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Figure 1: The standard process of compression for machine.
(a) represents the point cloud compression pipeline for ma-
chine vision. (b) denotes the original point cloud of ScanNet,
(c) presents the results of PCGCv2 coding, and (d) shows the
outcomes of RPCGC coding.

The following materials will present our method’s motivation,
modeling process, relevant computational pseudocode, experimen-
tal results, and visual analysis.

1 INTRODUCTION
Despite numerous end-to-end research efforts in point cloud com-
pression, they primarily focus on fidelity optimization, as shown in
Fig. 1 (a). However, in practical applications, the purpose of com-
pression is to facilitate machine analysis. For instance, vehicles with
LiDAR sensors in motion collect vast amounts of point clouds. Due
to the limited space of storage devices, lossy compression is nec-
essary during data collection and transmission in driving, leading
to a significant loss of detailed information on the outdoor scenes.
Similarly, in applications like indoor 3D reconstruction, the com-
pression process can also result in the loss of semantic information
in data. In video surveillance, data collected by cameras undergo
compression before being transmitted to the cloud for analysis.
These processes are unidirectional and irreversible, making it im-
possible to compensate for the loss of information in visual tasks
through post-processing. Therefore, ensuring the performance of
downstream tasks during compression becomes an urgent technical
challenge. In end-to-end compression schemes, neural networks
are employed in encoding modules, allowing the entire framework
to be optimized jointly with different loss functions for specific
tasks, which can simultaneously achieve machine perception and
human vision optimization.

Firstly, we conduct object detection experiments on the Scan-
Net dataset after compressing its geometry information, using the
RPCGC method alongside the advanced PCGCv2 [8] approach for
data compression. We visualize the compressed data as illustrated
in Fig. 1 (b), (c), and (d), representing the original point cloud, the

(a) detection (b) Segmentation

Figure 2: The performance analysis. (a) and (b) show the
curves of geometry lossless and attribute lossy in down-
stream tasks influenced by different quantization values.

point cloud compressed by the PCGCv2, and the point cloud recon-
structed after RPCGC compressor, respectively. The visualization
results reveal a loss of geometry contours during compression.
Then, we analyze the color information of the ScanNet to assess the
impact on detection and segmentation tasks. We employ G-PCC
lossless geometry compression combined with Region Adaptive
Hierarchical Transform (RAHT) [3] for lossy attribute compression
and utilize MinkUNet34C [2] as the segmentation network and
FCAF3D [7] for point cloud detection. As demonstrated in Fig. 2 (a)
and (b), our findings indicate that the impact of compressed point
cloud color information on segmentation and detection tasks is
negligible, even at high attribute compression rates. Therefore, this
study primarily focuses on the compression of geometry informa-
tion in point clouds.

2 RELATEDWORKS
In this section, we explore approaches related to our research, con-
centrating on three primary areas: (1) The development of point
cloud compression methods optimized for fidelity. (2) The advance-
ment of image compression techniques specifically crafted for ma-
chine vision optimization. (3) The formulation of point cloud com-
pression strategies to enhance machine vision capabilities. When
dealing with compression tasks for various multimedia data, a
diverse array of optimization strategies for machine vision is em-
ployed. For instance, as depicted in Fig. 3 (a), the approach involves
compressing data and applying the compressed data in classifica-
tion, detection, and segmentation. Fig. 3 (b) primarily focuses on
extracting and analyzing semantic features from the compressed
bitstream and using these insights for machine vision tasks. Fig. 3
(c) is specifically optimized for different tasks. Meanwhile, Fig. 3 (d)
represents an approach that integrates the optimization of low-level
compression tasks with high-level semantic analysis tasks, thereby
creating a more holistic and efficient processing framework.

2.1 Image Compression for Machine
For example, Bai et al. [1] introduce a cloud-based, end-to-end im-
age compression and classification model using modified Vision
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Figure 3: The compression pipelines for downstream tasks:
(a) is serial mode. (b) is parallel mode. (c) represents multiple
taskswith individual optimization. (d) denotesmultiple tasks
with joint optimization. “AE” and “AD” refer to the encoding
and decoding processes, respectively, while “Feat” denotes
the features of specific types of tasks. The term “Human” de-
scribes the reconstruction process, whereas “Machine” refers
to downstream tasks.

Transformers [4] (ViT) that classifies images from compressed fea-
tures, leveraging the Transformer’s ability to manage long-range
information. The structure of [1] is similar to Fig. 3 (b). Liu et al. [5]
propose a scalable image compression method for machine and hu-
man vision, featuring a pyramid representation for machine tasks
and an optimized network for efficient encoding, balancing seman-
tic accuracy, and signal reconstruction quality, the process of [5] is
as shown in Fig. 3 (d).

2.2 Point Cloud Compression for Machine
The process is shown in Fig. 3 (a), Xie et al. [9] introduce a coding
network utilizing sparse convolution, and design to extract seman-
tic information for classification tasks concurrently. As shown in
Fig. 3 (c), Liu et al. [6] introduce PCHM-Net, a new point cloud
compression framework for human and machine vision, featuring
a two-branch structure with a shared octree-based module and a
point cloud selection module for sparse point optimization, cou-
pled with a global feature aggregation-based classification module,
achieving promising coding performance on various datasets.

3 METHODOLOGY
We represent the entire modeling process in the form of a Markov
chain to facilitate a deeper understanding of the principles out-
lined in the RPCGC. Our encoding architecture is divided into two
branches: the base layer stream and the enhancement layer stream.
Simultaneously, we will preprocess the input point clouds using an
RPN network. Subsequently, the generated mask will be weighted
and applied to residual information and the loss function. The for-
mulate process is illustrated in Fig. 4. Meanwhile, we have devised
a masked residual weighting strategy. It utilizes the Feature Align-
ment Module (FAM) to expand the masks generated by the RPN
into three-dimensional features, aligning them with the dimensions
of the residual features. Subsequently, it applies the aligned result
to the residual feature map. The pseudocode implementation of
the entire weighting process is shown in Alg. 1, providing a clear
insight into our weighting computation process.

� �

�′

�����

���� ���ℎ

� �Quan

De-Quan

G-PCC Enc

Residualization RAM

G-PCC Dec

RSM

Detection
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�′
��ℎ

RPN

RS KNN MaskingProcessing

Figure 4: The pipeline chain of the RPCGC framework.

Algorithm 1 The mask generation and weighting in residual
1: min_bound← inputs.min(axis=0) ⊲ xyz value
2: coords← np.round(inputs - min_bound) * 50
3: coords, unq_idx← np.unique(coords, return_index=True)
4: feats← colors[unq_idx] - 0.5 ⊲ rgb value
5: coords, feats← ME.utils.sparse_collate([coords], [feats])
6: x← ME.SparseTensor(feats, coords)
7: CLASS_IDS← [1,2,3,...39] ⊲ category
8: bg← [1, 2, 8, 9, 11, 16] ⊲ background
9: with torch.no_grad():
10: soutput← RPN(x)
11: pred← soutput.F.max(1).cpu().numpy()
12: class← np.array([CLASS_IDS[l] for l in pred])
13: mask← [1 if value in bg else 2 for value in class]
14: x_coarse← scale_sparse_tensor_batch(x, scaling)
15: distance← compute_nearest_neighbor(x.C, x_coarse.C)
16: for j in range(len(distance)) do
17: x_coarse_mask.append(mask[distance[j]])
18: end for
19: expend_mask← torch.tensor(x_coarse_mask).unsqueeze(1)
20: weight← F.relu(Fc(expend_mask))
21: weight← Convs(weight.unsqueeze(0).transpose(1,2))
22: feature← Residual.F * weight + Residual.F

3.1 Ablation Study
Meanwhile, we categorize the post-compression detection results
into four levels and conduct an in-depth analysis at different bi-
trates as shown in Fig.5 (i) of the main paper: (1) 0<bpp<0.5: Within
this interval, the number of reconstructed point clouds is limited,
retaining only the approximate location information of the point
clouds, while detailed contour information suffers a significant loss.
Therefore, detection performance seriously decreases under low
bitrate conditions, characterized by a very low detection rate. (2)
0.5<bpp<1.0: As the bitrate gradually increases, the quality of point
cloud reconstruction improves, and the constraint information in
the detection frame area becomes more abundant, thereby grad-
ually enhancing detection performance. (3) 1.0<bpp<1.5: In this
range, with further increases in bitrate, the contours within the
detection area of the point clouds essentially take shape. At this
point, the Group-Free detection network begins to show insensitiv-
ity to the increase in the number of point clouds within the ROI,
and the detection performance gradually approaches its limit. (4)
1.5<bpp<2.5: The detection performance has peaked at this stage,
and the detection results of point clouds within the ROI area no
longer undergo notable changes.
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(a) Phil: D1 PSNR (b) Queen: D1 PSNR (c) Sarah: D1 PSNR

Figure 5: The RD curve of our proposed RPCGC and other representative methods in MPEG dataset.

(a) ScanNet: D2 PSNR (b) ScanNet: mAP@0.5

Figure 6: The ablation study for RPCGC in ScanNet dataset,
“DL” represents Detection Loss, “MCD” refers to masking
Chamfer Distance Loss, “MFM” signifies masking of the
Residual Feature Map, “SAM” denotes the Semantic-Aware
Attention Module, and “MSFEM” stands for the Multi-Scale
Feature Extraction Module.

Figure 7: The reconstructed results of ScanNet via the RPCGC
framework. The quantization ranges from 0.14 to 0.48. Each
row corresponds to a distinct point cloud, showcasing the
quality across six bitrates.

As shown in the Fig. 5, to evaluate the generalization capability
of our approach, we plotted the RD curves based on the D2 PSNR
indicator using datasets such as Phil, Queen, and Sarah. These
datasets are commonly used standard test sets in MPEG. Mean-
while, the deep learning-based point cloud compression methods
pcc_geo_cnn_v1, pcc_geo_cnn_v2, and PCGCv1 all adopt an au-
toregressive coding strategy. The graph shows that our method
significantly outperforms existing coding schemes at low bitrates,
while exhibiting marginal gains at high bitrates.

Fig. 6 (a) illustrates the D2 PSNR curves plotted using different
strategies such as DL, MCD, MFM, SAM, and MSFEM, indicating
our method’s advantageous compression performance at high bi-
trates. Fig. 6 (b) presents the detection performance at mAP@0.5
threshold. The curves demonstrate that the combined optimization
of detection and compression tasks significantly improves detection
performance at low bitrates. Meanwhile, the SAM structure guides
the feature extraction process for detection tasks at higher bitrates,
enhancing detection performance.

Furthermore, Fig. 7 illustrates the visualization outcomes of the
RPCGC algorithm applied to ScanNet data across varying bitrates.
This depiction aids in understanding the quality of point cloud
reconstruction across different bitrates. The illustration reveals that
lower bitrates lead to a significant loss of overall outline informa-
tion in the point cloud, consequently lowering the detection rate
of the model. Conversely, higher bitrates enable the complete re-
construction of object information. Consequently, learning-based
methods tend to be most effective at higher bitrates.

REFERENCES
[1] Yuanchao Bai, Xu Yang, Xianming Liu, Junjun Jiang, Yaowei Wang, Xiangyang Ji,

and Wen Gao. 2022. Towards End-to-End Image Compression and Analysis with
Transformers. In AAAI Conference on Artificial Intelligence, Vol. 36. 104–112.

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4D Spatio-Temporal
Convnets: Minkowski Convolutional Neural Networks. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 3075–3084.

[3] Ricardo L De Queiroz and Philip A Chou. 2016. Compression of 3D Point Clouds
Using a Region-Adaptive Hierarchical Transform. IEEE Transactions on Image
Processing 25, 8 (2016), 3947–3956.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. arXiv preprint arXiv:2010.11929 (2020).

[5] Kang Liu, Dong Liu, Li Li, Ning Yan, and Houqiang Li. 2021. Semantics-to-Signal
Scalable Image Compression with Learned Revertible Representations. Interna-
tional Journal of Computer Vision 129, 9 (2021), 2605–2621.

[6] Lei Liu, Zhihao Hu, and Jing Zhang. 2023. PCHM-Net: A New Point Cloud
Compression Framework for Both Human Vision and Machine Vision. In IEEE
International Conference on Multimedia and Expo. IEEE, 1997–2002.

[7] Danila Rukhovich, Anna Vorontsova, and Anton Konushin. 2022. Fcaf3d: Fully
Convolutional Anchor-Free 3D Object Detection. In European Conference on Com-
puter Vision. Springer, 477–493.

[8] Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma. 2021. Multiscale Point Cloud
Geometry Compression. In Data Compression Conference. IEEE, 73–82.

[9] Liang Xie, Wei Gao, and Huiming Zheng. 2022. End-to-End Point Cloud Geometry
Compression and Analysis with Sparse Tensor. In International Workshop on
Advances in Point Cloud Compression, Processing and Analysis. 27–32.


	1 introduction
	2 Related Works
	2.1 Image Compression for Machine
	2.2 Point Cloud Compression for Machine

	3 METHODOLOGY
	3.1 Ablation Study

	References

