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ABSTRACT

Self-supervised pre-trained audio networks have seen widespread adoption in real-
world systems, particularly in multi-modal large language models. These net-
works are often employed in a frozen state, under the assumption that the self-
supervised pre-training has sufficiently equipped them to handle real-world audio.
However, a critical question remains: how well do these models actually perform
in real-world conditions, where audio is typically polyphonic and complex, in-
volving multiple overlapping sound sources? Current audio self-supervised learn-
ing (SSL) methods are often benchmarked on datasets predominantly featuring
monophonic audio, such as environmental sounds, and speech. As a result, the
ability of SSL models to generalize to polyphonic audio, a common character-
istic in natural scenarios, remains underexplored. This limitation raises con-
cerns about the practical robustness of SSL models in more realistic audio set-
tings. To address this gap, we introduce Self-Supervised Learning from Audio
Mixtures (SSLAM), a novel direction in audio SSL research, designed to improve
the model’s ability to learn from polyphonic data while maintaining strong per-
formance on monophonic data. We thoroughly evaluate SSLAM on standard
audio SSL benchmark datasets which are predominantly monophonic and con-
duct a comprehensive comparative analysis against state-of-the-art (SOTA) meth-
ods using a range of high-quality, publicly available polyphonic datasets. SS-
LAM not only improves model performance on polyphonic audio, but also main-
tains or exceeds performance on standard audio SSL benchmarks. Notably, it
achieves up to a 3.9% improvement on the AudioSet-2M(AS-2M), reaching a
mean average precision (mAP) of 50.2. For polyphonic datasets, SSLAM sets
new SOTA in both linear evaluation and fine-tuning regimes with performance
improvements of up to 9.1%(mAP). These results demonstrate SSLAM’s effec-
tiveness in both polyphonic and monophonic soundscapes, significantly enhancing
the performance of audio SSL models. Code and pre-trained models are available
at https://github.com/ta012/SSLAM.

1 INTRODUCTION

Self-supervised learning (SSL) has significantly advanced various domains by leveraging large vol-
umes of unlabeled data to pre-train models effectively. In the audio domain, SSL has enabled models
to achieve state-of-the-art (SOTA) performance (Gong et al., 2022; Chong et al., 2023; Huang et al.,
2022a; Chen et al., 2022; Ahmed et al., 2024; Chen et al., 2022), particularly with the integration
of transformer architectures (Dosovitskiy et al., 2020). Pre-trained audio models are extensively
used in real-world applications, such as audio-visual segmentation (Liu et al., 2023; Park et al.,
2024; Labb et al., 2024), audio captioning (Labb et al., 2024) etc. Recently, they have also been
increasingly integrated into multi-modal models, particularly in multi-modal large language models
(LLMs) (Zhang et al., 2023; Tang et al., 2023; Zhao et al., 2023; Panagopoulou et al., 2023). These
models are often utilized in a frozen state, where a projection layer is added on top of the pre-trained
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backbone to interface with systems like LLMs. In this setup, only the projector is trained, based
on the assumption that the pre-trained audio models are capable of handling real-world polyphonic
audio scenarios. However, the audio SSL methods are rarely evaluated for polyphonic scenarios.

Unlike monophonic audio, which features a single sound source, polyphonic audio involves audi-
tory environments with overlapping sounds, such as musical ensembles, multi-speaker settings, or
diverse natural soundscapes, like traffic and park noises. Although the term “polyphony” is often
associated with music, we use it here in a broader sense to describe any audio scene with multi-
ple concurrent sources. Given that much real-world audio is inherently polyphonic, it is essential
for audio encoder representation learning to account for this complexity. While one might argue
that pre-training with AudioSet (Gemmeke et al., 2017), a dataset containing multi-label samples
should be adequate, it is crucial to recognize that many of the audio files in AudioSet are not truly
polyphonic (refer to detailed analysis in Appendix B.1). Instead, these files often carry multiple
labels that describe different facets of a single sound event with only a proportion of dataset being
actually polyphonic. For example, a recording labeled as ’Carnatic music’, ’Music’, ’Musical in-
strument’, and ’Classical music’ all refer to the same audio event. This labeling approach does not
fully encompass the complexity and richness of authentically polyphonic audio.

Given the intuitive nature of audio mixing, it would seem natural for it to serve as a standard pre-
text task in SSL for audio. However, this approach remains underexplored for self-supervised pre-
training. Beyond its potential as a pretext task, incorporating audio mixtures into SSL offers several
key advantages. First, it establishes a flexible framework for learning invariant representations that
are robust to noise and generalizable across a wide range of tasks, whether involving monophonic
or polyphonic audio data. Additionally, mixing audio allows for the creation of synthetic data from
existing datasets, significantly increasing the diversity of training examples. This enhanced va-
riety fosters richer learning signals, enabling the development of stronger and more semantically
meaningful representations. Despite these strengths, audio mixing in SSL is still an underutilized
approach, leaving substantial room for further exploration.

Downstream Task
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Figure 1: Overview of the components in our proposed audio SSL pre-training on unlabeled data
and the audio event tagging downstream task (T: Teacher encoder, S: Student encoder). (A): Masked
Latent Bootstrapping (self-distillation where the teacher is the exponentially moving average of
the student) with unmixed audio (baseline). (B): Masked Latent Bootstrapping with mixed audio.
(C): Source retention loss to preserve the distinct characteristics of individual audio sources. (D):
Overview of the audio event tagging downstream task.

To address this limitation, we introduce SSLAM, a novel self-supervised pre-training strategy de-
signed to enhance the ability of transformer-based models to learn from polyphonic data. In our
approach, the student model receives mixed audio inputs, where multiple audio signals are ran-
domly combined to form a polyphonic signal. Since this is a self-supervised learning method, we
do not know in advance whether the selected audios are monophonic or polyphonic, meaning that
the resulting audio can be either a mixture or even a mixture of mixtures. Concurrently, the teacher
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model processes the same audio sources separately, averaging their features at the output of the
teacher model. The student model’s output is then compared to the teacher’s aggregated features,
enabling a robust learning mechanism that better adapts to polyphonic scenarios (refer to Figure 1).

We evaluate the proposed SSLAM on standard audio SSL benchmark datasets, including event
tagging tasks covering a range of sounds, e.g. environmental sound and speech, achieving state-of-
the-art performance across all categories. Furthermore, we integrate publicly available polyphonic
datasets into the evaluation pipeline to assess the model’s robustness in handling complex, real-world
audio scenarios. We demonstrate substantial improvements in handling polyphonic audio, with our
method consistently outperforming prior approaches in real-world polyphonic audio scenarios.

In summary, our contributions include:

1. The introduction of audio mixtures for the self-supervised pre-training, enabling the network to
better adapt to real-world polyphonic audio environments.

2. A novel source retention loss, which explicitly preserves the individual characteristics of each
audio source within the mixture. By encouraging the network to recognize and retain the distinct
features of each input, this loss function ensures the integrity of each source, even when multiple
sources are combined.

3. A comprehensive evaluation of our model on major audio SSL benchmark datasets, demonstrating
SOTA performance across general audio and speech tasks compared to prior approaches.

4. Extensive evaluation of the model’s polyphonic capabilities using several polyphonic datasets,
demonstrating substantial improvements in handling real-world polyphonic audio compared to ex-
isting methods.

2 RELATED WORK

Masked latent bootstrapping. Several works (Baade et al., 2022; Chong et al., 2023; Niizumi
et al., 2022; Baevski et al., 2022; Gong et al., 2022; Ahmed et al., 2024) have explored various
strategies for masking specific regions of the spectrogram, with pre-training primarily focused on
reconstructing the masked regions within the spectrogram space. Although this approach has shown
promise, other studies have questioned whether spectrogram reconstruction is the most effective
method. For instance, Chen et al. (2022) introduced the prediction of patch-level discrete labels
generated by acoustic tokenizers instead of reconstructing the spectrogram. Another approach is
predicting target masked latent features that capture higher-level, semantically meaningful infor-
mation about the audio rather than focusing on low-level spectrogram reconstruction. Bootstrap-
ping via EMA teacher-based self-distillation (Grill et al., 2020; Niizumi et al., 2021) is an effective
exponential moving average (EMA) approach for generating target representations. Works such
as Baevski et al. (2022; 2023); Fei et al. (2024); Chen et al. (2024) are based on the concept of
masked latent bootstrapping. In particular, Baevski et al. (2022; 2023); Chen et al. (2024) gen-
erate target representations by averaging outputs from multiple layers of the teacher model within
an EMA-based self-distillation framework. This approach captures both high-level and low-level
information, rather than relying solely on the final layer, leading to richer representations.

Polyphonic data modeling. Abeßer et al. (2023) analyzed supervised audio networks such as
PANN Kong et al. (2020) and PaSST Koutini et al. (2021) on low-degrees polyphony (2 events)
created using ESC-50 (Piczak, 2015). Salamon et al. (2017) introduced the Scaper library to
create polyphonic datasets, with URBAN-SED (Salamon et al., 2017) demonstrating its poten-
tial. The IDMT-DESED-FL (Johnson et al., 2021) dataset was created using DESED (Turpault
et al., 2019) using Scaper. SPASS is a relatively high-quality dataset created using tools such as
RAVEN (Schröder, 2011), using monophonic source datasets like ESC-50 and UrbanSound8K (Ar-
nault et al., 2020). Networks trained with SPASS outperformed those trained on AudioSet, raising
the question of whether addressing polyphony requires solely the creation of more high-quality data,
or if model development should also be considered. However, to the best of our knowledge, none of
the widely used audio SSL models incorporate specific design choices or training objectives aimed
at addressing the challenges posed by polyphonic data.
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3 METHODOLOGY

In this section, we outline the core components of our framework, starting with the baseline model
in Section 3.1. Following, we describe the integration of audio mixtures into our SSL framework in
Section 3.2, beginning with an explanation of the audio mixing strategies used to generate mixtures
and pre-training the baseline model with these mixtures in Section 3.2.1. This is followed by
the discussion of our proposed source retention loss, Section 3.2.2, which preserves individual
source characteristics within the mixtures. Finally, we introduce our unified framework in Section
3.3, which efficiently integrates all components into a cohesive model, enabling robust learning in
polyphonic as well as monophonic audio scenarios.

3.1 BASELINE MODEL: MASKED LATENT BOOTSTRAPPING

Our baseline leverages masked latent bootstrapping, an SSL paradigm that combines the concept
of bootstrapping (Niizumi et al., 2021; Ahmed et al., 2024), spectrogram masking (Huang et al.,
2022b; Baade et al., 2022), and the prediction of masked tokens in the feature space (Fei et al., 2024;
Baevski et al., 2022; 2023). Approaches like Baevski et al. (2022; 2023); Chen et al. (2024) effec-
tively combine these techniques, enabling the capture of rich contextual representations of audio
data. We adopt this paradigm as the foundation of our method, aiming to enhance its performance
in complex, polyphonic environment. Below, we outline the key steps of our baseline framework.

First, the input spectrogram S undergoes patchification (Gong et al., 2021), where S is divided into
fixed-size, non-overlapping time-frequency patches. To introduce a self-supervised objective, we
employ inverse block multi-masking (Baevski et al., 2023; Chen et al., 2024) with a non-masking
block size of (5×5), where multiple masked versions of the spectrogram are generated by randomly
dropping 80% of the patches from each version. A classification token (CLS) is then appended to
each masked spectrogram, which is then passed through the student encoder. The student encoder
processes these masked spectrograms and outputs an encoded representation Ẑ, with the CLS to-
ken’s representation denoted as ẐCLS. Following, random tokens are inserted in place of the masked
tokens in the encoded representation and fed to a light-weight CNN-based decoder to predict the
representations of the masked tokens, producing the student’s patch-level outputs Ŷ patch.

To guide the student model during training, we employ a momentum-based teacher encoder that
processes the original, unmasked spectrogram. The teacher encoder’s outputs are averaged across
all layers to generate target representations Z for the student encoder.

The training objective consists of two loss functions. First, a global loss ensures that the student
model captures the overall structure of the audio signal as its mean square error (MSE):

Lglobal =
1

B × nMC

B∑
i=1

nMC∑
j=1

(
ẐCLS
{i,j} − ZCLS

i

)2
(1)

where B is the batch size, nMC is the number of multi-mask copies, and ZCLS is the spatially pooled
output of Z. Second, local loss facilitates fine-grained understanding, as below:

Llocal =
1

B × nMC × |M|

B∑
i=1

nMC∑
j=1

∑
k∈M

(
Ŷ Patch
{i,j,k} − Z{i,k}

)2
(2)

whereM is the set of masked tokens.

3.2 SSLAM: SELF-SUPERVISED LEARNING FROM AUDIO MIXTURES

In this work, we introduce two key innovations to enhance self-supervised learning for audio. First,
the introduction of audio mixtures in the SSL setting, enabling the network to better adapt to real-
world polyphonic audio environments (Section 3.2.1). To complement this, we propose a novel
source retention loss that explicitly preserves the individual characteristics of each audio source
within the mixture. By encouraging the network to recognize and retain the distinct features of
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Figure 2: Illustration of novel contributions in SSLAM. The left side demonstrates the partial mix-
ing of two audio log-mel spectrograms, while the right side visualizes the proposed novel training
objectives. SG denotes the stop gradient operation applied during training.

each input, this loss function ensures the integrity of each source, even when multiple sources are
combined (Section 3.2.2).

3.2.1 MASKED LATENT BOOTSTRAPPING USING AUDIO MIXTURES

Building on the same architecture as our baseline model, we introduce a key modification: instead
of feeding the student and teacher networks a spectrogram derived from a single audio source, we
provide an audio mixture spectrogram. This adjustment introduces additional complexity to the
learning process.

Audio mixing can be performed either in the waveform or the spectrogram domain. Through our
experiments, we found that performing the mix in the spectrogram domain yielded superior per-
formance (refer to Appendix E.0.1). Specifically, we apply an element-wise max operation to
the log-mel spectrograms of two audio signals to create an audio mixture. This technique is in-
spired by principles from Computational Auditory Scene Analysis (CASA), particularly the Ideal
Binary Mask (IBM) (Wang, 2005), which retains the most dominant time-frequency components
of overlapping signals. By using the element-wise max operation, we ensure that the most promi-
nent time-frequency features from each source are preserved, similar to how the IBM prioritizes
target-dominant regions to enhance separation and intelligibility. To formalize this, let S1(f, τ) and
S2(f, τ) represent the log-mel-spectrograms of two audio signals, where f denotes mel frequency
bins and τ denotes time frames. The mixed log-mel spectrogram Smixed(f, τ) is then computed using
the element-wise maximum operation at each time-frequency bin, as follows:

Smixed(f, τ) = max (S1(f, τ), S2(f, τ)) , ∀f, τ. (3)

We include sample visualizations of this approach in Appendix E.0.3. Further, additional experi-
mental results and analysis related to this approach are provided in the Appendix E.

Mixing vs Partial Mixing. To achieve a balance between introducing novel audio events and pre-
serving the main audible concepts within the original signal, we implement partial audio mixing.
Instead of applying mixing across the entire audio clip, only a fraction of the audio duration is
mixed. For an audio clip of length t, mixing is applied to 3 distinct regions, covering a total duration
of t/2. while the original audio is preserved in the remaining 2 × t/4 duration (refer to Figure 2,
left). By limiting the extent of mixing, we avoid overwhelming the original content, thus preserving
key audio characteristics while still benefiting from the additional variability introduced by the mix-
ing. This strategy maintains a balance between retaining essential audio features and introducing
new information, ultimately leading to enhanced performance in polyphonic audio tasks.

As for the loss functions, a key modification we made when incorporating partially mixed audios
into the baseline model involves the selection of teacher layers for the target representation. In the
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baseline, the global loss function Lglobal and the local loss function Llocal, use the average of all 12
teacher encoder layers to form the target representation. However, with the added complexity from
mixing multiple audio sources, averaging over the 12 layers then spatial pooling can potentially lead
to excessive information compression, limiting the model’s ability to capture meaningful global
representations. To address this, we used only the final layer’s output for the global loss, denoted as
Lglobal,mixed (refer to Table 6) . For local loss Llocal,mixed we used all 12 layers . It is worth to note,
the optimal selection of teacher layers (top-k) may vary across modalities, as observed in Baevski
et al. (2022).

3.2.2 SOURCE RETENTION LOSS (SRL)

To improve the model’s ability to learn and retain distinct concepts from mixed audios, we introduce
an additional loss function, termed Source Retention Loss (SRL). This loss encourages the model to
capture the characteristics from each audio source within a mixture.

The process begins by feeding the student model with the mixed audio Smixed, as previously de-
scribed in Section 3.2.1. The student model generated representations for the mixed audio patches,
which are then fed to the decoder to obtain Ŷ patch, mixed.

Next, the teacher model separately processes Audio 1 spectrogram S1 and Audio 2 spectrogram S2.
Note that, we discard the tokens from S1 that correspond to the unmixed regions in the partially
mixed audio before passing it through the teacher model, ensuring that the teacher processes only
the relevant mixed segments.

The target for the student model is created by averaging the representations produced by the teacher
for S2 and the processed portions of S1. Finally, we employ MSE as the loss function, defined as
follows:

LSRL =
1

B × nMC × |M|

B∑
i=1

nMC∑
j=1

∑
k∈M

(
Ŷ patch, mixed
(i,j,k) −

(
ZS2

(i,k) + ZS1

(i,k)

2

))2

(4)

This method encourages the network to learn multiple concepts at a granular level, thereby improv-
ing its performance in real-world polyphonic scenarios.

3.3 UNIFIED LEARNING FRAMEWORK

In this section, we detail how we efficiently integrate the training objectives discussed in the previous
sections to construct the SSLAM framework. Our approach ensures that each objective contributes
to the overall learning process without introducing unnecessary computational overhead.

To recap, the methodology consists of five objectives, The global loss for unmixed audio
Lglobal,Unmixed captures high-level representation, while the local loss for unmixed audio Llocal,Unmixed
focuses on fine-grained details. For mixed audio, the global loss Lglobal,mixed helps the model to
understand the overall structures in combined sources, and the local loss Llocal,mixed understands
overlapping sounds at a granular level. Finally, the source retention loss LSRL ensures that distinct
characteristics of each source are preserved in the mixed audio. For clarity, Figure 2 highlights only
the novel contributions of our SSLAM framework.

To train the model, we first pre-train it using only unmixed audio using the Lglobal,Unmixed and
Llocal,Unmixed loss functions. This step allows the network to learn foundational representations of
distinct audio events and establish robust feature extraction capabilities without the added complex-
ity of mixed signals. We refer to this as “Stage 1”.

After this, in “Stage 2”, the model is trained on a combination of partially mixed audio (half the
batch) and unmixed audio (the other half), utilizing all five losses. This two-stage training approach
allows the model to progressively develop the capacity to handle more complex polyphonic audio.
The inclusion of all five training objectives in “Stage 2” is motivated as follows: Using unmixed
audio based training objectives enhances the robustness of our approach on monophonic datasets
(refer to Appendix D) while enabling the network to learn foundational representations enabling
robust feature extraction capability without the added complexity of mixed signals. Incorporat-
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ing mixed audio based training objectives exposes the model to diverse polyphonic data, thereby
improving its performance on polyphonic tasks. Additionally, the source retention loss (SRL), ef-
fectively computed by leveraging the two mixed and unmixed halves of the batch, explicitly ensures
that the representation of mixed audio stays true to its source components. This further enhances the
network’s ability to understand polyphonic audio.

Finally, these objectives are efficiently incorporated into the SSLAM framework as follows:

Algorithm 1 Efficient Incorporation of Training Objectives

1: Input: A batch of log-mel spectrograms B
2: Step 1: Create a partially mixed batch Bm by rolling and mixing B along the batch dimension.
3: Step 2: Concatenate B and Bm to form a combined batch 2B.
4: Step 3: Forward 2B through the student and teacher networks, reducing the number of multitask

clones from 16 to 8 for consistency with the baseline.
5: Step 4: For SRL, mask and drop unmixed regions in B post-positional embedding and forward

the result to the teacher.
6: Step 5: Compute the five training objectives using the relevant parts of the batches.

This process enables the seamless integration of both unmixed and partially mixed audio, along
with their respective training objectives, ensuring SSLAM’s adaptability and effectiveness across
both monophonic and polyphonic audio datasets.

4 EXPERIMENTS

4.1 DATASETS

For pre-training, we utilized the AS-2M dataset without any label information. For downstream
evaluation, we employed various audio SSL benchmark datasets, including AS-2M, AS-20K, ESC-
50, KS1, and KS2, as well as polyphonic datasets such as SPASS, IDMT-DESED-FL, and URBAN-
SED. More information about these datasets can be found in Appendix B.

4.2 IMPLEMENTATION DETAILS

Patchification and Positional Encoding. In the SSLAM framework, input spectrograms are di-
vided into non-overlapping patches using a CNN layer with a kernel size of (16,16) and a stride
of 16, followed by the addition of positional encoding to retain information about the order of the
patches.

Encoder. We used ViT-Base model (Dosovitskiy et al., 2020) for both the student and teacher
encoders. The teacher model is an Exponential Moving Average (EMA) version of the student
model. The teacher’s parameters, θt, are updated according to the EMA rule:

θt ← τθt + (1− τ)θs (5)

where θs represents the student model’s parameters. Initially, the momentum term τ is set low to
allow greater flexibility during early training. As training progresses, τ gradually increases toward
1, ensuring more stable updates and convergence between the student and teacher models.

Decoder. To decode the masked patches, we employ a lightweight 6-layer network comprising 2D
CNN layers, LayerNorm, and GELU activation.

The total number of parameters used was 93M during pre-training and 88M during fine-tuning.

4.3 PRE-TRAINING DETAILS

Pre-Training. For pre-training we used only the AS-2M dataset. Input waveforms were uniformly
resampled to 16kHz and transformed into 128-dimensional mel-frequency bands using a 25ms Han-
ning window and a 10ms hop size.

7



Published as a conference paper at ICLR 2025

Stage 1: The model was initialized from scratch and trained for 10 epochs using training objectives
Lglobal,Unmixed and Llocal,Unmixed as described in Section 3.3.

Stage 2: The model was initialized with the pre-trained weights from Stage 1 and further trained for
5 epochs using all the training objectives outlined in Section 3.3.

All pre-training experiments were conducted on 4× Nvidia 3090 GPUs, with each epoch taking 7
hours in Stage 1 and 7.5 hours in Stage 2.

Component-wise analysis of SSLAM framework. To better understand the contribution of each
component in helping the model in understanding polyphonic audio, we developed four variants of
our approach, incrementally building the SSLAM framework during Stage 2 of pre-training. These
variants are as follows: 1.Masked latent bootstrapping using unmixed audio (MB-UA): uses only
Lglobal,Unmixed and Llocal,Unmixed. 2.Masked latent bootstrapping using partially mixed audio (MB-
PMA): uses Lglobal,mixed and Llocal,mixed. 3.Masked latent bootstrapping using unmixed and partially
mixed audio (MB-UA-PMA): uses Lglobal,Unmixed, Llocal,Unmixed,Lglobal,mixed and Llocal,mixed. 4. Source
Retention Loss + Masked latent bootstrapping using unmixed and partially mixed audio (SSLAM):
This final variant integrates the source retention loss with the other training objectives.

For a fair comparison, we pre-trained all four models on the AS-2M dataset with a batch size of 48
for 5 epochs as part of Stage 2 pre-training (refer to the AppendixA for further details). We evaluate
how performance varies across various polyphonic soundscape datasets (refer to Table 2), including
AS-20K, and across different degrees of polyphony (refer to Table 3).

Downstream Task Training. We conducted a comparative analysis of our approach on standard au-
dio SSL benchmark datasets, alongside prior methods (refer to Table 1). To further assess polyphony
handling, we evaluated the model on different polyphonic datasets as discussed before (refer to Ta-
ble 2.) All downstream tasks, except for AS-2M, were trained using 1× Nvidia 3090 GPU, while
AS-2M used 1× Nvidia A100 GPU (refer to Appendix A for further details).

4.4 EVALUATION CRITERION

Fine-tuning. We assess the effectiveness of our proposed approach by fine-tuning, where the entire
network is trained on downstream tasks with labeled data.

Linear evaluation. We use linear evaluation (also referred to as linear probing) to better assess
the quality of the representations learned through self-supervised learning. In this method, a lin-
ear classifier is trained on top of the frozen pre-trained representations, preventing the rest of the
network from updating. This provides a clearer measure of the intrinsic quality of the learned fea-
tures, without task-specific adaptation, making it a more reliable evaluation of SSL performance than
fine-tuning. Moreover, since pre-trained networks are often used in a frozen state in real-world ap-
plications, linear evaluation offers a more practical and insightful assessment of the model’s general
utility across diverse tasks.

5 PERFORMANCE DISCUSSION

Audio SSL benchmark datasets. Our approach demonstrated significant performance improve-
ments across most audio SSL benchmark datasets (refer to Table 1), with a notable gain of 3.9%
relative improvement over the previous state-of-the-art on AS-2M, reaching a mAP of 50.2. Among
the purely monophonic datasets, such as ESC-50, KS2, and KS1, our model demonstrated compa-
rable performance to the SOTA, which varies across different datasets. This underscores the univer-
sality and robustness of our approach, as it performs consistently across a variety of monophonic
and general audio datasets.

Polyphonic audio datasets Overall, both Table 2 and Table 3 demonstrate that incorporating par-
tially mixed data (MB-PMA) consistently improves performance compared to the baseline MB-UA.
These results highlight that our mixing strategy, by exposing the model to mixed audio, increases its
access to diverse polyphonic data that AudioSet alone cannot sufficiently provide. The slight perfor-
mance decrease seen in MB-UA-PMA is expected, as only half the batch is used for partially mixed
data to accommodate the unmixed data. However, this design is crucial for handling both types
of data within the framework and for the efficient integration of the SRL, which ultimately enables
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Table 1: Evaluation on audio SSL benchmark datasets compared to previous methods. The pre-
training datasets include AudioSet (AS), and LibriSpeech (LS). To enhance clarity, methods utilizing
additional supervised training on external datasets are grayed out. For AS-2M and AS-20K, mean
average precision (mAP) is used as the evaluation metric, while classification accuracy is reported
for all other datasets. For more details about the datasets refer to Appendix B.0.1.

Model #Param Pre-training Audio Speech
Data AS-2M AS-20K ESC-50 KS2 KS1

SS-AST (Gong et al., 2022) 89M AS+LS - 31.0 88.8 98.0 96.0
MAE-AST (Baade et al., 2022) 86M AS+LS - 30.6 90.0 97.9 95.8
MaskSpec (Chong et al., 2023) 86M AS 47.1 32.3 89.6 97.7 -
MSM-MAE (Niizumi et al., 2022) 86M AS - - 85.6 87.3 -
data2vec (Baevski et al., 2022) 94M AS - 34.5 - - -
Audio-MAE (Huang et al., 2022a) 86M AS 47.3 37.1 94.1 98.3 96.9
BEATsiter3 (Chen et al., 2022) 90M AS 48.0 38.3 95.6 98.3 97.7
BEATsiter3+ 90M AS 48.6 38.9 98.1 98.1 98.1
ASiT (Ahmed et al., 2024) 86M AS 48.0 38.6 95.3 98.9 98.2
A-JEPA (Fei et al., 2024) 86M AS 48.6 38.4 96.3 98.5 97.7
EAT (Chen et al., 2024) 88M AS 48.6 40.2 95.9 98.3 -
SSLAM (Ours) 88M AS 50.2 40.9 96.2 98.1 98.8

Table 2: Impact of individual novel contributions evaluated across various polyphonic datasets. All
performances are reported in mAP. For more details about the datasets refer to Appendix B.0.2.

Model SPASS IDMT URBAN AS-20K
Square Park Waterfront Street Market DESED SED

Linear Evaluation
MB-UA 60.1 59.7 55.2 63.7 62.8 75.8 71.3 13.9
MB-PMA (Ours) 63.1 63.5 58.5 66.5 67.4 78.4 70.9 16.1
MB-UA-PMA (Ours) 62.7 63.5 58.2 66.6 66.6 77.7 70.9 15.2
SSLAM (Ours) 64.2 64.2 59.5 67.4 68.5 77.8 71.4 16.9
Fine-tuning
MB-UA 84.4 78.4 80.1 81.4 89.7 94.4 90.9 40.4
MB-PMA (Ours) 85.1 80.0 82.0 82.2 90.8 94.4 90.9 40.6
MB-UA-PMA (Ours) 85.0 79.7 82.0 82.2 90.5 94.4 90.9 40.7
SSLAM (Ours) 85.6 80.5 82.6 82.2 90.2 94.5 90.9 40.9

SSLAM to surpass all other models, achieving a performance improvement of up to 9.1% on SPASS
(Market). The performance gap is particularly evident in the linear evaluation setting, suggesting
that our contributions have enabled SSLAM to learn representations that generalize more effectively
to polyphonic data compared to other approaches. Upon examining the tables individually, Table 2
shows that the proposed approach consistently outperforms the baseline across all datasets, achiev-
ing improvements of up to 9.1%, with a significant jump of 21.6% in AS-20K. In Table 3, although
performance slightly decreased for lower polyphony level ({2,3}) in the linear evaluation setting,
and the fine-tuning improvements were marginal, the performance gap widened as we moved to
medium and higher polyphony levels, reaching up to 9.7% ({8,9}).
Additional ablations. As we have already analyzed the relevance of each of the components of
the approach previous section, here we discuss additional ablations related to our approach. All the
experiments discussed in this section are evaluated on downstream task AS-20K in the fine-tuning
regime. The following are our observations. We observed that top k for teacher layer averaging is 1
for global loss and 12 for local loss (refer to Table 6); in regard to the extent of spectrogram mixing,
partial mixing was found to be better than full mixing (refer to Table 4); as local loss contributed
the foundation of the mask latent boostrapping approach, we investigated the effect of global loss
with unmixed data, mixed data and SRL. Our experiment showed that everywhere except SRL, the
global loss showed performance improvement (refer to Table 5).
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Table 3: Evaluation on the Degrees of polyphony dataset: Assessing the impact of various individual
contributions across different polyphony levels. {a,b} denotes a data subset where audio files contain
a or b distinct sound events. All performances are reported in mAP. For more details about the
datasets refer to Appendix B.0.2.

Model
Number of Distinct sound events

Unmixed Partial SRL {2,3} {4,5} {6,7} {8,9} {10,11} {12,13} {14+}Data Mixed Data
Linear Evaluation
MB-UA ✓ ✗ ✗ 61.5 69.4 45.8 53.5 58.3 61.6 66.7
MB-PMA (Ours) ✗ ✓ ✗ 58.6 70.0 50.7 57.2 61.3 64.8 67.6
MB-UA-PMA (Ours) ✓ ✓ ✗ 58.2 70.0 49.8 56.9 61.1 64.7 67.9
SSLAM (Ours) ✓ ✓ ✓ 60.6 70.6 53.2 58.7 63.0 66.1 69.7
Fine-tuning
MB-UA ✓ ✗ ✗ 87.3 86.5 69.5 81.5 82.5 80.7 78.1
MB-PMA (Ours) ✗ ✓ ✗ 87.3 86.9 71.4 83.0 83.4 82.0 79.3
MB-UA-PMA (Ours) ✓ ✓ ✗ 87.2 86.4 70.3 82.7 83.4 81.8 78.8
SSLAM (Ours) ✓ ✓ ✓ 87.7 86.9 71.9 83.3 83.8 82.2 79.4

Table 4: Comparison of partial vs. full mixing of mel-spectrograms via element wise max operation,
evaluated across Stage 1 and Stage 2 of our curriculum. All models are exclusively trained with the
specified data, e.g. models with tag “mixed audio” were trained solely on batches of mixed audio.

Model mAP
Finetuning
Stage 1 with unmixed audio 40.2
Stage 1 with mixed audio 39.0
Stage 1 with mixed audio 75% of updates 39.4
Stage 1 with partial mixed audio 39.9
Stage 2 with unmixed audio 40.4
Stage 2 with mixed audio 75% of updates 40.4
Stage 2 with partial mixed audio 40.6

Table 5: Effect of global loss

Local loss Global loss AS-20KUM PM SRL UM PM SRL
✓ ✓ ✓ ✗ ✗ ✗ 40.4
✓ ✓ ✓ ✓ ✗ ✗ 40.7
✓ ✓ ✓ ✓ ✓ ✗ 40.9
✓ ✓ ✓ ✓ ✓ ✓ 40.6

Table 6: Top k layers

Model mAP
Fine-tuning
Global:12, Local:12 40.5
Global:1, Local:12 40.6
Global:3, Local:3 39.3
Global:1, Local:3 39.4
Global:1, Local:1 38.8

6 CONCLUSION

Despite the rapid advancements in audio self-supervised learning (SSL) over recent years, the abil-
ity of audio SSL models to effectively handle polyphonic audio remains underexplored. This is a
significant concern, as most real-world sounds are inherently polyphonic. In this work, we proposed
the SSLAM framework, an audio SSL pre-training approach aimed at enhancing the model’s ability
to handle polyphonic audio, while maintaining strong performance on monophonic data. The frame-
work enables the model to learn from audio mixtures employing novel training objectives, including
the Source Retention Loss. Additionally, we expanded the existing audio SSL benchmarks, which
have predominantly focused on monophonic datasets, by incorporating diverse polyphonic datasets.
Our proposed approach demonstrated state-of-the-art performance on both traditional audio SSL
benchmark datasets and the newly included polyphonic datasets.
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Khaled Koutini, Jan Schlüter, Hamid Eghbal-Zadeh, and Gerhard Widmer. Efficient training of
audio Transformers with patchout. arXiv preprint arXiv:2110.05069, 2021.

Etienne Labb, Thomas Pellegrini, Julien Pinquier, et al. Conette: An efficient audio captioning
system leveraging multiple datasets with task embedding. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2024.

Chen Liu, Peike Patrick Li, Xingqun Qi, Hu Zhang, Lincheng Li, Dadong Wang, and Xin Yu. Audio-
visual segmentation by exploring cross-modal mutual semantics. In Proceedings of the 31st ACM
International Conference on Multimedia, pp. 7590–7598, 2023.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. Byol for
audio: Self-supervised learning for general-purpose audio representation, 2021. URL https:
//arxiv.org/abs/2103.06695.

Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. Masked
spectrogram modeling using masked autoencoders for learning general-purpose audio represen-
tation. In HEAR: Holistic Evaluation of Audio Representations, pp. 1–24. PMLR, 2022.

Artemis Panagopoulou, Le Xue, Ning Yu, Junnan Li, Dongxu Li, Shafiq Joty, Ran Xu, Silvio
Savarese, Caiming Xiong, and Juan Carlos Niebles. X-instructblip: A framework for aligning
x-modal instruction-aware representations to llms and emergent cross-modal reasoning. arXiv
preprint arXiv:2311.18799, 2023.

12

https://arxiv.org/abs/2103.06695
https://arxiv.org/abs/2103.06695


Published as a conference paper at ICLR 2025

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
Quoc V Le. Specaugment: A simple data augmentation method for automatic speech recognition.
arXiv preprint arXiv:1904.08779, 2019.

Sooyoung Park, Arda Senocak, and Joon Son Chung. Can clip help sound source localization? In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5711–
5720, 2024.

Karol J Piczak. ESC: Dataset for environmental sound classification. In Proc. ACM MM, 2015.

Justin Salamon, Duncan MacConnell, Mark Cartwright, Peter Li, and Juan Pablo Bello. Scaper: A
library for soundscape synthesis and augmentation. In 2017 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), pp. 344–348. IEEE, 2017.
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A TRAINING HYPER-PARAMETERS

Additional hyper-parameters used in pre-training using AS-2M and fine-tuning of standard audio
SSL benchmark datasets are listed in Table 7. and that for evaluation of polyphonic datasets are
listed in Table 8

Table 7: SSLAM pre-training and audio SSL benchmark dataset fine-tuning hyper-parameters.

Hyperparameters Pre-Training Fine-Tuning
AS-2M AS-2M AS-20K ESC-50 KS1 KS2

Stage 1 | Stage 2
Optimizer AdamW (Loshchilov & Hutter, 2017)
Optimizer Momentum β1 = 0.9, β2 = 0.95
Weight Decay 0.05
Learning Rate Schedule Cosine (Loshchilov & Hutter, 2016)
Peak Learning Rate 0.0005|0.00005 0.00005 0.00005 0.0001 0.0002 0.0002
Minimum Learning Rate 0.000001
Steps 400K|200K 400K 40K 8K 60K 60K
Warm-up steps 53K|25K 40K 4K 800 6K 6K
Batch size 12 96 48 48 256 256
Clone batch 16|8 N/A
Number of GPUs 4 1
Dropout (Srivastava et al., 2014) 0.0 0.0 0.0 0.0 0.0 0.0
Drop path (Huang et al., 2016) 0.0 0.1 0.1 0.1 0.1 0.1
Weighted Sampling False True False False False False
Weighted Sampling size N/A 200K N/A N/A N/A N/A
Roll Augmentation False True True True False False
Noise Augmentation False False False False True True
SpecAug (Park et al., 2019) N/A 0.2 0.2 0.2 0.1 0.1
Mixup (Zhang et al., 2017) 0.0 0.8 0.8 0.0 0.8 0.8
Multilabel N/A True True False False False
Loss Function MSE BCE BCE CE BCE BCE
Dataset Mean for Normalization -4.268 -4.268 -4.268 -6.627 -6.846 -6.846
Dataset Std for Normalization 4.569 4.569 4.569 5.359 5.565 5.565

Table 8: SSLAM polyphonic datasets linear evaluation and fine-tuning hyper-parameters.

Hyperparameters Linear Evaluation|Fine-Tuning
SPASS IDMT URBAN Degrees of AS-20K

SUBSETS SED Polyphony Dataset
Optimizer AdamW (Loshchilov & Hutter, 2017)
Optimizer Momentum β1 = 0.9, β2 = 0.95
Weight Decay 0.05
Learning Rate Schedule Cosine (Loshchilov & Hutter, 2016)
Peak Learning Rate 0.001|0.00005
Minimum Learning Rate 0.000001
Epochs 50 50 50 50 94
Warm-up epochs 5 5 5 5 10
Batch size 48 48 48 48 48
GPUs 1 1 1 1 1
Dropout (Srivastava et al., 2014) 0 0 0 0 0
Drop path (Huang et al., 2016) 0.1 0.1 0.1 0.1 0.1
Roll Augmentation True True True True True
SpecAug (Park et al., 2019) 0.2 0.2 0.2 0.2 0.2
Mixup (Zhang et al., 2017) 0.8 0.8 0.8 0.8 0.8
Multilabel True True True True True
Loss Function BCE BCE BCE BCE BCE
Dataset Mean for Normalization -5.275 -5.464 -5.561 -5.216|-5.659 -4.268
Dataset Std for Normalization 3.268 3.380 2.699 3.376|2.620 4.569
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B DATASET DETAILS

B.0.1 COMMONLY USED AUDIO SSL BENCHMARK DATASETS

AudioSet (Gemmeke et al., 2017) is a large-scale dataset containing over 2 million 10-second audio
clips sourced from YouTube, annotated with 527 audio event classes. The dataset is divided into
three subsets: a balanced set (∼20k clips), an unbalanced set (around 2M files), and an evaluation
set (roughly 20k files). Since the dataset is dynamically sourced from YouTube, its availability may
decrease over time as videos are removed or taken down. Our downloaded and processed copy of
AudioSet includes 1.91M files in unbalanced, 21K in balanced, and 19K in the evaluation set. For
pre-training, we use the full dataset by combining the unbalanced and balanced sets, referred to as
AudioSet-2M (AS-2M) in this paper, while the balanced set alone is referred to as AS-20K. No label
information is used during pre-training

Environmental Sound Classification (ESC-50) (Piczak, 2015) is a collection of 2000, 5-second
environmental sound recordings across 50 classes. Each recording is annotated with a single class.
Following previous works Chen et al. (2024; 2022); He et al. (2022), we employ a 5-fold cross-
validation setting and report the classification accuracy as the evaluation metric.

Speech Commands (KS1, KS2) (Warden, 2018) are datasets designed for keyword spotting tasks.
KS2 consists of 105,829 1-second recordings across 35 distinct speech commands, with the dataset
split into 84,843 samples for training, 9,981 samples for validation, and 11,005 samples for testing.
KS1, an earlier version of the dataset, contains 12 classes: 10 specific keyword classes, 1 silence
class, and 1 unknown class that includes samples from 20 additional speech commands not explicitly
covered by the keyword set. In line with previous works, we train models on the training split, select
the best-performing model based on validation, and report test results. The evaluation metric used
is classification accuracy.

B.0.2 POLYPHONIC AUDIO DATASETS

SPASS is a high-quality synthetic polyphonic dataset designed for sound event detection (SED) with
a particular focus on spatiotemporal labeling of sound sources. The dataset was generated using
acoustic virtual reality tools such as RAVEN (Schröder, 2011) and monophonic source datasets
like ESC-50 and UrbanSound8K. It simulates the following five distinct urban soundscapes square,
park, waterfront, street, and market, ensuring that the dataset remains general and not confined to a
specific environment. Each soundscape contains approximately 3,750 samples in the training split
and 1,250 samples in the evaluation split.

IDMT-DESED-FL (Johnson et al., 2021) dataset was created using scraper tool with data from
DESED (Turpault et al., 2019) for sound event detection. The training split contains 10,000 audio
files, while the evaluation split includes 2,000 files.

URBAN-SED (Salamon et al., 2017) introduced the Scaper library to create polyphonic datasets,
with URBAN-SED demonstrating its potential. As we are using this dataset to evaluate polyphonic
capability, we only included audio files with more than one label. After applying this filter, the
training set consists of 5,268 audio files, and the evaluation set contains 1,739 files.

Degrees of Polyphony We created dataset with varying degrees of polyphony, ranging from 2 to
14+, using audio files from SPASS and URBAN-SED, which we will be referring to as the De-
grees of Polyphony dataset in this paper. This allows us to evaluate the model’s performance across
different levels of polyphony.

B.1 IS THE AUDIOSET DATASET TRULY POLYPHONIC? AN ANALYSIS

AudioSet (Gemmeke et al., 2017) is one of the largest collections of multi-labeled audio files. While
the term “multi-label” may suggest the presence of multiple distinct sound events within a single
audio file, implying polyphony, this is not always the case. As discussed in the introduction, labels
such as ‘Carnatic music,’ ‘Music,’ ‘Musical instrument,’ and ‘Classical music’ often refer to the
same underlying sound event. Despite these labels appearing together, the audio file may feature
only a single distinct sound, thereby giving a misleading impression of polyphony.

15



Published as a conference paper at ICLR 2025

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Hierarchy Level (L)

36

38

40

42

44

Pe
rc

en
ta

ge
 (%

)

42.5

37.8

36.4
35.6 35.6

Figure 3: Percentage of audio files in AudioSet (Gemmeke et al., 2017) with at least 2 distinct sound
events (y-axis) based on our evaluation criteria, at different values of hierarchy level L (x-axis).

To assess the extent of this and to analyze the proportion of audio files with truly distinct sound
events, we conducted an analysis using the ontology and label information provided with AudioSet.

The steps in the process are detailed below:

Algorithm 2 AudioSet Identify Files with Distinct Sound Events

1: Input: Ontology file, AudioSet label data, hierarchy level L
2: Step 1: Parse the ontology file to create mappings for id to parent and id to children.
3: Step 2: For each audio file:

• Retrieve all associated labels.
• For each label, find all related labels (parents or children) up to the hierarchy level L.
• Remove these related labels from the label set to retain only the distinct sound events.

4: Output: Percentage of audio files with at least 2 distinct sound events.

In our analysis, we found that even when considering only one level of the hierarchy, only 42.5% of
audio files contain at least two distinct sound events. This number decreases as we explore deeper
levels of the hierarchy. The motivation for considering levels greater than one (L > 1) is illustrated
by examples such as “Wild animals” → “Roaring cats (lions, tigers)” → “Roar.” In cases where
labels like “Roar” and “Wild animals” appear together, they may still refer to the same sound event.
Please refer to Figure 3 for the ”percentage of audio files with distinct sound events” based on our
evaluation criteria described above, at different values of L.

As the hierarchy level increases from 1 to 4 the percentage of audio files containing at least two
distinct sound events (labels) progressively decreases: from 42.5% at level 1 to 37.8% at level 2,
36.4% at level 3, and finally 35.6% at level 4. This substantiates our argument that relying solely on
AudioSet is insufficient for developing models capable of handling polyphonic audio effectively.
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C REPRESENTATION LEARNING VIA CONCEPT SEPARATION WITH MIXTURE
INVARIANT LOSS

In the development of SSLAM, we investigated whether separating multiple concepts from mixed
audio inputs to the student model could enhance polyphonic audio understanding. To achieve this,
we employed the Mixture Invariant Training (MixIT) loss (Wisdom et al., 2020), originally proposed
for audio source separation tasks. Specifically, we extended the student encoder with an additional
MLP block to project its output representations into K distinct representation vectors.

The general overview of the process is as follows. Given a mixed audio input Smixed provided to the
student model, its output representation is further projected by an MLP into K distinct representation
vectors, collectively represented as Ŷmixed = {Ŷ (1)

mixed, Ŷ
(2)

mixed, . . . , Ŷ
(K)

mixed}. This projection aims to
separate the mixed audio representation into its constituent representations or concepts. In parallel,
the teacher model processes individual spectrograms S1 and S2 corresponding to the constituent
audio signals, producing outputs ZS1 and ZS2 , respectively (refer to Figure 4).
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Figure 4: Overview of concept separation using mixture invariant training loss

To enforce concept separation, we use the MixIT loss, which is defined as follows:

LMixIT

(
ZS1 , ZS2 , Ŷmixed

)
= min

A

2∑
i=1

L
(
ZSi ,

[
AŶmixed

]
i

)
, (6)

where we employ Mean Squared Error (MSE) as L. The mixing matrix A ∈ B2×K is a binary
matrix constrained such that each column sums to 1. This assigns each of the K representation
vectors to either ZS1 or ZS2 . In our initial experiments, we observed that this approach yielded
worse performance compared to SSLAM on the AS-20K benchmark (39.9 mAP vs. 40.9 mAP).

One key drawback of this approach is that mixture invariant training assumes the independence of
individual sources, which is a reasonable assumption in the case of audio source separation task.
However, in the representation (concept) space, this assumption is less valid, as there is a high like-
lihood that one representation overlaps with both individual audio inputs. This overlap undermines
the independence constraint. Additionally, the number of possible partitions grows exponentially
with K, leading to 2K potential loss terms. This exponential growth introduces significant compu-
tational complexity, making the approach less practical for larger K.

Despite these challenges, we believe that concept separation remains a promising avenue for poly-
phonic audio understanding, warranting further studies to address these limitations and refine the
approach.
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D REASONING BEHIND INCORPORATING UNMIXED DATA IN MB-UA-PMA
VARIANT

In Tables 2 and 3, the MB-UA-PMA variant was developed by splitting the batch in MB-PMA
into two halves: one for unmixed audio and the other for mixed audio, rather than using the entire
batch for mixed audio. While this modification leads to a decrease in performance on polyphonic
audio datasets (refer to Tables 2 and 3), it ensures that SSLAM achieves robustness across both
monophonic and polyphonic audio datasets.

Empirical evidence supporting this design choice is provided in Table 9, where MB-PMA and MB-
UA-PMA are evaluated on monophonic audio datasets, such as ESC-50 and KS2, as well as the
AS-20K dataset. The improved performance of MB-UA-PMA with respect to MB-PMA in Table D
and the decreased performance in Tables 2 and 3 highlight the trade-off between achieving higher
performance on polyphonic datasets and promoting better generalization across diverse audio data.

Additionally, the performance reduction observed for MB-UA-PMA in Tables 2 and 3 is mitigated
in our final variant, SSLAM, through the introduction of the Source Retention Loss (SRL), which
utilizes the unmixed half of the batch for its computation (refer to Algorithm 1).

Table 9: Comaprision of MB-PMA and MB-UA-PMA on monophonic and AS-20K datasets

Model ESC-50 KS2 AS-20K
Fine-tuning
MB-PMA 95.5 97.9 40.6
MB-UA-PMA 96.2 98.0 40.7

E ADDITIONAL INFORMATION ON AUDIO MIXING

E.0.1 DIFFERENT INPUT AUDIO MIXING STRATEGIES

We explored several audio mixing strategies in the input space with SSLAM, including element-
wise maximum, average in log-mel-spectrogram, and average in waveform. In our experiments,
element-wise max mixing in the log-mel-spectrogram domain performed best (refer to Table 10).
Therefore, we employed this approach for partially mixing audio in our work.

Table 10: Comparison of Different Input Audio Mixing Strategies

Model mAP
Finetuning
SSLAM with log-mel-spectrogram element-wise max 40.9
SSLAM with log-mel-spectrogram average 40.8
SSLAM with waveform average 40.4

E.0.2 DIFFERENT AGGREGATION STRATEGIES IN FEATURE SPACE FOR SRL

Table 11: Comparison of Different Feature Aggregation Strategies for SRL

Model mAP
Finetuning
SRL with feature averaging 40.9
SRL with element-wise max of features 40.7

To generate target representations for SRL, it is necessary to aggregate the features of individual
audio clips in feature space. We experimented with two aggregation strategies: averaging and
element-wise maximum between the features of two audio clips. Our experiments showed that
averaging provided better performance (refer to Table 11). Therefore, we adopted this approach for
feature aggregation in our work.
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E.0.3 VISUALISATION OF MIXING VIA ELEMENT-WISE MAXIMUM OF LOG-MEL
SPECTROGRAMS

Exam
ple 1

Exam
ple 2

Figure 5: Visualisation of mixing using element-wise maximum of log-mel spectrograms. Each
example presents three log-mel-spectrograms: the first two are individual audio samples from Au-
dioSet, and the third is their fully mixed version, created by applying the element-wise maximum of
the two spectrograms.

F ROBUSTNESS ANALYSIS ACROSS MULTIPLE RUNS

To further validate the robustness of our approach, we conducted three independent runs with dif-
ferent random seeds for the experiments reported in Table 2 and reported the mean and standard
deviation in Table 12. These runs specifically aimed to compare our baseline MB-UA with the
proposed SSLAM framework, assessing the consistency and reliability of their performance.

As shown in Table 12, the observed trends remain consistent across multiple runs, confirming the
robustness of SSLAM and its improvements over MB-UA.

Table 12: Robustness analysis of SSLAM across three independent runs, comparing its performance
with the baseline MB-UA. All performances are reported in mAP. For more details about the datasets
refer to Appendix B.0.2.

Model SPASS
Square Park Waterfront Street Market

Linear Evaluation
MB-UA (Baseline) 60.15 ± 0.01 59.72 ± 0.08 55.23 ± 0.01 63.50 ± 0.14 62.69 ± 0.11
SSLAM 64.25 ± 0.07 64.25 ± 0.07 59.51 ± 0.09 67.46 ± 0.09 68.55 ± 0.06
Fine-tuning
MB-UA (Baseline) 84.40 ± 0.09 78.38 ± 0.29 79.81 ± 0.54 81.47 ± 0.17 89.91 ± 0.23
SSLAM 85.82 ± 0.17 80.45 ± 0.16 82.31 ± 0.26 82.35 ± 0.19 90.51 ± 0.44
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