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Figure 1: Scatter plots of predicted scores vs. MOSs, w.r.t. (1) the MIAA tasks on AVA-Captions and Photo.Net-Captions, (2) the
VIAA tasks on AVA, Photo.Net, TAD66K, AADB, and PARA, and (3) the quality prediction in the FIAA task on PARA.

1 ADDITIONAL EXPERIMENTS
We first provide more results to visualize the superiority of the pro-
posed AesMamba models, on diverse Image Aesthetic Assessment
(IAA) tasks, across different benchmark datasets. Afterward, we
provide an additional ablation study on the FIAA task. All these ex-
periments are conducted on AVA [6], TAD66K [3], PARA [7], AADB
[4], Photo.Net [1], AVA-Captions [2], and Photo.Net-Captions [1],
following standard settings.

1.1 Scatter Plots on Each dataset
To illustrate the consistency between the predicted results with sub-
jective evaluations, we show the scatter plots of predicted scores vs.
MOSs. As shown in Fig. 1, the predicted scores are consistent with
MOSs, across all the tasks, on diverse datasets. Besides, AesMamba-
M achieves distinctly better consistency (in the MIAA task on the
corresponding *-Captions datasets) than AesMamba-V (in the VIAA
task), on both AVA and Photo.Net. Such superiority demonstrate the
significant role of text comments in representing image aesthetic.
Besides, we visualize the scatter plots of quality prediction, in the
FIAA task on PARA. Similarly, the predicted quality scores show
high consistency with subjective evaluations.

1.2 Analysis of visual backbones on FIAA
In addition, Fig. 2 visualize the comparison between different visual
backbones, in the FIAA task. Each branch of the radar chart, shows
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Figure 2: Comparison between AesMamba-F and advanced
visual backbones on the FIAA task, in terms of SRCC.

the SRCC value of an aesthetic-related attribute. Obviously, our
model consistently achieves the and SRCC values, across all the
attributes. Besides, our base model, i.e. VMamba-T, consistently
outperforms all the other advanced visual backbones, either CNNs
or Transformers. Such superiority demonstrates the effectiveness
of VMamba, in capturing both local or global representations, for
representing diverse visual attributes.
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Figure 3: Impact of MBA for FIAA. Each bar shows the rela-
tive change of PLCC/SRCC, compared to our base model, i.e.
VMamba-T [5] with the MSE loss LMSE.

1.3 Ablation Study on FIAA
To visualize the impact of each module, we calculate the relative
performance of the other models, compared to our base model,
VMamba-T [5] with the MSE loss LMSE (Fig. 3).

Effectiveness of task-adaptation. First, multitask adaptation
consistently boosts the PLCC values across all the attributes; and
boots both PLCC and SRCC in average (Model-A). Such improve-
ments demonstrate the necessity of learning adaptive features for
diverse attributes.

Effectiveness of using auxiliary categorization task. Sec-
ond, Model-B achieves slightly higher SRCC and comparable PLCC,
compared to Model-B. This superiority indicates the potential of
classification loss for performance boosting.

Effectiveness of balanced learning. Finally, using LBal-CE
consistently boosts both PLCC and SRCC values, across all the
attributes (Model-C). Such significant superiority of our full model
demonstrates the crucial role of balanced learning in multi-attribute
evaluation.

2 CROSS-DATASET GENERALIZATION
In addition, we conduct cross-dataset VIAA and MIAA experiments,
to evaluate the generalization ability of our AesMamba models.
Specifically, we train AesMamba on the training set of one dataset,
and apply the learned model to the testing set of all datasets. Table
1 and Table 2 show the corresponding experimental results. Besides,
we adopt the inner-dataset performance, i.e. when the model is
trained and test on the same dataset, as the benchmark (denoted by
100%); and calculate the quotient of performance achieved under
the cross-dataset train/test settings (Fig. 1 and Fig. 5). For example,
AesMamba-V achieves an accuracy of 84.60, when it is trained and
test both on AVA. In contrast, AesMamba-V achieves an accuracy of
79.84, if it is trained on Photo.Net but test on AVA. The correspond-
ing relative performance is computed by 79.84/84.60 = 94.4%.

Strong Generalization Ability of AesMamba. Fig.1 shows
that AesMamba-V relatively achieve accuracy values (over 83%), in
all the cross-dataset settings. Besides, the cross-dataset performance
exceeds 90% of the benchmark performance, in terms of all the tree
metrics, between PARA and AADB; and exceeds or approaches

Table 1: VIAA Performance, of AesMamba-V, in cross-dataset
experiments. In each setting, our AesMamba-V model is
trained on one dataset, but applied to all benchmark datasets.

test
Accuracy (%) AVA Photo.net PARA AADB TAD66K

train

AVA 84.60 79.33 74.83 72.00 64.20
Photo.net 79.84 80.30 74.87 71.40 64.61
PARA 75.46 77.48 88.70 78.10 61.72
AADB 75.09 77.38 83.83 82.90 62.22
TAD66K 80.13 79.65 74.07 72.80 72.00

test
PLCC AVA Photo.net PARA AADB TAD66K

train

AVA 0.760 0.537 0.620 0.529 0.422
Photo.net 0.605 0.547 0.629 0.475 0.408
PARA 0.415 0.288 0.936 0.703 0.287
AADB 0.367 0.260 0.865 0.774 0.258
TAD66K 0.629 0.491 0.607 0.475 0.511

test
SRCC AVA Photo.net PARA AADB TAD66K

train

AVA 0.751 0.502 0.598 0.509 0.396
Photo.net 0.591 0.518 0.616 0.461 0.385
PARA 0.384 0.281 0.902 0.702 0.272
AADB 0.335 0.261 0.839 0.768 0.240
TAD66K 0.619 0.452 0.605 0.457 0.483

Table 2: MIAA Performance, of AesMamba-M, in cross-
dataset experiments. In each setting, our AesMamba-M
model is trained on one dataset, but applied to both bench-
mark datasets.

test
Accuracy (%) AVA-Captions Photo.net-Captions

train
AVA-Captions 89.6 83.3
Photo.net-Captions 84.8 82.0

test
PLCC AVA-Captions Photo.net-Captions

train
AVA-Captions 0.899 0.684
Photo.net-Captions 0.800 0.685

test
SRCC AVA-Captions Photo.net-Captions

train
AVA-Captions 0.892 0.676
Photo.net-Captions 0.796 0.664

80% of the benchmark performance, among AVA, TAD66K and
Photo.Net. In the MIAA task, AesMamba-M achieves over 89% of
the benchmark performance, when it is training on AVA-Captions
but test on Phto.Net-Captions. Inspiringly, AesMamba-M surpasses
the benchmark performance, if it is trained on AVA-Captions but
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Figure 4: Relative VIAA performance (%), of AesMamba-V, in the cross-dataset experiments. The inner-dataset performance,
i.e. when the model is trained and test on the same dataset, is adopted as the benchmark (denoted by 100%). We calculate the
quotient of performance achieved under the cross-dataset train/test settings.

test test test
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Figure 5: Relative MIAA performance (%), of AesMamba-M,
in the cross-dataset experiments. The inner-dataset perfor-
mance, i.e. when the model is trained and test on the same
dataset, is adopted as the benchmark (denoted by 100%). We
calculate the quotient of performance achieved under the
cross-dataset train/test settings.

applied to Photo.Net-Captions. This might due to the fact that, AVA-
Captions includes about 250K instances, while Photo.Net-Captions
only include 10K instances.

Cross-dataset Correlations. The diversities among the cross-
dataset results, under different settings, also imply the correlations
between existing benchmark datasets. For example, there might
be strong similarities among datasets in the group {AVA, TAD66K,
Photo.Net}, or in the group {PARA, AADB}. In contrast, there might
be great divergences between these two groups. It’s meaningful to
develop robust IAA methods, by using a joint training set derived
from diverse datasets; and to consider such correlations during the
design of learning strategies.
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