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A Appendix 

A.1 JSLDS hyperparameter selection 

In general, we have found the JSLDS loss function strengths to be relatively easy to select (see 
example settings in the specific experiment sections below). However, there are various possible 
configurations. The following provides a general framework for how to think about these parameters: 

• λe should generally be relatively large. It should be prioritized higher than the other losses 
or regularizers since failing to find expansion points that are good approximations of the 
RNN’s fixed points or slow points would defeat the primary purpose of the method. 

• λa should be large enough to ensure a small error between the JSLDS and RNN states. 
However, for some tasks, one may need to balance tradeoffs between Ra and the losses 
LRNN and LJSLDS. 

• For most of the experiments in this paper we set the loss strengths to λRNN = 1 and 
λJSLDS = 1. For the 3-bit memory task, we observed slightly better performance by setting 
λRNN = 3 and λJSLDS = 1. Interestingly, allowing for a slight bias towards the RNN 
performance on this task generally led to improved performance for both the RNN and the 
JSLDS. However, other variations are possible. 

• For example, setting λRNN = 1 and λJSLDS = 0 might correspond to the goal of training a 
nonlinear RNN to be more interpretable by not sacrificing the goals of Re and Ra for the 
sake of JSLDS task performance. 

• In the other extreme, if one were just interested in training an SLDS, setting λRNN = 0 
and λJSLDS = 1 could provide benefits since the JSLDS learns to share parameters across 
expansion points. 

A.2 Expansion network formulation 

In this work we considered a specific formulation of the expansion network as E(at−1; φ), in which 
the network is a 2-layer MLP that only depends on the previous state. However other formulations 
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are possible. For example, the expansion network could also depend on the previous expansion point 
∗ ∗E(at−1, e ; φ) , the input E(at−1, ut; φ), or a combination of all of these E(at−1, et , ut; φ). It is t 

interesting future work to study the effects of variations such as these. 

A.3 3-bit discrete memory task 

A.3.1 Experimental details 

The task here consists of three 2-dimensional input vectors where each input vector corresponds to 
a different channel. Each input vector can take a value of {[1, 0], [0, 0], [0, 1]} corresponding to a 
state of -1, 0, or +1 respectively. The models have three outputs, each trained to remember the last 
nonzero state of its corresponding input channel. For example, output 2 remembers whether channel 
2 was last set to state +1 or -1, but ignores the channel 1 and channel 3 inputs. When a given channel 
receives a nonzero input that is different from its current state, it should immediately output the new 
state on that timestep. For a given input vector at a given timestep, we set the probability of being in 
any of the three states to be equal. We set the number of timesteps T = 25. 

We trained both methods with the Adam optimizer with default settings. For the JSLDS, we set the 
∗value of u in the JSLDS to zero. Other important hyperparameters are listed in Table 1. 

Table 1: Hyperparameters used for 3-bit memory task 

Model JSLDS-RNN Standard RNN 

RNN type GRU GRU 
Number of RNN layers 1 1 
Hidden state dimension 100 100 
Batch size 256 256 
Initial learning rate .02 .02 
L2 regularization 0.0 0.0 
Expansion network layers 2 n/a 
Expansion network units/layer 100 n/a 
Expansion network activation tanh n/a 
λRNN 3.0 n/a 
λJSLDS 1.0 n/a 
λe 100.0 n/a 
λa 10.0 n/a 

A.3.2 JSLDS co-training fixed point solution 

The fixed point solution used by the JSLDS and co-trained GRU to solve the 3-bit memory task is 
significantly different from the solution used by the standard GRU (without co-training). As displayed 
in the main paper, the standard fixed point solution consists of stable fixed points on the corners 
and saddle nodes in between. In contrast, the JSLDS co-training results instead in a solution that 
consists of only marginally stable fixed points. We note there does seem to be some variability in 
the expansion network that causes the expansion points to form clusters instead of distinct points. 
However, this variability is relatively small in the sense that within any of the distinct clusters, all the 
expansion points have nearly identical linearizations. This is confirmed by checking the eigenvalues 
and eigenvectors for the points within each cluster. Therefore, the eight distinct clusters of marginally 
stable expansion points define what is essentially eight marginally stable fixed points for each of the 
eight possible target output states. 

As we presented, the JSLDS only utilizes these eight marginally stable points. In addition, when using 
the numerical fixed point finding method, the slowest of the numerical fixed points of the co-trained 
RNN also cluster around these eight points and are also marginally stable. We can also adjust the 
tolerance threshold used by the numerical fixed point finding method to observe less slow points. 
This reveals more marginally stable fixed points in between the eight corners. These marginally 
stable points between the corners stand in contrast to the saddle nodes present between the corners 
in the standard solution. As we also noted, initializing the JSLDS co-training procedure with the 
trained weights of the standard GRU also leads to this same marginally stable solution. I.e., the 
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JSLDS co-training changes the fixed point solution from the classic solution to our new solution 
with marginally stable fixed points. These results suggest that perhaps one can think of the JSLDS 
co-training as acting to make the stable corners of the standard solution less stable and the unstable 
saddles of the standard solution more stable, resulting in the marginally stable solution we observe. 

The co-trained JSLDS-RNN solution uses these eight marginally stable fixed points to dynamically 
select or ignore the inputs to update the hidden state. This is made apparent by studying the top left 
eigenvectors of the recurrent Jacobian (which we will refer to as the selection vectors) at each of the 
eight clusters and how they act upon the different possible effective inputs. Recall the input vector 
for each of the three channels can take a value of {[1, 0], [0, 0], [0, 1]}. Because the [0, 0] input will 
have no effect, we can focus on just six inputs corresponding to the six one-hot input vectors that 
could flip one of the channel output states. We can view these six inputs for ut as a 6 × 6 identity 
matrix where each column represents a different input that we are interested in. The effective input 

∗ ∗for the JSLDS update equation is ∂F (e , u ; θ) (ut − u ∗). We can use our identity matrix as the∂u 
different ut’s, which allows us to represent the different effective inputs we are interested in as a 
100 × 6 matrix (where 100 is the hidden state dimension used in this experiment). 

We can take the dot product between the selection vectors and the different effective inputs to reveal 
visually intuitive patterns that clarify how the selection vectors correctly select or ignore the inputs 
when the system is in a particular state. We can view the top 9 left eigenvectors as a 9 × 100 matrix 
and multiply this by our 100 × 6 effective input matrix. Figure A.1 presents the results, and we 
observe that the normalized dot product between the selection vectors and the effective inputs is 
essentially only nonzero for the effective inputs that would cause one of the channel output states to 
flip. 

For this task, the system should immediately update a channel output state on the same timestep it 
receives a nonzero input that is different from the current channel state. We can observe how the 
system performs this update by taking the dot product between the different possible effective inputs 
and the readout matrix (a size 3 × 100 matrix). This is because the readout matrix must use the 
effective input to make this update immediately. Figure A.2 presents the results. We see that the 
dot product is essentially only nonzero for the dimensions corresponding to the effective inputs that 
would cause the corresponding channel output state to flip. 
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Figure A.1: Analysis of the hidden state update mechanism for the 3-bit memory task. For each of the 
eight expansion points the JSLDS solution uses for the eight possible output states, we take the dot 

∗ ∗product between the top nine left eigenvectors of the recurrent Jacobian ∂F (e , u ; θ), represented as ∂h 
∗ ∗ a 9 × 100 matrix, and the effective input ∂F (e , u ; θ) (ut − u ∗) for each of the six one-hot inputs ∂u 

ut we are interested in, represented as a 100 × 6 matrix. This results in a 9 × 6 matrix for each 
∗ ∗ ∗ ∗of the eight possible output states. Note that both ∂F (e , u ; θ) and ∂F (e , u ; θ) depend on the∂h ∂u 

expansion point. The resulting dot product values have been normalized. We see that essentially the 
only nonzero results correspond to the inputs that would flip the corresponding channel state. For 
example, in the bottom right, state [-1,1,-1], the nonzero dot products correspond to the second, third, 
and sixth effective inputs. This corresponds to actual inputs of [0, 1], [1, 0], [0, 1] for each of the three 
channels respectively. According to the task definition, these are the inputs that would cause each 
of the three channels to flip its respective output state. On the other hand, the first, fourth, and fifth 
effective inputs have no effect. This corresponds to actual inputs of [1, 0], [0, 1], [1, 0] for the three 
channels respectively. According to the task definition, these inputs should not impact the states, as 
we observe. 
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Figure A.2: Analysis of the readout state update mechanism for the 3-bit memory task. For each 
of the eight expansion points the JSLDS solution uses for the eight possible output states, we take 
the dot product between the readout matrix, represented as a 3 × 100 matrix, and the effective input 
∂F ∗ ∗(e , u ; θ) (ut − u ∗) for each of the six one-hot inputs ut we are interested in, represented as a∂u 
100 × 6 matrix. This results in a 3 × 6 matrix for each of the eight possible output states. We see 
that essentially the only nonzero results correspond to the inputs that would flip the corresponding 
channel output state. 

5 



A.4 Contextual integration task 

A.4.1 Experimental details 

The experiment consists of training vanilla RNNs to contextually decide which of two white noise 
input streams, corresponding to motion or color contexts, to integrate. Models received two static 
context inputs, corresponding to motion and color contexts, and two time-varying white noise input 
streams of length T = 25. On each trial, one context input was zero and the other one, forming 
a one-hot encoding that indicates which input stream should be integrated. The white noise input 
was sampled from N (µ, .1252) at each time step, with µ sampled from N (−.01, .022) and kept 
static across time for each trial. The models were trained to output the cumulative sum of the 
correct context white noise stream at each timestep. For evaluation, the fixed µs used for the inputs 
were [-.04,-.02,-.009,.009,.02,.04] corresponding to strong, intermediate and weak evidence for both 
choices. 

For u ∗ in the JSLDS, we set the dimensions that correspond to the white noise inputs to zero and set 
the other dimensions to the value of the context-dependent static input for each trial. We trained the 
system using the Adam optimizer with default settings. Other important hyperparameter settings are 
listed in Table 2. 

Table 2: Hyperparameters used for contextual integration task 

Model JSLDS-RNN Standard RNN 

RNN type Vanilla Vanilla 
Number of RNN layers 1 1 
Hidden state dimension 128 128 
Batch size 256 256 
Initial learning rate .02 .02 
L2 regularization 1.0e-5 1.0e-5 
Expansion network layers 2 n/a 
Expansion network units/layer 128 n/a 
Expansion network activation tanh n/a 
λRNN 1.0 n/a 
λJSLDS 1.0 n/a 
λe 100.0 n/a 
λa 10.0 n/a 

A.4.2 Subspace construction 

To display the RNN trajectories in state space, we projected the JSLDS states and expansion points 
into the 3-dimensional subspace meant to match the axes of choice, motion input, and color input. 
The axis of choice for each context was determined by averaging the top right eigenvector determined 
by the Jacobian at each expansion point. The motion input axis was determined by the input 
weight vector corresponding to the motion input weight stream. Similarly, the color input axis was 
determined by the input weight vector corresponding to the color input stream. These three vectors 
were orthogonalized to create the subspace. We then projected the JSLDS states and expansion points 
(or RNN states and numerical fixed points for the standard trained RNN) into this subspace to create 
the plots. 

A.4.3 Contextual integration experiment performed without JSLDS regularization. 

We repeated the contextual integration experiment with a standard trained vanilla RNN without 
the JSLDS co-training. After training, we numerically found its fixed points for both contexts and 
recreated the plot from the main paper in Figure A.3. We see that the standard trained RNN finds 
basically the same solution as the co-trained networks. The standard trained network eigenvalues tend 
to exhibit larger imaginary components, but the top eigenvalue for both contexts is still (1, 0). So for 
the contextual integration experiment with a vanilla RNN the JSLDS does not seem to dramatically 
change the fixed point solution, although as observed in the main paper it still significantly improves 
the linearized approximation of the dynamics. 
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Context
(motion or color)

Figure A.3: Context-dependent integration for standard vanilla RNN (no JSLDS co-training) A. One 
of two white-noise input streams (motion or color) is selected to be integrated based on a static 
context input. The other stream is ignored. B. Sample held-out trial outputs and targets. C. Typical 
eigenvalues at a sample fixed point (found numerically) for motion (red x’s) and color (blue dots) 
contexts. D-J. The RNN states (averaged) and fixed points are projected into the subspace spanned 
by the axes of choice, motion, and color. Movement along the choice axis represents integration of 
evidence and the relevant input stream deflects along the relevant input axis. The input axes of E,F,G 
have been intensified. The trials used in F and G are the same trials as D-E and H-I, respectively, but 
re-sorted and averaged according to the direction and strength of the irrelevant input. The fixed points 
were computed separately for motion (red x’s) and color contexts (orange x’s). J. Global arrangement 
of the selection vectors (green lines) and line attractor fixed points for both contexts projected onto 
the input axes. Inputs are selected by the selection vector (which is approximately orthogonal to the 
contextually irrelevant input) and integrated along the line attractor. 
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A.5 Monkey reach task 

A.5.1 Experimental details 
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Figure A.4: The LFADS-JSLDS architecture. The JSLDS-RNN system is used as the generator. 
After training, the model can produce firing rates from either the JSLDS or RNN generator. 

The data consists of 2296 trials of spiking activity recorded from 202 neurons simultaneously while a 
monkey made reaching movements during a maze task across 108 reaching conditions. The analyzed 
trials were 900-ms long and to train the model we used a bin size of 5 ms. 

For the LFADS-JSLDS model (Fig. A.4), we used a 100 unit GRU for the RNN in the generator. To 
train LFADS-JSLDS, one simply includes the JSLDS loss function in the LFADS loss. We used the 
Adam optimizer with default settings. See Table 3 for important hyperparameter settings. 

Table 3: Hyperparameters used in monkey reach task 

Model LFADS-JSLDS LFADS 

RNN type GRU GRU 
Generator Dimension 100 100 
Encoder Dimension 100 100 
Factors Dimension 40 40 
Keep probability .98 .98 
Bin size 5 5 
Batch size 128 128 
Initial learning rate .05 .05 
L2 regularization 2.0e-2 2.0e-2 
Expansion network layers 2 n/a 
Expansion network units/layer 100 n/a 
Expansion network activation tanh n/a 
λRNN 1.0 n/a 
λJSLDS 1.0 n/a 
λe 100.0 n/a 
λa 20.0 n/a 

A.5.2 Subspace Analysis 

We perform a subspace analysis to compare the JSLDS analysis to a jPCA analysis. The jPCA 
method finds linear combinations of principal components that capture rotational structure in data. 
Through a series of steps, it finds a transformation between a neural system at each timestep and its 
temporal derivative. The subspace angle refers to the angle between the planes defined by the top 
principal components from the jPCA analysis and the planes defined by the top JSLDS eigenvectors. 
To be concrete, associated with each conjugate pair of complex eigenvalues from the jPCA analysis 
is a conjugate pair of principal components that define a plane. Analogously, for each of the top 
complex pairs of eigenvalues from the JSLDS dynamics matrix, a corresponding conjugate pair of 
complex eigenvectors also define a plane. The subspace angle measures how similar these planes are 
and can be used to match up the corresponding jPCA eigenvalues (constrained to be complex) and the 
JSLDS eigenvalues. This is the connection displayed in Figure 4E. The fact that the top eigenvalues 

8 



of the JSLDS match up with the corresponding jPCA eigenvalues indicates our method is working 
correctly. 

A.5.3 LFADS experiment performed without JSLDS 

We also compared the fixed point solution for the LFADS model trained without the JSLDS co-
training. We trained the LFADS with the exact same hyperparameters as the LFADS-JSLDS except 
without the JSLDS co-training related terms. We observed this setup also learned a single linear 
system (Fig. A.5). So it seems in this case the JSLDS co-training did not have a significant effect on 
the fixed point solution. 

0 1
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Im

Figure A.5: Eigenvalues of the trained LFADS (without JSLDS co-training) RNN generator’s 
Jacobian at its single fixed point. 

A.6 NeurIPS Checklist 

1. For all authors... 

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 
contributions and scope? [Yes] 

(b) Did you describe the limitations of your work? [Yes] 
(c) Did you discuss any potential negative societal impacts of your work? [N/A] See 

broader impact statement. 
(d) Have you read the ethics review guidelines and ensured that your paper conforms to 

them? [Yes] 

2. If you are including theoretical results... 

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 
(b) Did you include complete proofs of all theoretical results? [N/A] 

3. If you ran experiments... 

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We have linked 
to a github repository containg the code and two Google Colab notebooks that walk 
through the model for the synthetic tasks. We are unable to provide the monkey data as 
it is proprietary. 

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they 
were chosen)? [Yes] See Appendix. 

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] 

(d) Did you include the total amount of compute and the type of resources used (e.g., type 
of GPUs, internal cluster, or cloud provider)? [Yes] This information is available in the 
included Colab notebooks 
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets... 
(a) If your work uses existing assets, did you cite the creators? [Yes] 
(b) Did you mention the license of the assets? [N/A] 
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] 
(d) Did you discuss whether and how consent was obtained from people whose data you’re 

using/curating? [N/A] 
(e) Did you discuss whether the data you are using/curating contains personally identifiable 

information or offensive content? [N/A] 
5. If you used crowdsourcing or conducted research with human subjects... 

(a) Did you include the full text of instructions given to participants and screenshots, if 
applicable? [N/A] 

(b) Did you describe any potential participant risks, with links to Institutional Review 
Board (IRB) approvals, if applicable? [N/A] 

(c) Did you include the estimated hourly wage paid to participants and the total amount 
spent on participant compensation? [N/A] 
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