
Appendix

In what follows, we include complete and formal mathematical proofs for the theorems presented in
the paper, as well as more information about our experimental setup for the semi-synthetic experiment
performed to answer RQ3.

A Proof of Theorem 2: Identifiability in Symmetric Additive Noise Models

This section provides a proof for identifiabiltiy of single-variable causal effects in symmetric additive
noise models (Theorem 2).

Proof. Our causal estimand is the effect of intervening on Xi. For notational convenience, we assume
k = i, i.e. the intervention is on the last treatment. From the observational data regime, we can
trivially obtain the joint P(C, X1, . . . , Xk, Y ). As such, we can condition on the covariates and
remaining treatment variables and then marginalise to obtain E[Y |do(Xk = xk), C = c]. We can
rewrite our causal estimand as follows:

E[Y |C = c,X1 = x1, . . . , Xk�1 = xk�1, do(Xk = xk)] =

fY (c, x1, . . . , xk) + E[UY |C = c,X1 = x1, . . . , Xk�1 = xk�1].
(7)

From the joint interventional data regime, we have access to the following expectation:

E[Y |C = c, do(X1 = x1, . . . , Xk = xk)] = fY (c, x1, . . . , xk). (8)

Subtracting Eq. 8 from Eq. 7 shows that we only need to provide identifiability for the conditional
expectation on the outcome noise, given the remaining treatment variables and the observed covariates:

E[UY |C =c,X1 = x1, . . . , Xk�1 = xk�1] = ⌃uy⌃�1
ux

ux,
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and ux = [x1 � f1(c) . . . xk�1 � fk�1(c)]
|
.

(9)

Here, �ij denotes the covariance between noise variables Ui and Uj , and �Y i denotes the covariance
between the outcome UY and Ui. There are two types of unidentified factors in these expressions:
the structural equations, that is, the fi’s encapsulated in ux from Eq. 9, and the parameters of the
noise distribution, which are encapsulated in ⌃ux and ⌃uy . We tackle these in what follows:

Identifying the structural equations. As a direct result of our model definition, we obtain
E[Xi|C = c] = fi(c) from the observational data regime. This follows because in the DAG
of Figure 1, C and Ui are independent for all i. As such, the structural equations (and thus ux from
Eq. 9) are identifiable.

Identifying the noise distribution. For any pair of treatment variables, we can obtain E[Xi|C =
c,Xj = xj ] = fi(c) + E[Ui|Xj = xj ]. The latter term in this expression can then be rewritten as
E[Ui|Uj = xj � fj(c)], for fixed values of xj and c. Because we have shown the structural equations
(fi, fj) to be identifiable, we have that E[Ui|Uj ] is identifiable, which gives us the covariance �ij .
Hence, the entirety of ⌃ux is identifiable. The same procedure can be used for every entry of ⌃uy ,
and the covariances �Y i are identifiable as a result.

It follows naturally that E[Y |C = c,X1 = x1, . . . , Xk�1 = xk�1, do(Xk = xk)] is identifiable. As
we have data from the observational regime, any marginalisation of this query is identifiable as well,
concluding the proof.
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B Unidentifiability under Unconstrained SCMs

Tables B hold the full distributions for the counterexample in Section 3.1, showing that single-
variable interventional effects are unidentifiable from observational and joint interventional data for
unconstrained SCMs.

Table 4: Distributions under both SCMs M and M0.

(a) Observational joint distribution.

P(X1, X2, Y ) Y = 0 Y = 1

X1, X2 = 0, 0 1 � p 0
X1, X2 = 0, 1 0 0
X1, X2 = 1, 0 0 0
X1, X2 = 1, 1 0 p

(b) Joint interventional distribution.

P(Y |do(X1, X2)) Y = 0 Y = 1

do(X1 = 0, X2 = 0) 1 0
do(X1 = 0, X2 = 1) 1 0
do(X1 = 1, X2 = 0) 1 0
do(X1 = 1, X2 = 1) 1 � p p

(c) Interventional distribution on X2.

P(Y,X1|do(X2)) Y = 0 Y = 1

do(X2 = 0)
X1 = 0 1 � p 0
X1 = 1 p 0

do(X2 = 1)
X1 = 0 1 � p 0
X1 = 1 0 p

Table 5: SCMs for C, where (UC , U1, U2, UY )M ⇠ N (0,⌃) and (UC , U1, U2, UY )M0 ⇠ N (0,⌃0).

M M0

C = UC C = UC

X1 = C + U1 X1 = 2C + U1

X2 = C + U2 X2 = 2C + U2

Y = CX1X2 + UY Y = CX1X2 + UY

where ⌃ =

2

64

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

3

75 ,⌃0 =

2

64

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

3

75 .

C Unidentifiability when C is not independent of U

Table 5 provides the counterexample mentioned in Section 3.3 (just after Equation 3) showing that
single-variable interventional effects are unidentifiable from observational and joint interventional
data when the covariates C are not independent of the unobserved confounders U in the ANMs we
consider.

Indeed, in model M, C is correlated with the latent U1, U2, telling us this model is non-Markovian:
that there is an unobserved confounder correlating C and U1, U2. C is thus not independent of this
unobserved confounder. This is not the case in model M0 Moreover, we can see that M and M0

are identical under interchange of X1 and X2, and have the same joint and marginal distributions, as
well as the same joint interventional distribution.

As the two SCMs coincide on observational and joint interventional distributions, this proves that
the confounding distribution is not identifiable from these data regimes alone, and single-variable
interventions as well as the full SCM are unidentifiable. This demonstrates the need for the additional
restrictions between C and U in Theorem 3.2.

D Proof of Theorem 1: Identifiability with Causally Dependent Treatments

This section provides a proof for identifiability of single-variable causal effects when there is a causal
dependency among treatments (Theorem 1). Observational and joint interventional data are not
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sufficient in this case to identify causal effects on all treatments – but we can identify the causal effect
of intervening on the consequence treatment instead of the causing treatment.

Proof. Our causal estimand is the effect of intervening on Xj . We can rewrite our causal estimand as
follows:

E[Y |Xi = xi, do(Xj = xj), C = c] = fY (c, xi, xj) + E[UY |C = c,Xi = xi]. (10)

From the joint interventional data regime, we have access to the following expectation:

E[Y |C = c, do(Xi = xi, Xj = xj)] = fY (c, xi, xj). (11)

Subtracting Eq. 11 from Eq. 10 shows that we only need to provide identifiability for the conditional
expectation on the outcome noise, given the observed value for treatment Xi and the observed
covariates C:

E[UY |C = c,Xi = xi] = E[UY |Ui = xi � fi(c)] =
�Y i

�ii
(xi � fi(c)). (12)

Here, the first step comes from our SCM definition, and the second step comes from the fact that
we assume the noise distribution to be a zero-centered multivariate Gaussian. As such, we need to
identify the function fi, the variance on the noise variable Ui, and the covariance between Ui and
UY . We obtain E[Xi|C = c] = fi(c) directly from the observational data regime. This makes the
noise variable Ui = Xi � fi(C) identifiable. Now, as a result, we can identify its variance �ii and
covariance �Y i from the observational data regime, which concludes the proof.

E Consistency under Varying Levels of Confounding (RQ3)

In order to validate the consistency of our learning method under varying levels of unobserved
confounding (RQ3), we adopt data from the International Stroke Trial database [Carolei, 1997]. We
partially follow the semi-synthetic setup laid out in Appendix 3 of [Zhang and Bareinboim, 2021].
Specifically, we adopt their probability table for the joint observational distribution of the covariates:
the gender, age and conscious state of a patient. This table was computed from the dataset to reflect a
real-world observational distribution. They deal with discrete treatments—which we extend to the
continuous case where treatments can be interpreted as varying dosages of aspirin and heparin. We
model the structural equation on the outcome as:

Y = 0.1S � 0.1A + 0.25(C � 1) + ↵a + 0.75↵h � 3SA � 0.1S↵a

�0.3A↵a + 0.1S↵h + 0.2A↵h + 0.3C↵h � 0.45↵a↵h.
(13)

This loosely reflects the same intuitions as laid out in [Zhang and Bareinboim, 2021], where S is the
gender, A the age, C the conscious state, ↵a the aspirin dose and ↵h the heparin dose. Note that
this does not reflect correct medical knowledge or insights—the goal is merely to have a polynomial
with second-order interactions that we can learn to model. As described in the main text, we add
zero-mean Gaussian noise to the treatments and the outcome, where we randomly generate positive
semi-definite covariance matrices with bounded non-diagonal entries—varying the limit on the size
of the covariances in order to assess the effect of varying confounding on our method. We repeat this
process 5 times, and sample 512 observational and 512 joint-interventional samples (both ↵a and
↵h) to learn the SCM from. We evaluate our learning methods on 5 000 evaluation samples to predict
the outcome under a single-variable intervention on the aspirin dose ↵a.

All experiments ran in a notebook on a laptop.
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