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ABSTRACT
Although existing video-based 3D human mesh recovery methods
have made significant progress, simultaneously estimating human
pose and shape from low-resolution image features limits their per-
formance. These image features lack sufficient spatial information
about the human body and contain various noises (e.g., background,
lighting, and clothing), which often results in inaccurate pose and
inconsistent motion. Inspired by the rapid advance in human pose
estimation, we discover that compared to image features, skeletons
inherently contain accurate human pose and motion. Therefore,
we propose a novel semi-Analytical Regressor using disenTangled
Skeletal representations for human mesh recovery from videos,
called ARTS. Specifically, a skeleton estimation and disentangle-
ment module is proposed to estimate the 3D skeletons from a video
and decouple them into disentangled skeletal representations (i.e.,
joint position, bone length, and human motion). Then, to fully
utilize these representations, we introduce a semi-analytical re-
gressor to estimate the parameters of the human mesh model. The
regressor consists of three modules: Temporal Inverse Kinematics
(TIK), Bone-guided Shape Fitting (BSF), and Motion-Centric Re-
finement (MCR). TIK utilizes joint position to estimate initial pose
parameters and BSF leverages bone length to regress bone-aligned
shape parameters. Finally, MCR combines human motion repre-
sentation with image features to refine the initial human model
parameters. Extensive experiments demonstrate that our ARTS
surpasses existing state-of-the-art video-based methods in both
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per-frame accuracy and temporal consistency on popular bench-
marks: 3DPW, MPI-INF-3DHP, and Human3.6M. Code is available
at https://github.com/TangTao-PKU/ARTS.
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1 INTRODUCTION
Recovering human meshes from monocular images is a crucial yet
challenging task in computer vision, with extensive applications
in virtual reality, animation, gaming, and robotics. Different from
3D Human Pose Estimation (HPE) [1] that predicts the location of
several skeleton joints, 3D Human Mesh Recovery (HMR) [2] is a
more complex task, which aims to estimate the detailed 3D human
mesh coordinates.

Although there has been some progress in 3D HMR from a single
image [3–7], accurate and temporally consistent recovery of the
human mesh from monocular videos remains challenging. With
the success of the SMPL [8], previous video-based HMR methods
directly predict SMPL parameters from image features. The SMPL
model is a parametric human model consisting of 72 pose parame-
ters and 10 shape parameters, which control 6890 vertices to form
a human mesh. As shown in Figure 1 (a), previous video-based
HMR methods first use the pre-trained Convolutional Neural Net-
works (CNNs) backbone [9] to extract image features from video
frames, then design temporal networks based on Recurrent Neural
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Figure 1: Comparison between the previous video-based
HMR methods and our ARTS. (a) Previous video-based HMR
methods estimate the human pose and shape from low-
resolution image features. (b) Our ARTS effectively utilizes
disentangled skeletal representations (i.e., Motions, Joints,
Bones) with image features to estimate and refine the human
pose and shape.

Networks (RNNs) [10–12] or Transformers [13–17] to extract the
spatial-temporal coupled features. Finally, SMPL pose and shape
parameters are obtained from the same low-resolution and coupled
features using the fully connected layers. However, limited by the
insufficient spatial information and noises in the image features,
these methods tend to suffer from the following three problems:

(i) Inaccurate pose estimation. The image features extracted
by ResNet [9] after global pooling are low-resolution with signifi-
cant loss of spatial information, making it difficult for the following
network to learn the highly non-linear mapping from image fea-
tures to SMPL pose parameters [18–20].

(ii) Ineffective shape fitting. Many datasets [21–23] only con-
tain a small number of subjects, resulting in the scarcity of body
shapes. Consequently, employing neural networks to directly regress
SMPL shape parameters often leads to overfitting [24], which often
regresses average human shape during inference.

(iii) Inconsistent human motion. The image features con-
tain various noises (e.g., background, lighting, and clothing) that
affect the human motion capturing. Meanwhile, the changes in
image features cannot directly reflect human movements, leading
to undesirable motion jitters.

Inspired by the rapid advance in video-based HPE [25–29], we
discover that the skeletons estimated by HPE algorithms can be uti-
lized to alleviate the problems above. Compared to low-resolution
image features, the skeletons contain more accurate information
about the human pose, human motion, and basic human shape
(e.g., body height) [24]. However, HPE utilizes joint coordinates
to represent human pose, while HMR estimates joint rotations as
SMPL pose parameters. Due to the difference in pose representa-
tion between these two tasks, previous video-based HMR methods
do not effectively utilize the skeletons. PMCE [30] first introduces

HPE into video-based HMR by integrating the skeletons and image
features. However, it treats the skeleton as a supplementary feature,
ignoring the advantages of different structural information of the
skeleton in pose, shape, and motion estimation. Moreover, PMCE
directly predicts mesh coordinates without using the human prior,
often leading to self-interactions, unreasonable poses and shapes.

Based on the above observations, we propose a novel semi-
Analytical Regressor using disenTangled Skeletal Representations
(ARTS) as shown in Figure 1 (b), which incorporates skeletons
to alleviate the problems above through analytics and learning
methods. We divide the human mesh recovery task into two parts:
1) 3D skeleton estimation and disentanglement and 2) regressing
SMPL parameters from the disentangled skeletal representations
through a semi-analytical regressor. Firstly, we propose a skeleton
estimation and disentanglement module to estimate 3D skeletons
from a video and decouple them into disentangled skeletal repre-
sentations (i.e., joint position, bone length, and human motion).
This disentanglement allows the following modules to focus on dif-
ferent information about human pose, shape, and motion. Secondly,
to fully utilize the disentangled skeletal representations, we intro-
duce a semi-analytical SMPL regressor consisting of three modules,
which combines analytics and learning methods to estimate SMPL
parameters. Specifically, a Temporal Inverse Kinematics (TIK) mod-
ule is proposed to derive initial SMPL pose parameters from the
joint position. The inverse kinematics improves the accuracy and
robustness of SMPL pose estimation. To alleviate the challenge of in-
effective shape fitting, we design a Bone-guided Shape Fitting (BSF)
module, which combines analytics with MLP to regress the initial
SMPL shape parameters from the bone length. Besides, we propose
a Motion-Centric Refinement (MCR) module that employs cross-
attention to obtain motion-centric features from image features
and human motion representation. Then, the motion-centric fea-
tures are utilized to refine the initial SMPL parameters and enhance
the temporal consistency of human mesh. Our model is evaluated
on popular 3D human mesh recovery benchmarks, outperforming
previous state-of-the-art video-based HMR methods.

Our main contributions are summarized as follows:
• We propose a semi-Analytical Regressor using disenTangled
Skeletal representations (ARTS) that combines analytics with
learning methods, which effectively leverages structural in-
formation of skeletons to improve both per-frame accuracy
and temporal consistency.

• In semi-analytical regressor, we carefully design three com-
ponents, i.e., Temporal Inverse Kinematics (TIK), Bone-guided
Shape Fitting (BSF), and Motion-Centric Refinement (MCR),
for learning accurate and temporally consistent human pose,
shape, and motion, respectively.

• Our method achieves state-of-the-art performance on multi-
ple 3D human mesh recovery benchmarks. Particularly, in
cross-dataset evaluation, ARTS reduces MPJPE and MPVPE
by 10.7% and 10.5% on the 3DPW [21] dataset.

2 RELATEDWORK
2.1 3D Human Pose Estimation
Benefiting from the advance of 2D pose detections [31, 32], many
recent works for 3D HPE are based on the 2D-to-3D lifting pipeline
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[1]. Some 3D pose estimation methods [33–36] employ Graph Con-
volutional Networks (GCNs) [37] to extract spatial-temporal in-
formation from the skeletons by treating the human skeleton as a
graph. In recent years, Transformer-basedmethods [25–27, 29] have
become popular, which carefully design serial or parallel, global
or local Transformer [38] networks to explore the spatial and tem-
poral dependencies of 2D skeletons. The achievements in 3D HPE
demonstrate that the skeletons contain sufficient spatial and tem-
poral information about human body, which can be leveraged to
produce accurate and temporally consistent human mesh.

2.2 Image-based 3D Human Mesh Recovery
Due to the easy access to images, many humanmesh recovery meth-
ods take a single image as input. The image-based methods can be
divided into two paradigms. The first is parametric methods based
on the human model (e.g., SMPL [8]). Due to the complexity of
the SMPL estimation, some methods incorporate prior knowledge
to assist in estimating SMPL parameters, such as body silhouette
[39], semantic body part segmentation [40, 41], bounding box [4],
and kinematic prior [19, 42, 43]. Moreover, the skeletons from 3D
HPE can assist the human mesh regression. For example, Nie et
al. [44] aim to learn a good pose representation that disentangles
pose-dependent and view-dependent features from human skeleton
data. However, the pose-dependent features capture only the over-
all pose and lack disentangled semantic details. PC-HMR [45] uses
the estimated human pose to calibrate the human mesh estimated
by the off-the-shelf HMR methods, serving as a time-consuming
post-processing. The other paradigm is non-parametric methods,
which directly estimate the coordinates of each mesh from an im-
age. For instance, Pose2Mesh [3] designs a multi-stage MeshNet
to upsample sparse 3D skeletons to human mesh. GTRS [5] intro-
duces a graph Transformer network to reconstruct human mesh
from a 2D human pose. Although these image-based methods have
achieved remarkable performance in accuracy, they tend to produce
unsmooth human motion when applied to videos.

2.3 Video-based 3D Human Mesh Recovery

Compared to image-based HMR methods, video-based HMR meth-
ods simultaneously recover accurate and temporally consistent
human mesh. The previous video-based methods mainly focus on
designing temporal extraction and fusion networks to enhance
temporal consistency. For instance, VIBE [10], MEVA [11], and
TCMR [12] carefully design Gated Recurrent Units (GRUs) based
temporal extraction networks, which are utilized to smooth human
motion but lack sufficient ability to model long-term dependencies.
Consequently, most methods utilize Transformer-based temporal
networks. MEAD [46] proposes a spatial and temporal Transformer
to parallel model these two dependencies. GLoT [14] proposes a
global and local Transformer to decompose the modeling of long-
term and short-term temporal correlations. Bi-CF [15] introduces a
bi-level Transformer to model temporal dependencies in a video clip
and among different clips. UNSPAT [17] proposes a spatiotemporal
Transformer to incorporate both spatial and temporal information
without compromising spatial information. Despite the complicated
design of these temporal networks, the insufficient spatial infor-
mation and noises of image features unavoidably lead to limited

performance. Although skeleton prior is commonly used in image-
based methods, it is often ignored by video-based methods. Sun et
al. [47] also uses skeleton-disentangled representation, but its dis-
entanglement refers to only extracting the skeletons from image
features without HPE methods. Besides, it does not decompose
different information within skeletons so it may not fully utilize
the skeleton data. PMCE [30] is the first to incorporate 3D HPE
methods in video-based HMR. However, it directly utilizes cross-
attention to fuse image features and the skeletons, which ignores
the structural information of the skeletons. Additionally, PMCE di-
rectly regresses mesh coordinates without incorporating sufficient
human prior (e.g., SMPL), which often results in self-interactions,
unreasonable body poses and shapes. In contrast, our ARTS de-
couples the skeletons into joint position, human motion, and bone
length and exploits the advantages of the disentangled skeletal rep-
resentations in regressing different parameters of the SMPL model.
This makes our method achieve better per-frame accuracy and
temporal consistency.

3 METHODOLOGY
3.1 Overall Framework
The overall framework of our semi-Analytical Regressor using dis-
enTangled Skeletal representations for HMR (ARTS) is illustrated
in Figure 2, which primarily consists of two parts: 1) 3D skeleton
estimation and disentanglement and 2) regressing human mesh
from the disentangled skeletal representations and image features
through a semi-analytical SMPL regressor. In detail, given a video
sequence 𝑉 = {𝐼𝑡 }𝑇𝑡=1 with 𝑇 frames. A pre-trained ResNet50 [9]
from SPIN [48] is utilized to extract image features 𝐹∈ R𝑇×2048 for
each frame. For 3D skeleton estimation and disentanglement, we
first employ the off-the-shelf 2D pose detector [31, 32] to estimate
2D skeletons 𝑆2𝐷∈ R𝑇×𝐾×2 and then design a dual-stream Trans-
former network to lift 2D skeletons to 3D skeletons 𝑆3𝐷∈ R𝑇×𝐾×3,
where 𝐾 denotes the number of human keypoints. After that, we
further decouple the 3D skeletons into disentangled skeletal repre-
sentations (i.e., joint position 𝐽 , human motion𝑀 , and bone length
𝐵). In the second part, the semi-analytical SMPL regressor regresses
SMPL parameters from disentangled skeletal representations and
image features. In regressor, we propose Temporal Inverse Kine-
matics (TIK) to regress initial SMPL pose parameters 𝜃𝑖𝑛𝑖𝑡∈ R72 of
mid-frame from joint position and image features. The Bone-guided
Shape Fitting (BSF) module is introduced to predict bone-aligned
SMPL shape parameters 𝛽𝑖𝑛𝑖𝑡∈ R10 of mid-frame from bone length.
Finally, we design a Motion-Centric Refinement (MCR) to fuse
image features with human motion guidance and employ motion-
centric features 𝐹 ′∈ R2048 to align SMPL parameters with the image
cues. We elaborate on each part in the following sections.

3.2 Skeleton Estimation and Disentanglement
3.2.1 3D Human Pose Estimation. We first utilize the off-the-
shelf 2D pose detectors [31, 32] to obtain the 2D skeletons from
the image sequence. Subsequently, we design a simple yet effective
𝐿1 blocks dual-stream Transformer network to lift the 2D skele-
tons to 3D skeletons. Specifically, we first project the 2D skeletons
𝑆2𝐷∈ R𝑇×𝐾×2 into high-dimensional features 𝑋∈ R𝑇×𝐾×𝐶1 and
incorporate spatial and temporal positional embeddings. Then, we
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Figure 2: Overview of the proposed ARTS. Given a video sequence, ResNet [9] is utilized to extract the image features 𝐹 of
each frame. We estimate the 3D skeletons and decouple them into joints, motions, and bones. Then, in the semi-analytical
SMPL regressor, Temporal Inverse Kinematics (TIK) obtains initial SMPL pose parameters 𝜃𝑖𝑛𝑖𝑡 from joints and image features.
Bone-guided Shape Fitting (BSF) gets bone-aligned SMPL shape parameters 𝛽𝑖𝑛𝑖𝑡 from bones. Moreover, we utilize motions
to guide the fusion of image features and use motion-centric features 𝐹 ′ to refine SMPL parameters. Finally, ARTS feeds the
refined SMPL parameters 𝜃𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 , 𝛽𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 to the SMPL regressor to generate the human mesh.

feed 𝑋 to the dual-stream Transformer and the output features
𝑋 ′∈ R𝑇×𝐾×𝐶1 are fused as the subsequent block’s input, which can
be expressed as:

𝑋 ′ = MSAST (𝑋 + 𝑃𝐸𝑆 + 𝑃𝐸𝑇 ) + MSATS (𝑋 + 𝑃𝐸𝑆 + 𝑃𝐸𝑇 ), (1)

where MSAST denotes spatial-temporal Transformer, MSATS de-
notes temporal-spatial Transformer, 𝑃𝐸𝑆 and 𝑃𝐸𝑇 represents spatial
and temporal embedding, respectively. Finally, the high-dimensional
features 𝑋 ′ are mapped into the 3D skeletons 𝑆3𝐷∈ R𝑇×𝐾×3.

3.2.2 Skeleton Disentanglement. Different from the previous
video-based method [30] that treats the skeletons as supplementary
features, we decouple the 3D skeletons 𝑆3𝐷 into the disentangled
skeletal representations (i.e., joint position 𝐽 , bone length 𝐵, and hu-
man motion𝑀). Specifically, joint position 𝐽∈ R𝑇×𝐾×3 represents
the positions of all joints, which contains accurate information
about human pose. The bone length 𝐵∈ R𝑁 represents the tem-
porally average length of each bone within the video sequence,
where 𝑁 denotes the number of bones. This average bone length
contains temporally consistent basic body shape information. For
human motion, We calculate the detailed motion of each frame
𝑀𝑡∈ R(𝑇−1)×𝐾×3 and then concat temporally average human mo-
tion𝑀0∈ R1×𝐾×3 to get the final humanmotion𝑀∈ R𝑇×𝐾×3, which
represents the overall and detailed human movements. The equa-
tions of human motion and bone length are as follows:

𝑀𝑡 = {𝑆3𝐷
𝑡 − 𝑆3𝐷

𝑡−1}
𝑇
𝑡=2, 𝑀0 = 𝑎𝑣𝑔(𝑀𝑡 ), 𝑀 = 𝑐𝑜𝑛𝑐𝑎𝑡 [𝑀0, 𝑀𝑡 ], (2)

𝐵𝑛 =
1
𝑇

𝑇∑︁
𝑡=1

∥𝑆3𝐷
𝑡,𝑖 − 𝑆3𝐷

𝑡,𝑗 ∥, (3)

where 𝑡 represents 𝑡𝑡ℎ frame, 𝑎𝑣𝑔(·) represents averaging over time,
𝑛 represents 𝑛𝑡ℎ bone, 𝑖 and 𝑗 denote two joints of the 𝑛𝑡ℎ bone.

3.3 Semi-Analytical SMPL Regressor
As shown in Figure 2, we propose a semi-analytical SMPL regres-
sor to predict the SMPL parameters from the disentangled skeletal
representations and image features. Semi-analytical regressor com-
bines accurate analytical methods with flexible learning methods,
which can generate accurate human mesh from skeletons and main-
tain robustness to the errors of skeleton estimation. Specifically, the
joint position can provide a more accurate human pose. The bone
length contains consistent basic body shape and human motion can
provide accurate and smooth human movement. Based on these
observations, we design three modules (i.e., TIK, BSF, and MCR) to
exploit the advantages of the disentangled skeletal representations
in regressing different parameters of the SMPL model.

3.3.1 Temporal Inverse Kinematics. We regress accurate SMPL
pose parameters from the joint position and image features. Fol-
lowing HybrIK [19], we first decompose the SMPL pose into swing
among neighboring joints and twist that represents the angle along
the bone direction. Swing can be accurately derived from joint posi-
tion, while twist cannot be directly obtained from the coordinates of
the joints, so we regress the twist of each joint from image features.
This decomposition allows us to tackle the SMPL pose estimation
by separately handling the joint-based swing calculation and image-
based twist estimation, significantly reducing the complexity of
the SMPL pose estimation. Different from HybrIK, which solely
relies on analytical methods and ignores temporal cues, we utilize
MLP and self-attention to obtain temporally consistent SMPL joint
rotation from swing and twist. This process is expressed as follows:

𝑠𝑤𝑖𝑛𝑔 = MLP(𝐽 ), 𝑡𝑤𝑖𝑠𝑡 = MLP(𝐹 ), (4)

𝜃𝑖𝑛𝑖𝑡 = MSA(MLP(𝑐𝑜𝑛𝑐𝑎𝑡 [𝑠𝑤𝑖𝑛𝑔, 𝑡𝑤𝑖𝑠𝑡])), (5)
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Figure 3: Illustration of the bone-guided shape fitting. Ana-
lytics and Analytical-MLP are utilized to map bone length
into the initial SMPL shape parameters.

where 𝑠𝑤𝑖𝑛𝑔∈ R𝑇×𝐾
′×6 denotes 6D rotations [49] among joints,

𝑡𝑤𝑖𝑠𝑡∈ R𝑇×(𝐾 ′−1)×2 denotes twist angles of each joints (except
root joint), 𝐾 ′ denotes the number of SMPL keypoints, 𝜃𝑖𝑛𝑖𝑡∈ R72

denotes temporally consistent SMPL pose parameters of mid-frame,
MSA(·) represents multi-head self-attention.

3.3.2 Bone-Guided Shape Fitting. As shown in Figure 3, we
regress bone-aligned SMPL shape parameters from the bone length.
According to the SMPL[8], the joint position in the rest pose is a
function of shape parameters. Given the mean shape parameters
𝛽𝑚𝑒𝑎𝑛∈ R10 of SMPL template, the joint position is calculated as:

𝐽𝑚𝑒𝑎𝑛 =𝑊 (𝑇 + 𝑆𝛽𝑚𝑒𝑎𝑛), (6)

where𝑇∈ R6890×3 is the SMPL mesh template, 𝑆∈ R6890×3×10 is the
shape blendmatrix that maps shape parameters to the offsets of tem-
plate,𝑊 ∈ R𝐾×6890 is the joint regression matrix that obtains joints
from human mesh. We can obtain rough shape parameters from
the bone length since the bone length 𝐵 contains the body height
and reflects body weight [3]. We first align the rest pose 𝐽𝑚𝑒𝑎𝑛 with
bone length to get the bone-aligned pose 𝐽𝑎𝑙𝑖𝑔𝑛𝑒𝑑∈ R𝐾×3 through
an analytical transform 𝑓 (𝐵, 𝐽𝑚𝑒𝑎𝑛) along the kinematic tree:

𝐽𝑎𝑙𝑖𝑔𝑛𝑒𝑑,𝑗 = 𝐽𝑚𝑒𝑎𝑛,𝑖 + 𝐵𝑖, 𝑗
𝐽𝑚𝑒𝑎𝑛,𝑗 − 𝐽𝑚𝑒𝑎𝑛,𝑖𝐽𝑚𝑒𝑎𝑛,𝑗 − 𝐽𝑚𝑒𝑎𝑛,𝑖 , (7)

where 𝐵𝑖, 𝑗 denotes the bone length between parent joint 𝑖 and
child joint 𝑗 . Then, we can derive the bone-aligned SMPL shape
parameters 𝛽′

𝑖𝑛𝑖𝑡
∈ R10 from the bone-aligned pose:

𝛽′𝑖𝑛𝑖𝑡 = 𝑆
−1 (𝑊 −1 𝐽𝑎𝑙𝑖𝑔𝑛𝑒𝑑 −𝑇 ). (8)

However, relying solely on the analytical method makes the shape
estimation highly sensitive to errors and noises in bone length.
Therefore, instead of directly using the analytical transform, we
initialize the MLP with the pseudo-inverse matrix 𝑆−1 and𝑊 −1.
Then, we train the analytical-MLP transform 𝑔(𝐽𝑎𝑙𝑖𝑔𝑛𝑒𝑑 ,𝑇 ) to fine-
tune the mapping from bone-aligned pose to shape parameters.
This process can be expressed as follows:

𝛽𝑖𝑛𝑖𝑡 = FCS−1 (FCW−1 (𝐽𝑎𝑙𝑖𝑔𝑛𝑒𝑑 ) −𝑇 ), (9)

where FCS−1 (·) and FCW−1 (·) are the full-connected layer initialized
by pseudo-inverse shape blend matrix and joint regression matrix.

3.3.3 Motion-Centric Refinement. Due to the sparsity of skele-
ton information, the SMPL parameters regressed from joint position
and bone length lack human details (e.g., accurate shapes), which
still need to be refined from images. Therefore, we utilize human
motion to guide the fusion of image features and then refine the ini-
tial SMPL parameters. In detail, we first project human motion𝑀 to

high-dimension features as the queries𝑄𝑚∈ R𝑇×𝐶2 and projects im-
age features 𝐹 to the keys 𝐾𝑖∈ R𝑇×𝐶2 and values 𝑉𝑖∈ R𝑇×𝐶2 . Then,
we employ 𝐿2 layers cross-attention MCA(·) and feedforward net-
works FFN to obtain the motion-centric features 𝐹 ′∈ R2048, which
can be expressed as follows:

𝐹 ′ = FFN(MCA(𝑄𝑚, 𝐾𝑖 ,𝑉𝑖 )) . (10)

This fusion manner makes the network focused on human move-
ment. Moreover, we utilize MLP heads to refine the initial SMPL
parameters from motion-centric features. Finally, we utilize the
refined SMPL pose and shape parameters 𝜃𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 , 𝛽𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 to gen-
erate the final human mesh.

3.4 Loss Function
The skeleton estimation and disentanglement module is trained
with the 3D joint loss L 𝑗𝑜𝑖𝑛𝑡 to supervise the 3D skeletons of all
frames. Then, the whole network is supervised by four losses: mesh
vertex loss L𝑚𝑒𝑠ℎ , 3D joint loss L 𝑗𝑜𝑖𝑛𝑡 , SMPL pose loss L𝑝𝑜𝑠𝑒 ,
SMPL shape loss L𝑠ℎ𝑎𝑝𝑒 , The final loss is calculated as:

L = 𝜆𝑚L𝑚𝑒𝑠ℎ + 𝜆 𝑗L 𝑗𝑜𝑖𝑛𝑡 + 𝜆𝑝L𝑝𝑜𝑠𝑒 + 𝜆𝑠L𝑠ℎ𝑎𝑝𝑒 , (11)

where 𝜆𝑚 = 1, 𝜆 𝑗 = 1, 𝜆𝑝 = 0.06, and 𝜆𝑠 = 0.06 in ARTS. The
𝜆 parameters ensure that the values of various loss functions are
maintained at the same range.

4 EXPRIMENTS
4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. Following previous methods [14, 15, 30], we train
our model on the mixed 2D and 3D datasets. For 3D datasets, 3DPW
[21], MPI-INF-3DHP [23], and Human3.6M [22] contain the anno-
tations of 3D joints and SMPL parameters. For 2D datasets, COCO
[50] and MPII [51] contain 2D joint annotation with pseudo-SMPL
parameters fromNeuralAnnot [52]. To comparewith previousmeth-
ods, we evaluate the performance of our model on the 3DPW, MPI-
INF-3DHP, and Human3.6M datasets.

4.1.2 Evaluation Metrics. To evaluate per-frame accuracy, we
employ the mean per joint position error (MPJPE), Procrustes-
aligned MPJPE (PA-MPJPE), and mean per vertex position error
(MPVPE). These metrics measure the difference between the pre-
dicted mesh position and ground truth in millimeters (𝑚𝑚). To
evaluate temporal consistency, we utilize the acceleration error
(Accel) proposed in HMMR [53]. This metric calculates the average
difference in acceleration of joints, which is measured in𝑚𝑚/𝑠2.

4.2 Implementation Details
Consistent with the previous methods [14, 15, 30], we set the input
sequence length 𝑇 to 16 and utilize the pre-trained ResNet50 from
SPIN [48] to extract image features of each frame. We train the
network in two stages. Firstly, we train the 3D skeleton estimation
network with all of the 3D and 2D datasets with a batch size of
64 and a learning rate of 1 × 10−5 for 60 epochs. For 2D pose
detectors in the skeleton estimation network, we adopt CPN [32]
for Human3.6M and ViTPose [31] for 3DPW and MPI-INF-3DHP. In
the second stage, we load the weights of the 3D skeleton estimation
network and train the whole model with only 3D datasets. We train
the whole network for 30 epochs with a batch size of 32 and a



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Tao Tang et al.

Table 1: Evaluation of state-of-the-art methods on 3DPW,MPI-INF-3DHP, andHuman3.6M datasets. All methods use pre-trained
ResNet-50 [46] as the backbone to extract image features except MAED [46]. Bold: best; Underline: second bset.

Method
3DPW MPI-INF-3DHP Human3.6M

MPJPE ↓ PA-MPJPE ↓ MPVPE ↓ Accel ↓ MPJPE ↓ PA-MPJPE ↓ Accel ↓ MPJPE ↓ PA-MPJPE ↓ Accel ↓

VIBE (CVPR’20) [10] 91.9 57.6 - 25.4 103.9 68.9 27.3 78.0 53.3 27.3
TCMR (CVPR’21) [12] 86.5 52.7 102.9 6.8 97.3 63.5 8.5 73.6 52.0 3.9
MEAD (ICCV’21) [46] 79.1 45.7 92.6 17.6 83.6 56.2 - 56.4 38.7 -
MPS-Net (CVPR’22) [13] 84.3 52.1 99.7 7.6 96.7 62.8 9.6 69.4 47.4 3.6
Zhang (CVPR’23) [54] 83.4 51.7 98.9 7.2 98.2 62.5 8.6 73.2 51.0 3.6
GLoT (CVPR’23) [14] 80.7 50.6 96.3 6.6 93.9 61.5 7.9 67.0 46.3 3.6
Bi-CF (MM’23) [15] 73.4 51.9 89.8 8.8 95.5 62.7 7.7 63.9 46.1 3.1
PMCE (ICCV’23) [30] 69.5 46.7 84.8 6.5 79.7 54.5 7.1 53.5 37.7 3.1
UNSPAT (WACV’24) [17] 75.0 45.5 90.2 7.1 94.4 60.4 9.2 58.3 41.3 3.8
ARTS (Ours) 67.7 46.5 81.4 6.5 71.8 53.0 7.4 51.6 36.6 3.1

learning rate of 3 × 10−5. We set layer number 𝐿1 = 3 and 𝐿2 = 1
and use feature dimension𝐶1 = 256 and𝐶2 = 512. The experiments
are implemented by PyTorch on a single NVIDIA RTX 4090 GPU.

4.3 Comparison with State-of-the-art Methods
4.3.1 Comparison with Video-based Methods. As shown in
Table 1, we report the results of our model on popular HMR bench-
marks: 3DPW, MPI-INF-3DHP, and Human3.6M. Our ARTS sur-
passes existing state-of-the-art video-based methods in both per-
frame accuracy and temporal consistency metrics. Specifically, com-
pared to the previous state-of-the-art method PMCE [30], our model
achieves a reduction of 2.6% (from 69.5𝑚𝑚 to 67.7𝑚𝑚), 9.9% (from
79.7𝑚𝑚 to 71.8𝑚𝑚), and 3.6% (from 53.5𝑚𝑚 to 51.6𝑚𝑚) in MPJPE
metric on 3DPW, MPI-INF-3DHP, and Human3.6M datasets, respec-
tively. Next, we analyze the limitations of previous video-based
methods. GLoT [14], Bi-CF [15], and UNSPAT [17] regress SMPL
parameters based on the low-resolution image features. Despite the
design of complex networks to extract spatial-temporal features,
the image features extracted by the backbone lack sufficient spatial
information about the human body and contain various noises,
resulting in inaccurate and unsmooth human mesh. Although UN-
SPAT [17] and MEAD [46] have slightly lower PA-MPJPE than ours
on the 3DPW dataset, MEAD utilizes ViT [55] as the backbone
and their performance on other error metrics and datasets is much
higher. PMCE [30] also incorporates 3D skeletons, but it integrates
skeletons as a low-dimension feature. This limitation results in
lower reconstruction accuracy of PMCE. Although PMCE achieves
a marginally better Accel than ours by 0.3𝑚𝑚/𝑠2 on the MPI-INF-
3DHP dataset, it utilizes more 2D datasets with diverse scenes for
the training of the SMPL regression network and its estimation
error MPJPE is significantly higher than ours by 7.9𝑚𝑚.

Different from previous methods, our ARTS effectively utilizes
the disentangled skeletal representations for different SMPL param-
eters regression, including accurate joint position (lower MPJPE
and PA-MPJPE), temporally consistent bone length (lower MPVPE),

Table 2: Evaluation of state-of-the-art methods on cross-
domain generalization. All methods do not use 3DPW for
training but evaluate on 3DPW dataset.

Method
3DPW

MPJPE ↓PA-MPJPE ↓MPVPE ↓Accel ↓

Im
ag
e-
ba
se
d

Pose2Mesh [3] (ECCV’20) 88.9 58.3 106.3 22.6
HybrIK [19] (CVPR’21) 80.0 48.8 94.5 25.1
GTRS [5] (MM’22) 88.5 58.9 106.2 25.0
CLIFF [4] (CVPR’22) 85.4 53.6 100.5 -
SimHMR [6] (MM’23) 81.3 49.5 102.8 -
ScoreHMR [7] (CVPR’24) - 50.5 - 11.1

Vi
de
o-
ba
se
d

VIBE [10] (CVPR’20) 93.5 56.5 113.4 27.1
TCMR [12] (CVPR’21) 95.0 55.8 111.5 7.0
MPS-Net [13] (CVPR’22) 91.6 54.0 109.6 7.5
INT [16] (ICLR’23) 90.0 49.7 105.1 23.5
GLoT [14] (CVPR’23) 89.9 53.5 107.8 6.7
PMCE [30] (ICCV’23) 81.6 52.3 99.5 6.8
Bi-CF [15] (MM’23) 78.3 53.7 95.6 8.6
ARTS (Ours) 69.9 48.8 85.6 6.6

and precise human motion (lower Accel). Therefore, we achieve
more accurate and temporally consistent human mesh recovery.

4.3.2 Cross-dataset Evaluation Results. To evaluate the gener-
alization ability of our model, we conduct cross-dataset evaluation.
Following previous methods [14, 15, 30], we train our model on the
MPI-INF-3DHP and Human3.6M datasets and evaluate it on 3DPW
dataset. As illustrated in Table 2, compared with image-based and
video-based methods that report cross-dataset evaluation results,
our ARTS shows a significant improvement in both per-frame accu-
racy and temporal consistency. Specifically, compared to Bi-CF [15],
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Table 3: Ablation study for different components in semi-
analytical SMPL regressor on 3DPW dataset.

Module 3DPW
TIK MCR BSF MPJPE ↓ PA-MPJPE ↓ MPVPE ↓ Accel ↓
✗ ✗ ✗ 72.2 51.5 87.8 15.5
✓ ✗ ✗ 69.5 47.6 85.3 10.6
✗ ✓ ✗ 70.5 48.9 86.1 6.7
✗ ✗ ✓ 70.7 48.3 83.6 15.2
✓ ✗ ✓ 68.9 46.6 82.3 11.4
✓ ✓ ✗ 68.7 46.9 83.4 6.6
✗ ✓ ✓ 68.6 47.1 82.6 6.7
✓ ✓ ✓ 67.7 46.5 81.4 6.5

our model brings obvious improvements in the accuracy metrics
MPJPE, PA-MPJPE, and MPVPE by 10.7% (from 78.3𝑚𝑚 to 69.9𝑚𝑚),
8.9% (from 53.7𝑚𝑚 to 48.9𝑚𝑚), and 10.5% (from 95.6𝑚𝑚 to 85.6𝑚𝑚),
respectively. Additionally, we obtain a further 23.3% reduction (from
8.6𝑚𝑚/𝑠2 to 6.6𝑚𝑚/𝑠2) in the temporal consistency metric Accel.
These results demonstrate the robust cross-domain generalization
ability of our model, which is primarily attributed to our effective
utilization of disentangled skeletal representations. The image fea-
tures extracted by the CNN backbone [9] vary significantly across
different datasets, while the representation of the skeleton is quite
similar across datasets. Therefore, the full utilization of the skeleton
enhances the overall robustness of our model.

4.4 Ablation Study
4.4.1 Component-wise Ablation of Semi-analytical SMPL
Regressor. We conduct experiments on the 3DPW dataset to illus-
trate the effects of three proposed components in semi-analytical
SMPL regressor: Temporal Inverse Kinematics (TIK), Bone-guided
Shape Fitting (BSF), and Motion-Centric Refinement (MCR). As
shown in Table 3, the absence of the entire semi-analytical SMPL
regressor (Row 1), which does not utilize skeletons, leads to an
increase in MPJPE and Accel by 4.5𝑚𝑚 and 9.0𝑚𝑚/𝑠2, respectively.
Regarding each module, the utilization of TIK (Row 2) results in
a decrease of 2.7𝑚𝑚 in MPJPE, while the MCR (Row 3) module
notably decreases Accel by 8.8𝑚𝑚/𝑠2. Furthermore, the inclusion
of BSF (Row 4) leads to a reduction of 4.2𝑚𝑚 in MPVPE. Removing
these modules from the overall model yields similar effects (Row
5-8), demonstrating the significant role of TIK in enhancing pose
regression accuracy, BSF in improving shape regression accuracy,
and MCR in enhancing the smoothness of human motion. These
results demonstrate the critical importance of each component in
achieving superior performance.

4.4.2 Different Inverse Kinematics. We conduct experiments
on the 3DPW dataset to explore the effectiveness of our proposed
Temporal Inverse Kinematics (TIK). Compared to Frame-based In-
verse Kinematics (FIK) similar to HybrIK [19], TIK utilizes multi-
head self-attention to fuse temporal cues of joint rotations. We
compared the robustness of TIK and FIK when adding Gaussian
noise to the skeleton. The results are shown in Table 4 (Row 1-6),

Table 4: Ablation study for different designs of the inverse
kinematics, shape fitting, and feature fusion on 3DPW.

Module 3DPW
Aspect Method MPJPE ↓ PA-MPJPE ↓MPVPE ↓ Accel ↓

Frame-IK
0% 68.3 46.8 82.1 9.4
2% 71.1 48.9 85.4 19.3
10% 97.9 67.2 116.0 57.2

Temporal-IK
0% 67.7 46.5 81.4 6.5
2% 68.3 46.8 82.1 7.2
10% 76.1 52.5 91.4 26.9

Shape Fitting
Analytics 69.5 48.0 83.2 6.5
MLP 68.4 46.9 82.4 6.6

Analytical-MLP 67.7 46.5 81.4 6.5

Feature Fusion
GRU 68.8 47.1 82.9 7.6
SA 68.9 47.4 82.4 7.7

Motion-CA 67.7 46.5 81.4 6.5
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Figure 4: Ablation study for different sequence lengths 𝑇 in
terms of MPJPE (left) and Accel (right) on 3DPW dataset.

when only 2% Gaussian noise is added, TIK can maintain the accu-
racy and consistency, while the Accel of FIK increases by 9.9𝑚𝑚/𝑠2

and its accuracy also decreases. When 10% noise is added, although
both TIK and FIK have great errors, TIK exhibits a smaller decline
(12.4%) than FIK (43.3%) in MPJPE. These results demonstrate that
our TIK is more robust for video-based HMR.

4.4.3 Different Shape Fitting Strategies. As illustrated in Table
4 (Row 7-9), we investigate the impact of different shape fitting
strategies. The results demonstrate that utilizing only the analytics
leads to a reduction of 1.8𝑚𝑚 in MPVPE, whereas employing only
the MLP results in a similar decrease of 1.0𝑚𝑚. Our Analytical-
MLP achieves the best performance. The analytics-only strategy
discussed in Section 3.3.2 and Equation 8 provides a shape with
minimal error since the estimated bone length contains errors. The
MLP-only strategy often leads to overfitting and ineffective body
shape estimation due to insufficient body shape data. Our proposed
analytical-MLP initializes MLP with the inverse matrix of joint
regression and shape blend matrix, which offers strong prior for
MLP while maintaining flexibility to errors of bone length.

4.4.4 Different Feature Fusion Strategies. Previous video-based
HMR methods mainly focus on the design of image feature fusion.
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Table 5: Ablation study for different 2D pose detections on
Human3.6M dataset.

Method
Human3.6M

MPJPE ↓ PA-MPJPE ↓ MPVPE ↓ Accel ↓

PMCE (SH [56]) 56.4 39.0 64.5 3.2

Ours (SH [56]) 54.6 38.5 63.3 3.3

PMCE (Detectron [57]) 55.9 39.0 64.1 3.2

Ours (Detectron [57]) 53.7 38.1 62.8 3.2

PMCE (CPN [32]) 53.5 37.7 61.3 3.1

Ours (CPN [32]) 51.6 36.6 60.2 3.1

PMCE (GT) 36.3 26.8 46.2 2.2

Ours (GT) 33.7 24.8 45.7 2.0

As illustrated in Table 4 (Row 10-12), utilizing GRU networks sim-
ilar to VIBE [10] and TCMR [12] leads to a reduction in Accel by
1.1𝑚𝑚/𝑠2, whereas employing Self-Attention methods (SA) simi-
lar to GLoT [14] and Bi-CF [15] results in a reduction in Accel by
1.2𝑚𝑚/𝑠2. Furthermore, both approaches exhibit a decrease in accu-
racy. ARTS leverages Motion-centric Cross-Attention (Motion-CA)
to guide the fusion of image features, which enables the network
to estimate temporally consistent human movements.

4.4.5 Impact of Sequence Lengths. For video-based HMRmeth-
ods, sequence length has a direct impact on the performance. Al-
though the 16-frames input length is commonly used for fair com-
parison, exploring the impact of different input lengths is also
important. As shown in Figure 4, increasing the sequence length 𝑇
can improve the performance of both MPJPE (left) and Accel (right)
on the 3DPW dataset. These results validate the effectiveness of
our model in extracting and leveraging temporal cues of the human
skeletons and image features within the sequence.

4.4.6 Impact of 2D Pose Detections. To investigate the impact
of the 2D pose detectors used in the skeleton estimation and disen-
tanglement, we conduct experiments using different 2D poses (e.g.,
SH [56], Detectron [57], CPN [32]) and Ground Truth (GT) pose as
inputs. Table 5 compares PMCE[30] with ours on the Human3.6M
dataset. The results indicate that ARTS outperforms PMCE across
different 2D pose inputs. Moreover, our model has the potential to
benefit from the development of 2D pose detectors and the experi-
ment with GT inputs shows the lower bound of our method.

4.5 Qualitative Evaluation
Figure 5 shows the qualitative comparison among the previous
state-of-the-art methods GLoT [14], PMCE [30], and our ARTS
on the in-the-wild 3DPW dataset. Compared to GLoT that solely
relies on image features, and PMCE that does not utilize the SMPL
model as prior, our ARTS achieves more accurate and reasonable
human meshes by using robust skeletons in various challenging
scenarios, including self-interactions (Row 1), self-occlusion (Row
2), occlusion by others (Row 3), severe object occlusion (Row 4),
low-light scene (Row 5), and image truncation (Row 6).

Input ARTS (Ours)GLoT PMCE

Figure 5: Qualitative comparison among GLoT (green mesh),
PMCE (pink mesh) and our ARTS (blue mesh) on the chal-
lenging 3DPW dataset.

5 CONCLUSION
In this paper, we present a novel semi-Analytical Regressor using
disenTangled Skeletal representations for human mesh recovery
from videos (ARTS), which mainly consists of two parts: 1) 3D
skeleton estimation and disentanglement and 2) regressing SMPL
parameters based on a semi-analytical SMPL regressor using the
disentangled skeletal representations and image features. ARTS first
estimates the 3D human skeletons from images and decouples them
into joint position, human motion, and bone length. To estimate
SMPL parameters from disentangled skeletal representations, we
propose a semi-analytical SMPL regressor, which contains temporal
inverse kinematics, bone-guided shape fitting, and motion-centric
refinement modules. ARTS achieves state-of-the-art performance
on multiple 3D human pose and shape estimation benchmarks. The
cross-dataset evaluation and qualitative evaluation demonstrate
the generalization ability and robustness of our ARTS. We hope our
ARTS can further bridge the gap between human pose estimation
and video-based human mesh recovery.
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