Supplemental Materials: ARTS: Semi-Analytical Regressor using
Disentangled Skeletal Representations for Human Mesh Recovery
from Videos

Anonymous Authors

This supplemental material contains the following parts:

(1) The architecture of 3D pose estimation.

(2) The derivation of Bone-Guided Shape Fitting.

(3) Additional quantitative results.

(4) Details about loss functions.

(5) Additional visualization results.

Our code is available at the anonymous page https://anonymous.
4open.science/r/ARTS.

1 ARCHITECTURE OF 3D POSE ESTIMATION

Figure 1 shows the detailed architecture of the proposed dual-stream
3D pose estimation. Firstly, we utilize the off-the-shelf 2D pose
dectors [1, 2] to obtain the 2D skeletons $2P e RT*K*2 from video
frames. Then, we project the 2D skeletons to high-dimensional joint
features X RT*KXC1 We add the spatial and temporal embeddings
to joint features and feed joint features to the dual-stream Trans-
former network, which consists of a spatial-temporal Transformer
and a temporal-spatial Transformer in each block. Subsequently, we
add the output of two streams and feed it to the subsequent block.
Finally, the joint features after L; blocks dual-stream Transformer
are regressed from C to 3 to obtain the 3D skeletons $3P e RT*KX3,

2 DERIVATION OF BONE-GUIDED SHAPE
FITTING

SMPL Model. In this work, we employ the SMPL [3] human model
for human pose and shape representation. The SMPL model con-
trols the human mesh vertices Me RV>3 through a few number of
pose and shape parameters, where V = 6890. The pose parameters
6e R72 use 3-dimension axis angle to represent relative 3D rotation
of K’ = 24 joints, 6 = {64, 02, ..., O~ }. The shape parameters e R10
are parameterized by the first 10 principal components of the PCA
body shape basis. SMPL provides a differentiable blend function
M(B, 0) that maps the pose and shape parameters to the specific
human mesh, which can be expressed as follows:

M(B.0) = F(Tp(B.0),J(B). 0. W), 1)

Ip(.6) =T + Bs(p) + Bp(0), ()
where Bs(f) and Bp(6) represent the shape blend and pose blend
offsets for the template human mesh T, F(+) is the standard linear
blend skinning function,'W is the blend weights pre-trained by
large-scale datasets.

Shape Parameters Derivation. In the blend function, the SMPL
defines the joint locations in the rest pose as a function of the body
shape parameters J(f), which is calculated as follows:

J(B) =W(T +Bs(p)), ®)

18]
Bs(B) = " BaSn. @
n=1

Table 1: Comparison with images-based methods that use
3DPW dataset for training. ‘4’ represents training w/o 3DPW
training dataset. The top two best results are highlighted in
bold and underlined, respectively.

Method SDPW
MPJPE | PA-MPJPE | PVE | ACCEL |

ROMP [4] (ICCV’21) 79.7 49.7 94.7 -
, METRO [5] (ECCV'22) 77.1 47.9 88.2 -
& CLIFF [6] (ECCV’22) 72.0 45.7 853 247
£ MotionBERT [7] (ICCV’23)| 76.9 472 881 -
S IKOL [8] (AAAI'23) 73.3 455 86.4 -
E SimHMR [9] (MM’23) 73.3 453 85.4 -

ShapeBoost [10] (AAAI'24) 75.3 44.6 - -

DPMesh [11] (CVPR’24) 73.6 474 90.7 -

ARTS (Ours)t 69.9 48.8 856 6.6

ARTS (Ours) 67.7 46.5 814 6.5

where We RKX68%0 js the joint regression matrix that obtains joints
from human mesh, f = [ﬁl,...,ﬁw‘]T, |l = 10 is the number
of linear shape coefficients. The S,€ R3" represents orthonormal
principal components of shape displacements. By transforming all
the shape displacements to shape blend matrix Se RV>*3*10 we
can express the joint regression function as:

J(B) =W(T +Sp). ®)

Therefore, to get the bone-aligned shape parameters, we first use
the bone length to obtain the bone-aligned joint locations. Then,
we use joint locations to derive initial shape parameters, which
match the bones and reflect body shape. The equation is as follows:

ﬂl{m‘[ = Sil(wiljaligned - T) (6)
The Bone-Guided Shape Fitting (BSF) estimates the SMPL shape
parameters from the bone length based on Equation 6. However,
estimating human shape from sparse bone length is an ill-posed
problem. Although the initial SMPL shape parameters contains
basic body shape, such as body height and the length of body
parts (e.g., legs and arms), it lacks sufficient information about
body weight (e.g., fat or thin). Therefore, we further refined the

SMPL shape parameters from image features in the Motion-Centric
Refinement (MCR) module.

3 ADDITIONAL QUANTITATIVE RESULTS

Comparison with Image-based Methods. Table 1 compares our
ARTS with image-based methods on the 3DPW dataset. All methods
are trained with the 3DPW dataset. Image-based methods focus
on per-frame accuracy and train advanced networks to extract
image features with additional 2D datasets, such as HRNet [6]
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Figure 1: The architecture of 3D pose estimation.

Table 2: Ablation study for human motion padding and bone
length on 3DPW.

3DPW
Method
MPJPE | PA-MPJPE | MPVPE | Accel |
Frame Bone Length 68.6 46.7 82.5 6.7
Zero Motion Padding| 68.5 47.0 82.7 7.0
ARTS (Ours) 67.7 46.5 81.4 6.5

and Diffusion network [11], which shows high performance on
accuracy. On the contrary, our ARTS utilized the pre-trained CNN
backbone [12] to extract image features following previous video-
based methods [13-15]. Compared to image-based methods that
use the 3DPW dataset for training, our ARTS outperforms the state-
of-the-art methods in the metrics of MPJPE, MPVPE, and Accel and
competitive performance in PA-MPJPE. Due to the superior cross-
dataset generalization ability of our model, ARTS without 3DPW
dataset for training also achieves competitive performance. These
results demonstrate that our ARTS surpasses existing image-based
methods in both per-frame accuracy and temporal consistency for
3D human mesh recovery.

Additional Ablation Study. We conduct more ablation experi-
ments to investigate the effectiveness of our temporal averaged
bone length and temporal averaged human motion padding. As
shown in Table 2, The 'Frame Bone Length’ refers to using only
the bone length of the mid-frame skeleton, which is not robust to
errors in skeleton estimation. The ‘Zero Motion Padding’ refers
to using zero vector to pad the motion sequence rather than the
averaged human motion among video frames, which lacks overall
human motion information. These two strategies show a decrease
in per-frame accuracy and temporal consistency.

4 DETAILS ABOUT LOSS FUNCTIONS

For the training of 3D pose estimation, we use the L1 3D joint loss to
supervise 3D skeletons of all frames, which is calculated as follows:

T
.l:joint = Z HS3D - S;PHl . (7)
=1

For the training of the whole network, we use the following four
loss functions.

Mesh Loss. We calculate the L1 loss between the predicted 3D
mesh vertices Me RV*3 and the ground truth 3D mesh vertices
Mgyre RY*3, where V = 6890 represents the number of SMPL mesh
vertices [3]. The mesh loss is calculated as:

\4
1
Lmesh = V Z ”M - Mgtl’l . (8)
i=1

Joint Loss. When training the whole network, we use the predicted
human mesh M to regress joints through the regression matrix W.
Then, we use the regressed joints of the mid-frame to calculate the
joint loss:

Ljoint = HWM - 52?”1 . )
Shape Loss. This loss is used to supervise the SMPL human shape.
We calculate the L2 loss between the refined SMPL shape parame-

ters By finea and the ground truth SMPL shape parameters f; of
the mid-frame, which can be expressed as:

-[-:shape = “ﬁrefined - ﬁgt”z . (10)
Pose Loss. This loss is used to supervise the SMPL human pose.
The pose loss is calculated by the refined SMPL pose parameters
Orefinea and the ground truth SMPL shape parameters 0y of the
mid-frame, which is calculated as:

LPOSE = ||9refined - egt”z : (11)

Given the four loss functions, the final loss is calculated as:
L=MnLyesh +AjLjoint + Apﬁpose + ASLshape) (12)
where A, = 1,45 =1, Ap = 0.06, and As = 0.06 in the experiments.

5 ADDITIONAL VISUALIZATION RESULTS

Additional Qualitative Comparison. Figure 2 shows additional
qualitative comparison among the previous state-of-the-art video-
methods GLoT [14], PMCE [15] and our ARTS on the challenging
3DPW dataset. Since PMCE does not use human modal prior (e.g.,
SMPL), it often generates unreasonable human pose and shape. Due
to the effective utilization of 3D skeletons, our ARTS can produce
more accurate and temporal consistent human mesh, especially in
fast motions and severe occlusions.
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Figure 2: Additional qualitative comparison among GLoT [14] (green mesh), PMCE [15] (pink mesh) and our ARTS (blue mesh).
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