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This supplemental material contains the following parts:
(1) The architecture of 3D pose estimation.
(2) The derivation of Bone-Guided Shape Fitting.
(3) Additional quantitative results.
(4) Details about loss functions.
(5) Additional visualization results.
Our code is available at the anonymous page https://anonymous.
4open.science/r/ARTS.

1 ARCHITECTURE OF 3D POSE ESTIMATION
Figure 1 shows the detailed architecture of the proposed dual-stream
3D pose estimation. Firstly, we utilize the off-the-shelf 2D pose
dectors [1, 2] to obtain the 2D skeletons 𝑆2𝐷∈ R𝑇×𝐾×2 from video
frames. Then, we project the 2D skeletons to high-dimensional joint
features𝑋∈ R𝑇×𝐾×𝐶1 . We add the spatial and temporal embeddings
to joint features and feed joint features to the dual-stream Trans-
former network, which consists of a spatial-temporal Transformer
and a temporal-spatial Transformer in each block. Subsequently, we
add the output of two streams and feed it to the subsequent block.
Finally, the joint features after 𝐿1 blocks dual-stream Transformer
are regressed from𝐶1 to 3 to obtain the 3D skeletons 𝑆3𝐷∈ R𝑇×𝐾×3.

2 DERIVATION OF BONE-GUIDED SHAPE
FITTING

SMPLModel. In this work, we employ the SMPL [3] human model
for human pose and shape representation. The SMPL model con-
trols the human mesh vertices𝑀∈ R𝑉 ×3 through a few number of
pose and shape parameters, where 𝑉 = 6890. The pose parameters
𝜃∈ R72 use 3-dimension axis angle to represent relative 3D rotation
of𝐾 ′ = 24 joints, 𝜃 = {𝜃1, 𝜃2, ..., 𝜃𝐾 ′ }. The shape parameters 𝛽∈ R10

are parameterized by the first 10 principal components of the PCA
body shape basis. SMPL provides a differentiable blend function
M(𝛽, 𝜃 ) that maps the pose and shape parameters to the specific
human mesh, which can be expressed as follows:

M(𝛽, 𝜃 ) = F (𝑇𝑃 (𝛽, 𝜃 ), 𝐽 (𝛽), 𝜃,W), (1)

𝑇𝑃 (𝛽, 𝜃 ) = 𝑇 + 𝐵𝑆 (𝛽) + 𝐵𝑃 (𝜃 ), (2)
where 𝐵𝑆 (𝛽) and 𝐵𝑃 (𝜃 ) represent the shape blend and pose blend
offsets for the template human mesh 𝑇 , F (·) is the standard linear
blend skinning function,W is the blend weights pre-trained by
large-scale datasets.
Shape Parameters Derivation. In the blend function, the SMPL
defines the joint locations in the rest pose as a function of the body
shape parameters 𝐽 (𝛽), which is calculated as follows:

𝐽 (𝛽) =𝑊 (𝑇 + 𝐵𝑆 (𝛽)), (3)

𝐵𝑆 (𝛽) =
|𝛽 |∑︁
𝑛=1

𝛽𝑛𝑆𝑛, (4)

Table 1: Comparison with images-based methods that use
3DPW dataset for training. ‘†’ represents training w/o 3DPW
training dataset. The top two best results are highlighted in
bold and underlined, respectively.

Method 3DPW
MPJPE ↓PA-MPJPE ↓PVE ↓ACCEL ↓

Im
ag
e-
ba
se
d

ROMP [4] (ICCV’21) 79.7 49.7 94.7 -
METRO [5] (ECCV’22) 77.1 47.9 88.2 -
CLIFF [6] (ECCV’22) 72.0 45.7 85.3 24.7
MotionBERT [7] (ICCV’23) 76.9 47.2 88.1 -
IKOL [8] (AAAI’23) 73.3 45.5 86.4 -
SimHMR [9] (MM’23) 73.3 45.3 85.4 -
ShapeBoost [10] (AAAI’24) 75.3 44.6 - -
DPMesh [11] (CVPR’24) 73.6 47.4 90.7 -

ARTS (Ours)† 69.9 48.8 85.6 6.6
ARTS (Ours) 67.7 46.5 81.4 6.5

where𝑊 ∈ R𝐾×6890 is the joint regression matrix that obtains joints
from human mesh, 𝛽 =

[
𝛽1, ..., 𝛽 |𝛽 |

]𝑇 , |𝛽 | = 10 is the number
of linear shape coefficients. The 𝑆𝑛∈ R3𝑉 represents orthonormal
principal components of shape displacements. By transforming all
the shape displacements to shape blend matrix 𝑆∈ R𝑉 ×3×10, we
can express the joint regression function as:

𝐽 (𝛽) =𝑊 (𝑇 + 𝑆𝛽). (5)

Therefore, to get the bone-aligned shape parameters, we first use
the bone length to obtain the bone-aligned joint locations. Then,
we use joint locations to derive initial shape parameters, which
match the bones and reflect body shape. The equation is as follows:

𝛽′𝑖𝑛𝑖𝑡 = 𝑆
−1 (𝑊 −1 𝐽𝑎𝑙𝑖𝑔𝑛𝑒𝑑 −𝑇 ). (6)

The Bone-Guided Shape Fitting (BSF) estimates the SMPL shape
parameters from the bone length based on Equation 6. However,
estimating human shape from sparse bone length is an ill-posed
problem. Although the initial SMPL shape parameters contains
basic body shape, such as body height and the length of body
parts (e.g., legs and arms), it lacks sufficient information about
body weight (e.g., fat or thin). Therefore, we further refined the
SMPL shape parameters from image features in the Motion-Centric
Refinement (MCR) module.

3 ADDITIONAL QUANTITATIVE RESULTS
Comparison with Image-based Methods. Table 1 compares our
ARTSwith image-basedmethods on the 3DPWdataset. All methods
are trained with the 3DPW dataset. Image-based methods focus
on per-frame accuracy and train advanced networks to extract
image features with additional 2D datasets, such as HRNet [6]

https://anonymous.4open.science/r/ARTS
https://anonymous.4open.science/r/ARTS
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Figure 1: The architecture of 3D pose estimation.

Table 2: Ablation study for human motion padding and bone
length on 3DPW.

Method
3DPW

MPJPE ↓ PA-MPJPE ↓ MPVPE ↓ Accel ↓

Frame Bone Length 68.6 46.7 82.5 6.7

Zero Motion Padding 68.5 47.0 82.7 7.0

ARTS (Ours) 67.7 46.5 81.4 6.5

and Diffusion network [11], which shows high performance on
accuracy. On the contrary, our ARTS utilized the pre-trained CNN
backbone [12] to extract image features following previous video-
based methods [13–15]. Compared to image-based methods that
use the 3DPW dataset for training, our ARTS outperforms the state-
of-the-art methods in the metrics of MPJPE, MPVPE, and Accel and
competitive performance in PA-MPJPE. Due to the superior cross-
dataset generalization ability of our model, ARTS without 3DPW
dataset for training also achieves competitive performance. These
results demonstrate that our ARTS surpasses existing image-based
methods in both per-frame accuracy and temporal consistency for
3D human mesh recovery.
Additional Ablation Study. We conduct more ablation experi-
ments to investigate the effectiveness of our temporal averaged
bone length and temporal averaged human motion padding. As
shown in Table 2, The ’Frame Bone Length’ refers to using only
the bone length of the mid-frame skeleton, which is not robust to
errors in skeleton estimation. The ‘Zero Motion Padding’ refers
to using zero vector to pad the motion sequence rather than the
averaged human motion among video frames, which lacks overall
human motion information. These two strategies show a decrease
in per-frame accuracy and temporal consistency.

4 DETAILS ABOUT LOSS FUNCTIONS
For the training of 3D pose estimation, we use the L1 3D joint loss to
supervise 3D skeletons of all frames, which is calculated as follows:

L 𝑗𝑜𝑖𝑛𝑡 =

𝑇∑︁
𝑡=1




𝑆3𝐷 − 𝑆3𝐷
𝑔𝑡





1
. (7)

For the training of the whole network, we use the following four
loss functions.
Mesh Loss. We calculate the L1 loss between the predicted 3D
mesh vertices 𝑀∈ R𝑉 ×3 and the ground truth 3D mesh vertices
𝑀𝑔𝑡∈ R𝑉 ×3, where𝑉 = 6890 represents the number of SMPL mesh
vertices [3]. The mesh loss is calculated as:

L𝑚𝑒𝑠ℎ =
1
𝑉

𝑉∑︁
𝑖=1



𝑀 −𝑀𝑔𝑡




1 . (8)

Joint Loss.When training the whole network, we use the predicted
human mesh𝑀 to regress joints through the regression matrix𝑊 .
Then, we use the regressed joints of the mid-frame to calculate the
joint loss:

L 𝑗𝑜𝑖𝑛𝑡 =




𝑊𝑀 − 𝑆3𝐷
𝑔𝑡





1
. (9)

Shape Loss. This loss is used to supervise the SMPL human shape.
We calculate the L2 loss between the refined SMPL shape parame-
ters 𝛽𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 and the ground truth SMPL shape parameters 𝛽𝑔𝑡 of
the mid-frame, which can be expressed as:

L𝑠ℎ𝑎𝑝𝑒 =


𝛽𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 − 𝛽𝑔𝑡




2 . (10)

Pose Loss. This loss is used to supervise the SMPL human pose.
The pose loss is calculated by the refined SMPL pose parameters
𝜃𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 and the ground truth SMPL shape parameters 𝜃𝑔𝑡 of the
mid-frame, which is calculated as:

L𝑝𝑜𝑠𝑒 =


𝜃𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑 − 𝜃𝑔𝑡




2 . (11)

Given the four loss functions, the final loss is calculated as:

L = 𝜆𝑚L𝑚𝑒𝑠ℎ + 𝜆 𝑗L 𝑗𝑜𝑖𝑛𝑡 + 𝜆𝑝L𝑝𝑜𝑠𝑒 + 𝜆𝑠L𝑠ℎ𝑎𝑝𝑒 , (12)

where 𝜆𝑚 = 1, 𝜆 𝑗 = 1, 𝜆𝑝 = 0.06, and 𝜆𝑠 = 0.06 in the experiments.

5 ADDITIONAL VISUALIZATION RESULTS
Additional Qualitative Comparison. Figure 2 shows additional
qualitative comparison among the previous state-of-the-art video-
methods GLoT [14], PMCE [15] and our ARTS on the challenging
3DPW dataset. Since PMCE does not use human modal prior (e.g.,
SMPL), it often generates unreasonable human pose and shape. Due
to the effective utilization of 3D skeletons, our ARTS can produce
more accurate and temporal consistent human mesh, especially in
fast motions and severe occlusions.
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Figure 2: Additional qualitative comparison among GLoT [14] (green mesh), PMCE [15] (pink mesh) and our ARTS (blue mesh).
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