The adapter consists of a feature adaptation module
and an MLP for aesthetic prediction.

3.4.1 Feature Adaptation. The feature adaptation module includes
two FC layers, with a GELU activation function and a residual
connection. Given the previously processed feature f ∈ R1×𝑑 , the
feature adaptation process of the 𝑖-th task is formulated as:

f̃𝑖 = 𝜑𝑖 (f) = Linear2 (GELU(Linear1 (f))) + f . (4)

The first linear layer reduces the feature dimension to 𝐷/4, while
the second one increases the dimension back to 𝐷 . As a result, a
specific feature space is learned for each task, avoiding the problem
of feature interference and confusion in multitask learning. Finally,
f̃𝑖 is fed into the MLP for predicting the 𝑖-th attribute.

3.4.2 Imbalanced Scale Categorization. To address the challenge
of imbalanced data distribution, we use an auxiliary categorical
aesthetic assessment task in each branch during training. To this
end, we discretize a continuous attribute score 𝑠𝑖 to a scale category
𝑦𝑖 . Besides, we use another MLP branch to predict the attribute
scale category based on f̃𝑖 . During training, we use the Balanced
Cross-Entropy (Bal-CE) loss [77] between the predicted scale label𝑦𝑖
and the ground-truth label𝑦𝑖 to jointly optimize the whole network.
Specifically, the Bal-CE loss considers the number of instances of
each class 𝑛𝑦𝑖 in loss computation, i.e.

LBal-CE =

𝐾∑︁
𝑖=1

− log

[
𝑛𝑦𝑖 𝑒

𝑧𝑖,𝑦𝑖∑𝐶𝑖

𝑙=1 𝑛𝑙𝑒
𝑧𝑖,𝑙

]
, (5)

where, 𝑛𝑙 ∈ Y𝑖 is the number of instances with true label 𝑙 ∈
{1, . . . ,𝐶𝑖 } in class 𝑖; 𝐾 is the number of tasks. The Bal-CE loss
improves the significance of rare scale categories in the learning

process. As a result, this auxiliary scale categorization task might
improve the model’s ability to correctly evaluate long-tail data.

3.5 Subject Multi-character Prompts (SMP)
PIAA aims to learn a specific IAAmodel for each user, for predicting
his/her aesthetic preferences, conditioned on subject characters. As
proved in previous works [79], diverse subject characters, e.g. the
artistic and photographic experience, are correlated with personal
aesthetic preferences. However, previous PIAA methods can only
take one single character as input. To combat this challenge, we
propose to transfer users’ character labels to Subject Multi-character
Prompts (SMP), by designing a text template.

Subject Multi-character Prompts (SMP). In this paper, we
consider the three user information provided in the PARA dataset
[79]: artistic experience, photographic experience, and personality
traits. Specifically, the aesthetic experience and photographic expe-
rience both contain four levels: "beginner", "competent", "proficient",
and "expert". To incorporate this information into the model, we
design the corresponding text prompts as:

"My artistic experience is {art_exp}."

and
"My Photographic experience is {photo_exp}."

where art_exp and photo_exp represent the corresponding expe-
rience levels of a user. The personality traits consist of five aspects,
i.e. "Conscientiousness", "Agreeableness", "Extroversion", "Openness",
and "Neuroticism". Given a user, let 𝐶 , 𝐴, 𝐸, 𝑂 , and 𝑁 denote the
corresponding trait scores sequentially. The corresponding text
prompts follow the template below:

"In the Big-Five personality traits test, my
scores are as follows: openness score is {O},
conscientiousness score is {C}, extroversion
score is {E}, agreeableness score is {A}, and
Neuroticism score is {N}."

All the above prompts can be integrated together, to represent the
personal information of users, i.e. I𝑢 . Besides, our MCP method
allows great flexibility in attribute selection and extension.

AesMamba-P. As shown in Fig. 3, AesMamba-P takes an image
and the text prompts as inputs, and then encoding them to deep
features F𝑣 and F𝑡 , through the image/text encoders, respectively.
F𝑡 comprehensively represents personal information of a user. Af-
terward, F𝑣 and F𝑡 are fused in the CMF module (Eq. 3) and fed to
the MBA module for personalized aesthetic prediction.

3.6 Loss functions
In some benchmark GIAA datasets [57], the score distribution of
each image is available. In this case, we have our model predict-
ing the aesthetic score distributions, and use the Earth Mover’s
Divergence (EMD) [46, 71] loss, i.e.

LEMD = ( 1
10

10∑︁
𝑖=1

( |CDF(a) − CDF(p) |)𝑟 )
1
𝑟 , (6)

where a and p are the predicted distribution and the ground truth,
respectively; CDF() is the Cumulative Distribution Function (CDF);
𝑟 is set to 2 during training. In the inference stage, an aesthetic
score is computed based on the predicted distribution [71]. In other
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datasets [79], only the average scores are available. In this case, we
use the Mean Squared Error (MSE) loss, i.e.

LMSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑠𝑖 − 𝑠𝑖 )2 (7)

where 𝑛 is the number of training samples.
Finally, we add the Bal-CE loss (Eq. 6) to the EMD or MSE loss, as

the full objective. The total loss for the score distribution prediction
task, L𝑑𝑠𝑡 , or the score regression task, L𝑟𝑒𝑔 , are computed by:

L𝑑𝑠𝑡 = LEMD + 𝛾LMSE + 𝜆LBal-CE,

or L𝑟𝑒𝑔 = LMSE + 𝜆LBal-CE,
(8)

where 𝛾 and 𝜆 are weighting factors and set to 10 and 0.001, respec-
tively, in the implementation.

4 EXPERIMENTS
4.1 Settings
4.1.1 Datasets. We conduct experiments on the following bench-
mark datasets, i.e. the AVA [57], TAD66K [24], PARA [79], AADB
[35], and Photo.Net [8] datasets, which sequentially contains about
255K, 66K, 20K, 31K, and 10K images. Both AVA and Photo.Net
include the aesthetic score distribution of each image; while PARA
and AADB include the average score. We conducted VIAA experi-
ments on all these datasets separately (Section 4.2.1). Besides, for
both AVA and Photo.Net, we crawl valid comments and conduct
MIAA experiments on the corresponding expanded datasets, i.e.
AVA-Captions [14] and Photo.Net-Captions (Section 4.2.2). Finally,
PARA [79] consists of both generic and personalized annotations
of multiple aesthetic attributes. We thus conduct FIAA and PIAA
experiments on PARA (Sections 4.3 and 4.4). We adopt the same
division of each dataset as previous works [79, 84].

During training, an image is resized to 256 × 256, followed by
random cropping to obtain patches of 224×224. Random horizontal
flipping is applied with a probability of 0.5 for data augmentation.
In the test stage, an image is resized to 224 × 224, and then fed into
the learned model for aesthetic/attributes prediction.

4.1.2 Criteria. We use three performance indices as the criteria,
i.e. the aesthetic classification accuracy (Acc.); the Pearson’s Linear
Correlation Coefficient (PLCC), and the Spearman Rank-order Corre-
lation Coefficient (SRCC) between subjective scores and predicted
ones. Higher values of these criteria indicate better performance.

4.1.3 Implementation Details. In all experiments, we use AdamW
optimizer [34] with Stochastic Gradient Descent (SGD) during train-
ing. Momentum parameters 𝛽1 and 𝛽1 are set to 0.9 and 0.99, respec-
tively. In the PIAA task, the initial learning rate is set to 4 × 10−5,
with a batch size of 10/50 under the 10shot/100shot settings, re-
spectively. In the other IAA tasks, the initial learning rate is set
to 1 × 10−4, with a batch size of 64. The cosine annealing algo-
rithm is also used to dynamically adjust the learning rate. The
lowest learning rate threshold is set to 1 × 10−6. All models are
implemented using the PyTorch framework, and trained/test on an
NVIDIA GeForce RTX3090 with 24GB of memory.

Table 1: Visual GIAA (VIAA) performance on AVA, TAD66K,
PARA, AADB, and Photo.Net. * indicates using external IAA
data during training. † indicates that VMamba-B is used as
the image encoder in our AesMamba-V.

(a) AVA

AVA Acc. PLCC SRCC

MNA-CNN[54] 76.10 - -
A-Lamp[53] 82.5 - -
NIMA[71] 81.5 0.636 0.612
MUSIQ[32] 81.5 0.738 0.726
MLSP*[25] 81.7 0.757 0.756
ReLIC++[89] 82.4 0.760 0.748
AFDC[6] 83.2 0.671 0.649
UIAA*[83] 80.8 0.720 0.719
SAAN[81] 80.6 0.748 0.742
HGCN[67] 84.6 0.687 0.665
UMIAAF*[44] 81.7 0.770 0.759
VEN[87] 83.6 0.773 0.755
GPF-CNN[85] 81.8 0.704 0.690
TAVAR[40] - 0.736 0.725
GATP×3[15] - 0.764 0.762
PA_IAA*[42] 83.7 - 0.677
TANet*[24] - 0.765 0.758
VILA-R*[33] - 0.774 0.774
AesMamba-V 84.6 0.760 0.751

(c) PARA

PARA Acc. PLCC SRCC

PA_IAA*[42] 87.5 0.919 0.877
NIMA[71] 89.0 0.922 0.882
MUSIQ[32] 88.1 0.918 0.882
TANet*[24] 89.2 0.917 0.883
PARA-G[79] 87.0 0.921 0.879
AesMamba-V 88.7 0.936 0.902

(b) TAD66K

TAD66K Acc. PLCC SRCC

A-Lamp[53] - 0.422 0.411
NIMA[71] - 0.405 0.390
AADB*[35] - 0.400 0.379
BIAA*[91] - 0.431 0.417
PAM*[64] - 0.440 0.422
UIAA*[82] - 0.441 0.433
MP𝑎𝑑𝑎[68] - 0.480 0.466
HGCN*[67] - 0.493 0.486
MLSP*[25] - 0.508 0.490
TANet*[24] - 0.531 0.513
AesMamba-V 67.3 0.503 0.475
AesMamba-V† 72.0 0.511 0.483

(d) AADB

AADB Acc. PLCC SRCC

UIAA*[82] - - 0.726
HIAA[39] - - 0.739
MUSIQ[32] 76.3 0.712 0.706
TANet*[24] 79.8 0.737 0.738
MLSP*[25] 78.2 0.726 0.725
STAGIAA[4] 81.6 0.762 0.757
TAVAR[40] 81.9 0.763 0.761
AesMamba-V 82.9 0.774 0.768

(e) Photo.Net

Photo.Net Acc. PLCC SRCC

GPF-CNN[85] 75.6 0.546 0.522
AesMamba-V 80.3 0.547 0.518

4.2 Comparison with SOTAs in GIAA
We first compare our method with a mass of advanced methods in
the Visual GIAA (VIAA) and multimodal GIAA (MIAA) tasks.

4.2.1 VIAA Performance. Table 1 shows the VIAA performance
of AesMamba-V and existing algorithms. Note that some previous
methods (denoted by *), e.g. TANet [24] and VILA-R [33], use exter-
nal aesthetic-related datasets (e.g. FLICKR-AES [64] and LAION-5B
[65]) during training or pre-training. On contrast, all the other meth-
ods only use the standard training set on each dataset, separately.
Across all these datasets, AesMamba-V achieves optimal or highly
competitive performance, compared to a mass of advanced methods.
ESpecifically, AesMamba-V outperforms all the existing methods,
including TANet or MLSP, by 0.01-0.02 percents in PLCC/SRCC, on
both PARA and AADB. Besides, AesMamba-V becomes highly com-
petitive with MLSP on TAD66K, when we use VMamba-B (instead
of VMamba-T) as the image encoder (denoted by AesMamba-V†).
Such observation implies the potential of boosting AesMamba-V by
using more advanced ViM models. The outstanding performance of
VILA-R implies the significance of large-scale pretraining. However,
the required huge computational burden is a grand challenge in
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Table 2: multimodal GIAA (i.e. MIAA) performance on the
AVA-Captions and Photo.Net-Captions datasets.

AVA-Captions Photo.Net-Captions
Acc. PLCC SRCC Acc. PLCC SRCC

MRACNN[86] 85.7 0.843 0.832 78.9 0.590 0.571
MSCAN[84] 86.7 0.862 0.852 81.0 0.625 0.617
BMI-Net[58] 86.5 0.857 0.845 80.4 0.633 0.622
CDCM-Net[88] 86.6 0.805 0.798 81.7 0.560 0.586
AesMamba-M 89.6 0.899 0.892 82.0 0.685 0.664

Table 3: FIAA performance on the PARA dataset.

Aesthetic Quality Composition Color DoF
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

ResNet50[22] 0.919 0.873 0.924 0.872 0.883 0.836 0.888 0.859 0.897 0.855
ResNeXt50[75] 0.922 0.880 0.924 0.875 0.892 0.852 0.889 0.862 0.883 0.840
ViT-B/16[13] 0.917 0.877 0.921 0.876 0.887 0.846 0.888 0.865 0.892 0.851
Swin-T[48] 0.926 0.888 0.930 0.886 0.895 0.855 0.896 0.871 0.905 0.866
ConvNeXt-T[49] 0.928 0.890 0.931 0.887 0.898 0.858 0.896 0.870 0.905 0.868
VMamba-T[47] 0.929 0.896 0.934 0.894 0.901 0.865 0.897 0.872 0.908 0.872
AesMamba-F 0.934 0.898 0.936 0.894 0.904 0.867 0.903 0.877 0.912 0.877

Light Content Preference Share Average
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

ResNet50[22] 0.891 0.848 0.882 0.830 0.886 0.852 0.880 0.849 0.894 0.853
ResNeXt50[75] 0.875 0.833 0.863 0.810 0.872 0.838 0.880 0.850 0.896 0.857
ViT-B/16[13] 0.891 0.856 0.881 0.832 0.884 0.851 0.878 0.848 0.893 0.856
Swin-T[48] 0.900 0.864 0.892 0.846 0.893 0.860 0.888 0.857 0.903 0.866
ConvNeXt-T[49] 0.900 0.862 0.890 0.843 0.895 0.862 0.889 0.860 0.904 0.867
VMamba-T[47] 0.902 0.867 0.894 0.853 0.899 0.870 0.892 0.867 0.906 0.873
AesMamba-F 0.905 0.868 0.900 0.854 0.901 0.871 0.895 0.869 0.910 0.875

most scenarios. In contrast, AesMamba-V is lightweight (with about
20M parameters) and can be optimized in about one hour on AVA.

4.2.2 MIAA Performance. Table 2 shows that our AesMamba-M
achieves the best performance in terms of all the indices. Com-
pared to previous SOTAs, AesMamba-M achieves 2.9, 0.037, and
0.040 points absolute improvements in Accuracy, PLCC, and SRCC,
respectively, on AVA-Captions; as well as over 0.05/0.04 points abso-
lute improvements in PLCC/SRCC on Photo.Net-Captions. Besides,
AesMamba-M distinctly outperforms all the VIAA methods (Table
1), including VILA-R and AesMamba-V, on both datasets. Such dis-
tinct superiority demonstrates the crucial role of text comments in
IAA, as well as the effectiveness of our Cross-modal Fusion (CMF)
module in integrating vision-language representations.

4.3 Comparison with SOTAs in FIAA
We further evaluate our AesMamba in the Fine-grained IAA (FIAA)
task on PARA. We here use the corresponding AesMamba-F to
simultaneously predict all the aesthetic and attribute scores (Fig.
2). Since none of the existing IAA methods have officially reported
their FIAA performance, we compare our model with a number
of advanced networks, including our visual backbone, VMamba-T.
All the models are initiated with officially released parameters, and
fine-tuned with the MSE loss (Eq. 7) on the standard training set.

Table 3 shows the PLCC and SRCC about every attribute, as well
as the average values across all the attributes. Obviously, our model
consistently achieves the best PLCC and SRCC values, across all the

Table 4: PIAA performance on the PARA dataset.

PLCC SRCC
10shot 100shot 10shot 100shot

PARA-art.[79] 0.733±0.0022 0.742±0.0012 0.686±0.0016 0.698±0.0012
PARA-pht.[79] 0.733±0.0010 0.745±0.0010 0.683±0.0014 0.698±0.0010
PARA-psn.[79] 0.738±0.0007 0.750±0.0010 0.691±0.0009 0.705±0.0015
TCMLPIAA[78] - - 0.700±0.0007 0.707±0.0009
MTCL[80] - - 0.695±0.0011 0.713±0.0013
BLG-PIAA[91] - - 0.688±0.0015 0.698±0.0013
PA_IAA[42] - - 0.683±0.0013 0.696±0.0016
PIAA-MIR[95] - - 0.702±0.0010 0.716±0.0008
PIAA-SOA[93] - - 0.690±0.0014 0.703±0.0012
AFF-PIAA[92] - - 0.704±0.0010 0.717±0.0010
AesMamba-P 0.749±0.0083 0.763±0.0087 0.707±0.0049 0.723±0.0058

attributes. Besides, our base model, i.e. VMamba-T, consistently out-
performs all the other advanced visual backbones, either CNNs or
Transformers. Such stable superiority demonstrate our motivation
of using VMamba for learning effective aesthetic representations.

4.4 Comparison with SOTAs in PIAA
Following previous PIAA works [79, 80], We train a specific PIAA
model for each of the 40 randomly selected annotators. The training
set comprised 10 and 100 randomly chosen images per user, for
the 10shot and 100shot tasks, respectively. Fifty additional images
served as the test set. To mitigate the impact of random data selec-
tion, the train-test process is repeated 10 times across (randomly)
different target users.

The average and standard deviation of PLCC/SRCC values on all
test objects are reported in Table 4. Obviously, our AesMamba-P
achieves the best performance, in both 10-shot and 100-shot task
scenarios, according to the average PLCC and SRCC values. PARA*
[79] uses one single attribute of users, i.e. artistic experience (art.),
photographic experience (pht.), and personality trait (psn.). In con-
trast to PARA*, AesMamba-P gains an absolute improvement of 1.1-
1.3 percents in PLCC, and of 1.8 percents in SRCC, for both 10shot
and 100shot tasks. Such superiority demonstrates the significance
of using users’ multiple attributes for PIAA. Besides, AesMamba-P
gains an absolute superiority of 0.3 and 0.6 percent improvement
in PLCC and SRCC, respectively, over previous SOTA method, i.e.
AFF-PIAA [92]. The possible reason of our performance fluctuation
might be the few-shot learning settings. In other words, we consider
users’ multiple attributes, but there are only a few training sam-
ples. Fig. 1 shows the box-plot of SRCC values across the 10 times
of random repeats. Inspiringly, AesMamba-P achieves significant
superiority over existing PIAA methods, during most repetitions.

4.5 Ablation Study
In this section, we conduct a series of ablation studies, to analyze
the major modules in AesMamba.

4.5.1 Analysis ofMultitask Balanced Adaptation (MBA). In this part,
we analyze the effectiveness of MBA, including the adapter for task
adaptation, and the Bal-CE loss (LBal-CE) for scale categorization
(Section 3.4.2). To this end, we build several model variants of
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Figure 6: Ablation study ofMultitask Balanced Adaptation
(MBA) in diverse IAA tasks.
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Figure 7: The relative changes of SRCC (logarithmic y-axis)
vs. the percent of each scale category (x-axis), across all the
attributes on PARA. "Linear" indicates the fitted trend line.

AesMamba, and compare them in diverse IAA tasks, following the
same experimental settings. The model variants include:

• Model-A: VMamba-T + task adaptation + LMSE/LEMD;
• Model-B: Model-A + categorization LCE;
• Model-C (full): Model-A + categorization LBal-CE.

Impact on diverse IAA tasks. As shown in Fig. 6,Model-A,
Model-B gains higher SRCC values across all the tasks, and boots
the Accuracy and PLCC in most cases. This superiority indicates the
potential of the auxiliary scale categorization task for performance
boost. Besides, Model-C consistently achieves the best performance
with significant superiority, across all the tasks. Such distinct supe-
riority demonstrates the imperative role of balanced learning, for
evaluating long-tail data, in the IAA task.

Impact on each scale category in FIAA.We further statisti-
cally evaluate the impact of the auxiliary categorization task on
each scale category in the FIAA task. For each scale category of
an attribute, we calculate the performance indices using the corre-
sponding subset of instances. Fig. 7 visualizes the scatter plots of
the relative change in SRCC values v.s. the percent of each category.
Obviously, the aesthetic categorization task significantly boosts
the performance for most few-shot categories, without significant
decease for the other categories. Besides, the Bal-CE loss leads to
better performance than the CE loss. Such observations demon-
strate our motivation of using the auxiliary categorization strategy,
for solving the challenge of long-tail data distribution in IAA.
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Figure 8: Impact of MCP for PIAA (10shot), on PARA. Each
bar shows the change of PLCC/SRCC, compared to the PIAA
performance of the initial GIAA model, AesMamba-V.

4.5.2 Analysis of Subject Multi-character Prompting (SMP). To ver-
ify the effectiveness of SMP, we build model variants of AesMamba-
P by using none personal attribute (10shot), or one user’s attribute
(+pht., +art., or +psn.), or all three attributes (+3 attr.). We
use the initial GIAA model, AesMamba-V (without fine-tuning),
as the benchmark, and compare all the model variants to it. Fig.
8 shows the comparative results. In general, all the AesMamba-P
model variants outperform AesMamba-V, demonstrating the signif-
icance of user-specific fine-tuning (10shot) and the use of personal
attributes. In addition, among the three types of user information,
personality traits (+psn.) play a pivotal role in PIAA performance
improvement [79]. Finally, using all the three attributes (+3 attr.,
i.e. AesMamba-P) achieves the best overall performance. Such obser-
vations demonstrate the effectiveness of our design of MCP, as well
as the multimodal fusion module in integrating user information.

5 CONCLUSIONS
In this paper, we propose a universal IAA framework, AesMamba,
that can be applied to diverse IAA tasks. The experimental results,
across numerous datasets, demonstrate that AesMamba can pre-
cisely predict aesthetic and multi-attribute evaluations, based on
visual or multimodal inputs. Besides, the proposed multitask bal-
anced learning module, boosts the performance on tail instances;
and the character prompting strategy significantly boost the PIAA
performance. In the future, we will explore efficient and multimodal
Mamba models, to further boost the IAA performance. Besides,
it is meaningful to explore multimodal FIAA and efficient PIAA
paradigms, for practical applications.
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