
Appendix815

A Reproducibility816

All source codes, figures, models, etc., are available at https://anonymous.4open.science/r/817

debiasing_global_workspace-1063.818

B Background819

Object-Centric Representation Learning. Humans outperform sophisticated AI technologies due820

to our exceptional ability to recombine previously acquired knowledge, allowing us to extrapolate821

to novel scenarios [13, 17, 20]. Pursuing representations that generalize compositionally has been822

a significant research topic, with object-centric representation learning [6, 19, 43, 7, 30] emerging823

as a prominent effort. This approach represents each object in an image with a unique subset of the824

image’s latent code, enabling compositional generalization due to its modular structure.825

Due to its simple yet effective design, Slot-Attention (SA) [43] has gained significant attention in826

unsupervised object-centric representation learning. Its iterative attention mechanism allows SA to827

learn and compete between slots for explaining parts of the input, showing a soft clustering effect on828

visual inputs [43]. Some recent works on implementing a cognitive architecture using object-centric829

methods have been proposed [27, 12]. Our approach also emphasizes compositional generalization in830

debiasing learning, using the slot-based method to implement a crucial module. The benefits of this831

method are noteworthy and deserve further exploration.832

C Further Experimental Results and Details833

In this section, we explain further experimental results and details. All experiments are conducted834

with three different random seeds and 95% confidence intervals.835

C.1 Hardware Specification of The Server836

The hardware specification of the server that we used to experiment is as follows:837

• CPU: Intel® CoreTM i7-6950X CPU @ 3.00GHz (up to 3.50 GHz)838

• RAM: 128 GB (DDR4 2400MHz)839

• GPU: NVIDIA GeForce Titan Xp GP102 (Pascal architecture, 3840 CUDA Cores @ 1.6840

GHz, 384-bit bus width, 12 GB GDDR G5X memory)841

C.2 Datasets842

We describe the details of biased datasets, Colored MNIST (C-MNIST), Corrupted CIFAR-10843

(C-CIFAR-10), and BFFHQ.844

Colored MNIST. Following existing studies [49, 33, 39, 4, 10, 38], this biased dataset comprises845

two highly correlated attributes: color and digit. We added specific colors to the foreground of each846

digit, generating bias-aligned and bias-conflicting samples for different ratios of bias-conflicting847

samples:848

• 0.5%: (54751:249)849

• 1%: (54509:491)850

• 2%: (54014:986)851

• 5%: (52551:2449)852

Corrupted CIFAR-10. Among 15 different corruptions introduced in the original dataset [25], we853

selected types including Brightness, Contrast, Gaussian Noise, Frost, Elastic Transform, Gaussian854

Blur, Defocus Blur, Impulse Noise, Saturate, and Pixelate, related to CIFAR-10 classes [37]. We used855
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the most severe level of corruption for the dataset, with the following bias-aligned and bias-conflicting856

samples:857

• 0.5%: (44832:228)858

• 1%: (44527:442)859

• 2%: (44145:887)860

• 5%: (42820:2242)861

BFFHQ. The dataset is created by using the Flickr-Faces-HQ (FFHQ) Dataset [31], focusing on862

age and gender as two strongly correlated attributes. The dataset includes 19200 training images863

(19104 bias-aligned and 96 bias-conflicting) and 1000 testing samples.864

C.3 Image Preprocessing865

Following Lee et al. [38], our model is trained and evaluated using fixed-size images. For C-MNIST,866

the size is 28 × 28; for C-CIFAR-10, it is 32 × 32, and for BFFHQ, it is 224 × 224. Images for867

C-CIFAR-10 and BFFHQ are preprocessed using random crop and horizontal flip transformations,868

as well as normalization along each channel (3, H, W) with a mean of (0.4914, 0.4822, 0.4465)869

and standard deviation of (0.2023, 0.1994, 0.2010). We do not use augmentation techniques for870

C-MNIST.871

C.4 Performance Evaluation872

Training Details. For training, we use the Adam [35] optimizer with default parameters (i.e., betas873

= (0.9, 0.999) and weight decay = 0.0) provided in the PyTorch™framework. We define two different874

learning rates: LRDGW for our DGW modules, and LR for the remaining modules in our method, including875

encoders and classifiers. For C-MNIST, LR is 0.01, while LRDGW is 0.0005 for C-MNIST-2%, 0.002 is876

for the remaining ratios of datasets. For C-CIFAR-10, LR is 0.001, and LRDGW is 0.0001. For BFFHQ,877

LR is 0.0001 and 0.0002 is for LRDGW.878

We utilize StepLR for learning rate scheduling, with a decaying step set to 10K for all datasets. The879

decay ratio is 0.5 for both C-MNIST and C-CIFAR-10 and 0.1 for BFFHQ. Following [38], we880

adjust the learning rate after performing feature augmentation.881

We set the hyperparameters (λre, λswapb , λswap, λent) for our proposed loss functions (Section 3.3 in882

the main text). (10, 10, 1, 0.01) is set for the ratio of 0.5% of C-MNIST, and (15, 15, 1, 0.01) for the883

ratio of 1%, 2%, and 5% of C-MNIST. We set (1, 1, 1, 0.01) for C-CIFAR-10, and (2, 2, 0.1, 0.01)884

for BFFHQ.885

Our proposed mixup strategy uses the hyperparameter β to select the mixing coefficient α ∼886

Beta(β, β). For BFFHQ, we set 0.5, whereas 0.2 for C-MNIST and C-CIFAR-10.887

We provide the scripts, including all hyperparameter setups, in our Git repository (Section A) to888

reproduce our performance evaluation.889

C.5 Analysis for Interpretable Attribute Representation890

Initialization of Concept Slots. The initialization of concept slots is crucial for our model’s891

performance, tailoring the attention mechanisms to each dataset. We set the initial number of concept892

slots (C) as follows:893

• For C-MNIST, C is set to 2, reflecting its simple attribute composition894

• For C-CIFAR-10, C is set to 10, accommodating its diverse features895

• For BFFHQ, C is set to 10, capturing a wide range of human facial features896

Additional Visualization on C-MNIST dataset. Figure A-1 displays the attention masks Ai =897

A(Si
latent,E

i) generated by eq. 3 in the main text for C-MNIST, showing the model focuses on digit898

shapes, ignoring color. Fig. A-2 shows the attention masks Ab = A(Sb
latent,E

b) generated by eq. 3899

in the main text, highlighting how the model responds to color patterns. Similar colors, like the purple900

digits 2, 3, 0, and 6, have similar attention masks, indicating the model’s sensitivity to color.901
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Figure A-1: Visualization of attention masks Ai for the C-MNIST dataset

Figure A-2: Visualization from the C-MNIST dataset showing attention masks Ab, highlighting color
patterns. Digits in similar colors (e.g., 2, 3, 0, and 6) share similar attention mask patterns.

Figure A-3: Face images with attention masks. The first column shows the original image, the next
two columns show attention masks Ai from concept slots 6 and 9, and the last column shows masks
Ab.

Visualization on BFFHQ dataset. Figure A-3 shows DGW’s behavior on the BFFHQ dataset,902

where the intrinsic components display complementary behavior within themselves (concept slots903

6 and 9), focusing on specific facial features like cheeks for gender classification. This behavior is904

due to BFFHQ’s focus on human facial shapes for gender classification, where the model prioritizes905

critical facial features, filtering out less relevant data.906
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Figure A-4: t-SNE plots for intrinsic features on C-MNIST (with (i) 1.0% and (ii) 2.0% settings).

Figure A-5: t-SNE plots for bias features on C-MNIST (with 0.5% setting).

C.6 Quantitative and Qualitative Analysis907

t-SNE and Clustering. We provide more results with t-SNE plots and clustering scores with908

V-Score [53] as illustrated in Fig. A-4 and A-5. V-Score, a harmonic mean between homogeneity and909

completeness, is widely used to evaluate clustering. A higher V-Score indicates tighter intra-class910

clusters and better inter-class separation.911

In Fig. A-4, intrinsic features from baselines and the intrinsic attribute encoder ϕi are used. It912

consistently shows a higher V-Score, implying better classification and intrinsic attribute capture913

compared to baselines. V-Scores are higher in setting (ii) than (i) because more bias-conflicting914

samples are used for training in setting (ii).915

In Fig. A-5, features from the bias attribute capturing layer of LFA and the bias attribute encoder916

ϕb are utilized. It shows a higher V-Score compared to LFA, indicating more effective bias attribute917

separation. Overall, our method outperforms baselines, demonstrating robust separation of intrinsic918

and bias attributes to improve debiasing process.919

Model Similarity. We use Centered Kernel Alignment (CKA) [51, 36, 9] to visualize similarities920

between all pairs of layers in different models, helping us understand model behavior. The bias and921

intrinsic attribute encoders ϕb and ϕi in our approach are compared.922

In Fig. A-6 and Fig. A-7, Vanilla and LFA models show similar weights in many layers, represented923

by bright colors. In contrast, our method shows significantly lower similarity values, indicating924
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Figure A-6: Representations of similarities for vanilla model and different methods with all pairs of
layers on C-CIFAR-10 (5.0% setting). A high similarity score denotes high values.

Figure A-7: Representations of similarities for vanilla model and different methods with all pairs of
layers on BFFHQ (0.5% setting). A high similarity score denotes high values.

Table A-1: ECE (%) and NLL under different settings on C-MNIST and C-CIFAR-10.

Dataset C-MNIST C-CIFAR-10

Ratio (%) 0.5 1.0 2.0 5.0 0.5 1.0 2.0 5.0
ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL

Vanilla 10.9 13.17 7.97 6.45 5.70 5.71 9.54 4.10 13.75 5.99 13.14 9.87 12.25 6.65 13.76 5.99
LFA 4.35 67.72 2.79 36.46 2.09 18.35 7.59 3.09 12.09 5.81 11.45 7.27 10.25 5.14 7.56 3.09
DGW 3.41 271.71 2.03 143.36 1.73 41.44 1.61 20.19 11.85 5.71 11.53 6.88 9.96 4.41 7.55 3.01

different weights and behaviors across layers compared to Vanilla and LFA. Our method affects925

deeper layers more, where the attention module is inserted, suggesting a distinct impact on model926

behavior.927

Model Reliability. To evaluate the generalizability of models, we measure Expected Calibration928

Error (ECE) and Negative Log Likelihood (NLL) [21], where ECE is to measure calibration error and929

NLL is to calculate the probabilistic quality of a model. In detail, ECE aims to evaluate whether the930

predictions of a model are reliable and accurate, which is a simple yet sufficient metric for assessing931

model calibration and reflecting model generalizability [21].932

In Table A-1, our method consistently shows the lowest ECE, indicating better calibration and933

reliability. For C-MNIST, it presents a higher NLL compared to baselines. Since C-MNIST includes934

color bias only in the training set, it prevents overfitting by being less affected by bias, leading to935

better overall model performance. This trend is consistent across different settings in C-MNIST,936

providing insights into analyzing and explaining dataset bias types and complexity characteristics.937
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