
A Notation

Table 2: Description for symbols

Symbol Description

ME A family of Goal-conditioned Block MDPs
e Environment index
S Shared state space among environments e 2 E

A Shared action space among environments e 2 E

X
e Specific observation space for environment e

T
e Specific transition dynamic for environment e

G Shared goal space among environments e 2 E

� Shared discount factor among environments e 2 E

be
Environmental factor for environment e
(e.g. background)

B
e Specific environmental factor space for environment e

(i.e. video backgrounds are allowed)

xe
t = xe(st, bet)

Observation determined by state s and environmental
factor be for environment e at timestep t

p(st+1|st, at) State transition shared among environments
qe(bet+1|b

e
t) Environmental factor transition for environment e

X
E = [e2EX

e Joint set of observation spaces
⇡(a|xe, g) Goal-conditioned policy shared among environments
J(⇡) Objective function for policy ⇡
Je(⇡) Objective function for policy ⇡ in environment e

pe⇡(st = g|g)
Probability of achieving goal g under policy ⇡(·|xe, g)

at timestep t in environment e

⇡G(·|xe, g)
Optimal policies which are invariant over all
environments

{ei}Ni=1 = Etrain Training environments
⇢(x, g) = ⇢(g)⇢(x|g) Joint distributions of goals and observations

⇢e⇡(x
e
|g)

Occupancy measure of xe in environment e under
policy ⇡(·|xe, g)

⇢e⇡(x
e) Marginal distribution of ⇢e⇡(xe, g) over goals

✏⇢(x,g)(⇡1 k ⇡2) Averaged Total Variation between policy ⇡1 and ⇡2
⇧ Policy class (i.e. space for all possible policies)

d⇧�⇧(⇢(x, g), ⇢(x, g)0)
⇧�⇧-divergence of two joint distributions ⇢(x, g)
and ⇢(x, g)0 in terms of the policy class ⇧

✏ei(⇡1 k ⇡2) = ✏⇢
ei
⇡ (xei ,g)(⇡1 k ⇡2)

Total Variation between policy ⇡1 and ⇡2 averaged
over joint occupancy measure under policy ⇡ in
training environment ei

✏t(⇡1 k ⇡2) = ✏⇢
t
⇡G

(xt,g)(⇡1 k ⇡2)

Total Variation between policy ⇡1 and ⇡2 averaged
over joint occupancy measure under policy ⇡G in
testing environment t

⇡⇤
The closest policy for training environments in policy
class ⇧ w.r.t.optimal invariant policy ⇡G measured
by averaged Total Variation

Continued on next page

14

Table 2 – continued from previous page

Symbol Description

�
Maximum ⇧�⇧-divergence between occupancy
measure for two different training environments under
given policy ⇡

�
Performance of ⇡⇤ in both training and testing
environments in terms of average TV distance

B
Characteristic set of joint distributions determined by
Etrain and policy class ⇧

� Observation encoder
ze(s) = �(xe(s)) Latent representation of observation xe with state s

⇧� = {w � (�(x), g)}, 8w} Policy class induced by encoder � with any function w

⇢̃(x, g)
The closest occupancy measure in characteristic set B
w.r.t. occupancy measure in testing environment under
⇧�⇧-divergence

{set (a0:t)}
T
t=0 Set of states along trajectory {xe

0, a0, x
e
1, a1, . . . , x

e
T }

{xei
t (a0:t)}

Aligned observations in environment ei for action
sequence {a0, . . . , at�1} (numpy style indexing)

Ralign Replay buffer for aligned transitions

Balign = {xei(seit (ab0:t)), 8ei 2 Etrain}
B
b=1

Batch of aligned observations from all the training
environments

LMMD(�) MMD loss for encoder �
 (z) Random expansion function for latent representation z

LDIFF(�) Difference loss for encoder �
R

e Replay buffer for transitions from environment e
LPA Perfect alignement loss
LRECON Reconstruction loss
� KL divergence coefficient
↵MMD MMD loss coefficient
↵DIFF Difference loss coefficient
Err(�) Latent error rate for encoder �

15

B Algorithm

The main difference between the PA-SF and Skew-Fit are (i) separate replay buffer for each training
environments R = {R

e, e 2 Etrain}, (ii) an additional aligned buffer for the aligned data Ralign =
{R

e
align, e 2 Etrain} and a corresponding aligned sampling procedure, (iii) VAE training uses Eq. (4)

with mini-batches from both replay buffer and aligned buffer. The overall algorithm is described in
Algorithm 1 and implementation details are listed in Appendix E.

Algorithm 1 Perfect Alignment for Skew-Fit (PA-SF).
Require: �-VAE decoder, encoder q�, goal-conditioned policy ⇡✓, goal-conditioned value function

Qw, skew parameter ↵, VAE training schedule, training environments Etrain, replay buffer R =
{R

e, e 2 Etrain}, aligned buffer Ralign = {R
e
align, e 2 Etrain}, coefficients in Eq. (4).

1: for m = 0, . . . ,M � 1 episodes do
2: for e = 0, . . . , N � 1 training environments do . Exploration Rollout
3: Sample goal observation xe(g) ⇠ pe,mskewed and encode as ze(g) = q�(xe(g)).
4: Sample initial observation xe

0 from the environment e.
5: for t = 0, . . . , H � 1 steps do
6: Get action at ⇠ ⇡✓(q�(xe

t), g).
7: Get next state xe

t+1 ⇠ p(· | xe
t , at).

8: Store (xe
t , at, x

e
t+1, x

e(g)) into replay buffer Re.
9: end for

10: end for
11: Sample action sequences {a0:T } by executing the policy

in a random training environment. . Aligned Sampling
12: for e = 0, . . . , N � 1 training environments do
13: Sample initial state xe

0(s
e
0) from the environment e.

14: Rollout action sequence {a0:T } to get {xe
t (s

e
t (a0:t))}

T
t=0.

15: end for
16: Store {xe

t (s
e
t (a0:t))}

T
t=0 in aligned buffer Re

align indexed by a0:t for e 2 Etrain.
17: for i = 0, . . . , I � 1 training iterations do . Policy Gradient
18: Sample transition (xe

t0 , at0 , x
e
t0+1, z

e(g)) ⇠ R
e for all e 2 Etrain.

19: Encode zet0 = q�(xe
t0), z

e
t0+1 = q�(xe

t0+1).
20: (Probability 0.5) replace ze(g) with q�(x0(g)) where x0(g) ⇠ pe,mskewed.
21: Compute new reward r = �||zet0+1 � ze(g)||2.
22: Update ⇡✓ and Qw via SAC on (zet0 , at0 , z

e
t0+1, z

e(g), r).
23: end for
24: for t = 0, ..., H � 1 steps do . Hindsight Relabeling
25: for j = 0, ..., J � 1 steps do
26: Sample future state xe

hj
, t < hj  H � 1 for all e 2 Etrain.

27: Store (xe
t , at, x

e
t+1, q�

⇣
xe
hj
)
⌘

into R
e.

28: end for
29: end for
30: Construct skewed replay buffer distribution pe,m+1

skewed using data
from R

e for all e 2 Etrain. . Skewing Replay Buffers
31: Fine-tune �-VAE on {xe

}
B
b=1 ⇠ pe,m+1

skewed and {xe(set (a
b
0:t))}

B
b=1 ⇠ R

e
aligned

for all e 2 Etrain according to the VAE training schedule and via Eq. (4). . VAE Training
32: end for

16

C Proofs and Discussions

In this section, we provide detailed proofs and statements omitted in the main text. In addition, we
also discuss the assumptions we make in the analysis in detail.

C.1 Illustration of Different MDP Problems

Here, we illustrate different graphical models of related MDPs including Block MDPs (Figure 6(a)),
Goal-conditioned MDPs (Figure 6(b)), and ours Goal-conditioned Block MDPs (GBMDP) (Figure
6(c)). We use the indicator funtion in the Goal-conditioned and GBMDP settings to emphasize that
the reward is sparse. In practice, the goal g may only be indirectly observed as xe(g), such as future
state in pixel space for a particular domain.

st�1

bt�1

at�2

xt�1

rt�1

st

bt

at�1

xt

rt

st+1

bt+1

at

xt+1

rt+1

(a) Block MDPs Zhang et al.
[2020a]

st�1

at�2

1t�1

st

at�1

1t

g

st+1

at

1t+1

(b) Goal-Conditioned MDPs

st�1

bt�1

at�2

xt�1

1t�1

st

bt

at�1

xt

1t

g

st+1

bt+1

at

xt+1

1t+1

(c) Goal-Conditioned Block MDPs

Figure 6: Comparison of graphical models of (a) a Block MDP Du et al. [2019], Zhang et al. [2020a],
(b) a Goal-Conditioned MDP Kaelbling [1993], Schaul et al. [2015], Marcin et al. [2017], and (c) our
proposed Goal-Conditioned Block MDP. The agent takes in the goal g and observation xt, which
is produced by the domain invariant state st and environmental state bt, and acts with action at.
1t denotes the indicator function on whether the inputs are the same state. Note that bt may have
temporal dependence indicated by the dashed edge.

C.2 Proof of Proposition 1

Recall that Proposition 1 bounds the generalization performance by 4 terms: (1) average training en-
vironments’ performance, (2) optimality of the policy class, (3) d⇧�⇧ over all training environments,
and (4) the discrepancy measure between training environments and the target environment.

We begin our analysis by proving the following two Lemmas. For simplicity, we denote p�,e
⇡ (s|g) as

the discounted state density as follows.

p�,e
⇡ (s|g) = (1� �)

1X

t=0

�tpe⇡(st = s|g)

where pe⇡(st = s|g) is the probability of state s under goal-conditioned policy ⇡(·|xe, g) at step t
in domain e (marginalized over the initial state s0 ⇠ p(s0), previous actions ai ⇠ ⇡(ai|xe

i , g), i =
0, . . . , t� 1, and previous states si ⇠ p(si|si�1, ai�1), i = 0, . . . , t� 1).
Lemma 1. 8e 2 Eall, let ⇢e⇡(xe, g) denote joint distributions of g ⇠ G and xe under policy ⇡(·|xe, g),
then 8⇡1,⇡2, we have

|Je(⇡1)� Je(⇡2)| 
2�

1� �
E⇢e⇡1 (xe,g) [DTV (⇡1(·|x

e, g) k ⇡2(·|x
e, g))]

Proof. By the definition of Je(⇡), we have

|Je(⇡1)� Je(⇡2)| = |Eg⇠G [p
�,e
⇡1

(g|g)� p�,e
⇡2

(g|g)]|

 Eg⇠G [|p
�,e
⇡1

(g|g)� p�,e
⇡2

(g|g)|]

17

Thus, it suffices to prove 8g 2 G,

|p�,e
⇡1

(g|g)� p�,e
⇡2

(g|g)| 
2�

1� �
E⇢e⇡1 (xe|g) [DTV (⇡1(·|x

e, g) k ⇡2(·|x
e, g))]

First, we consider |pe⇡1
(sT = s|g)� pe⇡2

(sT = s|g)| for some fixed step T . Denote {⇡1 < t,⇡2 � t}
as another policy which imitates policy ⇡1 for first t steps and then imitates ⇡2 for the rest. By the
telescoping operation, we have 8s 2 S, g 2 G

|pe⇡1
(sT = s|g)� pe⇡2

(sT = s|g)| 
T�1X

t=0

|pe⇡1<t,⇡2�t(sT = s|g)� pe⇡1<t+1,⇡2�t+1(sT = s|g)|

=
T�1X

t=0

P e
t (s|⇡1,⇡2, g, T)

where we use P e
t (s|⇡1,⇡2, g, T) to denote each term for brevity.

P e
t (s|⇡1,⇡2, g, T) = |

Z

st,a
pe⇡1

(st|g)⇡2(a|x
e(st), g)p

e
⇡2
(sT = s|st, a, g)dstda�

�

Z

st,a
pe⇡1

(st|g)⇡1(a|x
e
t (st), g)p

e
⇡2
(sT = s|st, a, g)dstda|



Z

st,a
pe⇡1

(st|g)|⇡1(a|x
e(st), g)� ⇡2(a|x

e(st), g)|p
e
⇡2
(sT = s|st, a, g)dstda



Z

st

pe⇡1
(st|g)

✓Z

a
|⇡1(a|x

e(st), g)� ⇡2(a|x
e(st), g)|da

◆
dst

 2

Z

st

pe⇡1
(st|g)DTV (⇡1(·|x

e(st), g) k ⇡2(·|x
e(st), g))dst

Here, pe⇡2
(sT = s|st, a, g) is the probability of achieving state s at step T under policy ⇡2(·|xe, g)

when it takes action a at st. Noticing that, the upper bound for P e
t (s|⇡1,⇡2, g, T) is not dependent

on T . Thus, we have 8s 2 S, g 2 G,

|p�,e
⇡1

(s|g)� p�,e
⇡2

(s|g)| (1� �)
1X

T=0

�T
T�1X

t=0

P e
t (s|⇡1,⇡2, g, T)

=(1� �)
1X

t=0

�t+1

1� �
P e
t (s|⇡1,⇡2, g, t+ 1)

2
1X

t=0

�t+1

Z

st

pe⇡1
(st|g)DTV (⇡1(·|x

e(st), g) k ⇡2(·|x
e(st), g))dst

=2�

Z

st

1X

t=0

�tpe⇡1
(st|g)DTV (⇡1(·|x

e(st), g) k ⇡2(·|x
e(st), g))dst

=
2�

1� �
E⇢e⇡1 (xe|g) [DTV (⇡1(·|x

e, g) k ⇡2(·|x
e, g)]

The Lemma holds by averaging over g ⇠ G.

Lemma 1 bounds the objective function between two policies ⇡1 and ⇡2 with the Total Variation
distance. Recall that we use ✏⇢(x,g)(⇡1 k ⇡2) to denote the average DTV between the two policies
under the joint distribution. We refer to ⇡G as some optimal and invariant policy. Then, we have the
following Lemma.
Lemma 2. For any policy class ⇧ and two joint distributions ⇢s(x, g) and ⇢t(x, g), suppose

⇡⇤
s,t = argmin

⇡02⇧
✏⇢

s(x,g)(⇡0
k ⇡G) + ✏⇢

t(x,g)(⇡0
k ⇡G)

18

then we have for any ⇡ 2 ⇧

✏⇢
t(x,g)(⇡ k ⇡G)  ✏⇢

s(x,g)(⇡ k ⇡G) + sup
⇡,⇡02⇧

���✏⇢
s(x,g)(⇡ k ⇡0)� ✏⇢

t(x,g)(⇡ k ⇡0)
���

| {z }
d⇧�⇧(⇢s(x,g),⇢t(x,g))

+�s,t

where �s,t = ✏⇢
s(x,g)(⇡⇤

s,t k ⇡G) + ✏⇢
t(x,g)(⇡⇤

s,t k ⇡G).

Proof. Noticing that DTV is a distance metric that satisfies the triangular inequality and is symmetric.
Thus, we have 8⇡1,⇡2,⇡3 and any joint distribution ⇢(x, g).

✏⇢(x,g)(⇡1 k ⇡2) = E⇢(x,g)[DTV(⇡1(·|x, g) k ⇡2(·|x, g))]

 E⇢(x,g)[DTV(⇡1(·|x, g) k ⇡3(·|x, g)) +DTV(⇡3(·|x, g) k ⇡2(·|x, g))]

= ✏⇢(x,g)(⇡1 k ⇡3) + ✏⇢(x,g)(⇡3 k ⇡2)

Based on this property, we have

✏⇢
t(x,g)(⇡ k ⇡G)  ✏⇢

t(x,g)(⇡⇤
s,t k ⇡G) + ✏⇢

t(x,g)(⇡ k ⇡⇤
s,t)

 ✏⇢
t(x,g)(⇡⇤

s,t k ⇡G) + ✏⇢
s(x,g)(⇡ k ⇡⇤

s,t) +
���✏⇢

t(x,g)(⇡ k ⇡⇤
s,t)� ✏⇢

s(x,g)(⇡ k ⇡⇤
s,t)
���

 ✏⇢
s(x,g)(⇡ k ⇡G) + ✏⇢

s(x,g)(⇡⇤
s,t k ⇡G) + ✏⇢

t(x,g)(⇡⇤
s,t k ⇡G)

+
���✏⇢

t(x,g)(⇡ k ⇡⇤
s,t)� ✏⇢

s(x,g)(⇡ k ⇡⇤
s,t)
���

 ✏⇢
s(x,g)(⇡ k ⇡G) + d⇧�⇧(⇢

s(x, g), ⇢t(x, g)) + �s,t

Lemma 2 resembles the seminal bound in domain adaptation theory Ben-David et al. [2010]. Then,
we extend the generalization bound to the GBMDP setting. We consider the joint distributions
⇢E = {⇢ei(x, g)}Ni=1 and define the characteristic set as follows. 2

Definition 2. The characteristic set B(�, E|⇧) is a set of joint distributions ⇢(x, g) which 8ei 2 E
with ⇢ei(x, g),

d⇧�⇧(⇢(x, g), ⇢
ei(x, g))  �

In other words, the characteristic set is a set of joint distributions that is close to the train-
ing environments’ distributions in terms of the d⇧�⇧ divergence. Notice that if we define
�E = maxe,e02E d⇧�⇧(⇢e(x, g), ⇢e

0
(x, g)), then we have that the convex hull ⇤({⇢ei(x, g)}Ni=1) ⇢

B(�E , E|⇧). Namely, the characteristic set contains all the distributions of convex combinations of
training environments’ distributions Sicilia et al. [2021].
Proposition 3. For any policy class ⇧, a set of source joint distributions ⇢E = {⇢ei(x, g)}Ni=1 and the
target distribution ⇢t(x, g), suppose for any unit sum weights {↵i}

N
i=1, i.e., 0  ↵i  1,

P
i ↵i = 1.

�↵ =
NX

i=1

↵i✏
ei(⇡⇤

↵ k ⇡G) + ✏t(⇡⇤
↵ k ⇡G), ⇡⇤

↵ = argmin
⇡02⇧

NX

i=1

↵i✏
ei(⇡0

k ⇡G) + ✏t(⇡0
k ⇡G)

where ✏ei and ✏t are short of ✏⇢
ei and ✏⇢

t

respectively. Let

⇢̃(x, g) = argmin
⇢2B(�E ,E|⇧)

d⇧�⇧(⇢(x, g), ⇢
t(x, g))

Then, 8⇡ 2 ⇧

✏t(⇡ k ⇡G) min
↵

NX

i=1

↵i✏
ei(⇡ k ⇡G) + �↵ + max

e,e02E
d⇧�⇧(⇢

e(x, g), ⇢e
0
(x, g))

| {z }
�E

+ d⇧�⇧(⇢̃(x, g), ⇢
t(x, g))

2ei is only used as an index here.

19

Proof. By Lemma 2, we have 8ei 2 E

✏t(⇡ k ⇡G)  ✏ei(⇡ k ⇡G) + d⇧�⇧(⇢
ei(x, g), ⇢t(x, g)) + �ei,t

Then, we have for any unit sum weights ↵

✏t(⇡ k ⇡G) 
NX

i=1

↵i✏
ei(⇡ k ⇡G) +

NX

i=1

↵id⇧�⇧(⇢
ei(x, g), ⇢t(x, g)) +

NX

i=1

↵i�ei,t

Noticing that
NX

i=1

↵i�ei,t =
NX

i=1

↵i

✓
min
⇡02⇧

✏ei(⇡0
k ⇡G) + ✏t(⇡0

k ⇡G)

◆

 min
⇡02⇧

NX

i=1

↵i✏
ei(⇡0

k ⇡G) + ✏t(⇡0
k ⇡G)

= �↵

Thus, we have

✏t(⇡ k ⇡G) 
NX

i=1

↵i✏
ei(⇡ k ⇡G) +

NX

i=1

↵id⇧�⇧(⇢
ei(x, g), ⇢t(x, g)) + �↵

Since d⇧�⇧ divergence also follows the triangular inequality Ben-David et al. [2010], we have

✏t(⇡ k ⇡G) 
NX

i=1

↵i✏
ei(⇡ k ⇡G) +

NX

i=1

↵id⇧�⇧(⇢
ei(x, g), ⇢̃(x, g)) + d⇧�⇧(⇢̃(x, g), ⇢

t(x, g)) + �↵



NX

i=1

↵i✏
ei(⇡ k ⇡G) + �↵ + �E + d⇧�⇧(⇢̃(x, g), ⇢

t(x, g))

The proposition holds by taking the minimum over ↵.

Finally, we are able to provide the formal statements and proofs for Proposition 1 as follows.
Proposition 1 (Formal). For any ⇡ 2 ⇧, we consider the occupancy measure ⇢Etrain =
{⇢ei⇡ (x

ei , g)}Ni=1 for training environments and ⇢t⇡G
(xt, g) for the target environment. For simplicity,

we use ✏ei and ✏t as the abbreviations. Considering

� =
1

N

NX

i=1

✏ei(⇡⇤
k ⇡G) + ✏t(⇡⇤

k ⇡G), ⇡⇤ = argmin
⇡02⇧

NX

i=1

✏ei(⇡0
k ⇡G)

and � = maxe,e02Etrain d⇧�⇧(⇢e⇡(x
e, g), ⇢e

0

⇡ (x
e0 , g)), the characteristic set B(�, Etrain|⇧). Define

⇢̃(x, g) = argmin
⇢2B(�,Etrain|⇧)

d⇧�⇧(⇢(x, g), ⇢
t
⇡G

(xt, g))

Then, we have

J t(⇡G)� J t(⇡) 
2�

1� �

"
1

N

NX

i=1

✏ei(⇡ k ⇡G) + �+ � + d⇧�⇧(⇢̃(x, g), ⇢
t
⇡G

(xt, g))

#

Proof. By Lemma 1 and Proposition 3, we have

J t(⇡G)� J t(⇡) 
2�

1� �
✏t(⇡ k ⇡G)


2�

1� �

"
min
↵

NX

i=1

↵i✏
ei(⇡ k ⇡G) + �↵ + � + d⇧�⇧(⇢̃(x, g), ⇢

t
⇡G

(x, g))

#

20


2�

1� �

"
1

N

NX

i=1

✏ei(⇡ k ⇡G) + �↵= 1
N
+ � + d⇧�⇧(⇢̃(x, g), ⇢

t
⇡G

(x, g))

#

Noticing that � and �↵= 1
N

have different definitions. But, we have

�↵= 1
N

= min
⇡02⇧

1

N

NX

i=1

✏ei(⇡0
k ⇡G) + ✏t(⇡0

k ⇡G)


1

N

NX

i=1

✏ei(⇡⇤
k ⇡G) + ✏t(⇡⇤

k ⇡G)

= �

where ⇡⇤ = argmin⇡02⇧

PN
i=1 ✏

ei(⇡0
k ⇡G). Thus, we have

J t(⇡G)� J t(⇡) 
2�

1� �

"
1

N

NX

i=1

✏ei(⇡ k ⇡G) + �+ � + d⇧�⇧(⇢̃(x, g), ⇢
t
⇡G

(xt, g))

#

This completes the proof.

Remark 1. The informal version Proposition 1 omits unessential constant part and the definition of
the characteristic set.

C.3 Proof of Proposition 2

Here, we provide the formal proof and statement of Proposition 2. To begin with, we prove the
following Lemma.
Lemma 3. For two goal-conditioned policies ⇡,⇡0 of the Goal-conditioned MDP hS,G,A, p, �i,
suppose that maxs,g DTV(⇡(·|s, g) k ⇡0(·|s, g))  ✏, then we have DTV(⇢⇡(s, g) k ⇢⇡

0
(s, g))  �✏

1�� .

Proof. The proof follows the perturbation theory in Appendix B of Schulman et al. [2015]. By the
definition of total variation distance, it suffices to prove that 8g, DTV(⇢⇡(s|g) k ⇢⇡

0
(s|g))  �✏

1�� ,
where ⇢⇡(s|g) denotes the discounted occupancy measure of s under policy ⇡(·|s, g). Consequently,
in the following notations, we may omit specifying g if unambiguous.

First, we refer P⇡ as the state transition matrix under policy ⇡(·|s, g), i.e., (P⇡)xy =
R
a p(s

0 = x|s =
y, a)⇡(a|s = y, g)da and subsequently, G⇡ = I + �P⇡ + �2P 2

⇡ + · · · = (I � �P⇡)�1. Then, the
transition discrepancy matrix is defined as � = P⇡0 � P⇡ . Observing that

G�1
⇡ �G�1

⇡0 = �(P⇡0 � P⇡)

= ��

) G⇡0 �G⇡ = �G⇡0�G⇡

Thus, for any initial state distribution ⇢0, we have

DTV(⇢
⇡(s|g) k ⇢⇡

0
(s|g)) =

1

2

X

s

|⇢⇡(s|g)� ⇢⇡
0
(s|g)|

=
1� �

2
k (G⇡ �G⇡0)⇢0 k1

=
(1� �)�

2
k G⇡0�G⇡⇢0 k1


(1� �)�

2
k G⇡0 k1k � k1k G⇡ k1k ⇢0 k1

Noticing that P⇡, P⇡0 are matrices whose columns have sum 1. Thus, k G⇡ k1=k G⇡0 k1=
1

1�� .
Furthermore,

k � k1 = max
y

Z

x

����
Z

a
p(s0 = x|s = y, a)(⇡0(a|s = y, g)� ⇡(a|s = y, g))da

���� dx

21

= max
y

Z

a

Z

x
p(s0 = x|s = y, a) |⇡0(a|s = y, g)� ⇡(a|s = y, g)| dxda

= max
y

2DTV(⇡(·|s = y, g) k ⇡0(·|s = y, g))

 2✏

In all, we have

DTV(⇢
⇡(s|g) k ⇢⇡

0
(s|g)) 

�✏

1� �

To state Proposition 2 formally, we define the L-lipschitz policy class ⇧E
�,L, whose � : XE

! Z

maps the input xes to latent vector zs. 3

⇧E
�,L = {w(�(xe), g), 8w|8g 2 G, z, z0 2 �(XE), DTV(w(z, g) k w(z0, g))  L k z � z0 k2}

Namely, the nonlinear function w is L-smooth over the latent space �(XE) for each g. Furthermore,
we extend the definition of perfect alignment encoder to the (⌘,)-perfect alignment as follows.
Definition 3 ((⌘,)-Perfect Alignment). An encoder � is a (⌘,)-perfect alignment encoder over
the environments E, if it satisfies the following two properties:

1. 8s 2 S, 8e, e0 2 E, k �(xe(s))� �(xe0(s)) k2 ⌘.

2. 8s, s0 2 S, 8e, e0 2 E, k �(xe(s))� �(xe0(s0)) k2� k s� s0 k2

Essentially, ⌘ quantifies the if condition of perfect alignment (Definition 1), i.e., how aligned the
representation �(xe(s)), e 2 Es are. Moreover, quantifies the only if condition, i.e., how the
representations of different states s are separated. Based on the definition of (⌘,)-perfect alignment,
we prove the formal statement of Proposition 2 as follows.

Proposition 2 (Formal). 8⇡ 2 ⇧Etrain
�,L and occupancy measure ⇢Etrain = {⇢ei⇡ (x

ei , g)}Ni=1 for training
environments and ⇢t⇡G

(xt, g) for the target environment. For simplicity, we use ✏ei and ✏t as the
abbreviations. Considering ⇡⇤ = argmin

⇡02⇧
Etrain
�,L

PN
i=1 ✏

ei(⇡0
k ⇡G) and

⇢̃(x, g) = argmin
⇢2B(�,Etrain|⇧

Etrain
�,L)

d
⇧

Etrain
�,L �⇧

Etrain
�,L

(⇢(x, g), ⇢t⇡G
(xt, g))

Then, if the encoder � is a (⌘,)-perfect alignment over Etrain and ⇡G is a u-smooth invariant policy
with u = L , i.e., 8s, s0, 8g,DTV(⇡G(·|xe(s), g) k ⇡G(·|xe(s0), g))  u k s� s0 k2, we have

J t(⇡G)� J t(⇡) 
2�

1� �

2

66664
1

N

NX

i=1

✏ei(⇡ k ⇡G)

| {z }
(E)

+(3 +
�

1� �
)⌘L

3

77775

+
2�

1� �

2

664✏
t(⇡⇤

k ⇡G) + d
⇧

Etrain
�,L �⇧

Etrain
�,L

(⇢̃(x, g), ⇢t⇡G
(xt, g))

| {z }
(t)

3

775 .

Proof. It suffices to prove the following two statements with Proposition 1.

(1) maxei,e0i2Etrain d⇧Etrain
�,L �⇧

Etrain
�,L

(⇢ei⇡ (x
ei , g), ⇢

e0i
⇡ (xe0i , g))  (2 + �

1��)⌘L.

(2) 1
N

PN
i=1 ✏

ei(⇡⇤
k ⇡G)  ⌘L.

3XE = [e2EX e

22

Proof of (1): By the definition of ⇧Etrain
�,L , we have 8s, g and e, e0 2 Etrain, DTV(⇡(·|xe(s), g) k

⇡(·|xe0(s), g))  ⌘L. Without loss of generality, we have 8e, e0 2 Etrain,

d
⇧

Etrain
�,L �⇧

Etrain
�,L

(⇢e⇡(x
e, g), ⇢e

0

⇡ (x
e0 , g)) = sup

⇡,⇡02⇧
Etrain
�,L

|E⇢e⇡(s,g)[DTV(⇡(·|x
e(s), g) k ⇡0(·|xe(s), g))]

� E⇢e0⇡ (s,g)[DTV(⇡(·|x
e0(s), g) k ⇡0(·|xe0(s), g))]|

 sup
⇡,⇡02⇧

Etrain
�,L

E⇢e⇡(s,g)[DTV(⇡(·|x
e(s), g) k ⇡(·|xe0(s), g))]

+ sup
⇡,⇡02⇧

Etrain
�,L

E⇢e⇡(s,g)[DTV(⇡
0(·|xe(s), g) k ⇡0(·|xe0(s), g))]

+ sup
⇡,⇡02⇧

Etrain
�,L

|E⇢e⇡(s,g)[DTV(⇡(·|x
e0(s), g) k ⇡0(·|xe0(s), g))]

� E⇢e0⇡ (s,g)[DTV(⇡(·|x
e0(s), g) k ⇡0(·|xe0(s), g))]|

 2⌘L+ sup
A2�(S,G)

|⇢e⇡(A)� ⇢e
0

⇡ (A)|

= 2⌘L+DTV(⇢
e
⇡(s, g) k ⇢

e0

⇡ (s, g))

Then, by Lemma 3, we have DTV(⇢e⇡(s, g) k ⇢
e0
⇡ (s, g)) 

�⌘L
1�� . Consequently, we have 8e, e0 2 Etrain,

d
⇧

Etrain
�,L �⇧

Etrain
�,L

(⇢e⇡(x
e, g), ⇢e

0

⇡ (x
e0 , g))  (2 +

�

1� �
)⌘L

Proof of (2): First, for each z 2 �(X Etrain), we assign one s(z) such that 9e(z) 2

Etrain, s.t. �(xe(z)(s(z))) = z. Then, we choose the w̃ that w̃(z, g) = ⇡G(·|s(z), g), 8z 2 �(X Etrain).
Clearly, w̃ is a mapping of �(X Etrain) ! ⇧Etrain

�,1. Besides, 8z1, z2 2 �(X Etrain), g 2 G, we have

k w̃(z1, g)� w̃(z2, g) k2  u k s(z1)� s(z2) k2


u

 k s(z1)� s(z2) k2


u

k �(xe(z1)(s(z1)))� �(xe(z2)(s(z2))) k2

 L k z1 � z2 k2

Thus, the policy ⇡̃ = w̃(�(xe), g) 2 ⇧Etrain
�,L . Furthermore, by the definition of (⌘,)-perfect

alignment, we have

1

N

NX

i=1

✏ei(⇡̃ k ⇡G) =
1

N

NX

i=1

E⇢ei⇡ (s,g)[DTV(⇡̃(·|x
ei(s), g) k ⇡G(·|s, g)))]


1

N

NX

i=1

E⇢ei⇡ (s,g)[DTV(⇡̃(·|x
ei(s), g) k w̃(�(xe(z)(s)), g))]

 ⌘L

This completes the proof.

Remark 2. If we choose = 1p
L
, ⌘ = 1

L2 and u =
p
L, the informal version of Proposition 2

describes the case when L ! 1 and omits unessential constants.

C.4 Discussions on Eq. (3)

Here, we discuss the remaining terms (E), (t) in the R.H.S of Eq. (3), i.e., upper bound of J t(⇡G)�
J t(⇡). Together with the empirical analysis, we show how these terms are reduced by our perfect
alignment criterion.

23

Discussion on (E). Theoretically speaking, for a (⌘,)-perfect alignment encoder, we have
min(E)  ⌘L, as proved in Appendix C.3. Thus, when � is an ideal perfect alignment over
Etrain, i.e., ⌘ = 0, > 0 and L ! 1, the optimal invariant policy ⇡G 2 ⇧Etrain

�,1. In Section 4.2,
empirical results demonstrate that ⌘ is minimized to almost 0 and the reconstruction (Figure 9)
demonstrates that the only if condition is also satisfied.

Moreover, in GBMDPs with finite states, the perfect alignment encoder � over Etrain maps all training
environments to the same goal-conditioned MDP (Figure 6(b)) with state space {z(s), s ⇠ S}.
Noticing that the mapping is bijective and share the same actions and rewards with the original
problem. Thus, a RL algorithm (e.g. Q-learning Watkins and Dayan [1992]) on the equivalent MDP
will converge to an optimal policy ⇡G in the original MDP, i.e., invariant and maximize Je, e 2 Etrain.

Empirically, in Table 1, we find that ours PA-SF achieves the near-optimal performance on all Etrain s,
i.e., the same performance as a policy trained on a single environment. Therefore, we conclude that
(E) term is reduced to almost zero.

Discussion on (t). In general, it is hard to conduct task-agnostic analysis on (t) term, as discussed
in Sicilia et al. [2021]. Moreover, owing to the intractable sup operators, it is almost impossible to
measure the (t) term directly in the experiments. Here, we analyze the generalization error term (t)
with an upper bound and we find evidence that this upper bound is reduced significantly under our
perfect alignment criteria.

Here, we analyze the generalization performance when the policy converges to the optimal policy
over Etrain, which is the case empirically. Furthermore, we assume that 8s 2 S, e 2 Etrain, pe⇡(s) � ✏.
Since it has been proven that the relabeled goal distribution of Skew-Fit will converge to U(S)
(uniform over the bounded state space) Pong et al. [2020], it is reasonable to assume that each state
has non-zero occupancy measure under the well-trained policy ⇡(·|s, g). We derive the following
proposition with the same notation as in Proposition 2 except that ⇧Etrain

�,L is replaced by ⇧E
�,L.

Proposition 4. Suppose that � is a (⌘t, t)-perfect alignment encoder over E and ⇡G,⇡ 2 ⇧E
�,L.

Besides, 8s 2 S, e 2 Etrain, pe⇡(s) � ✏. Then, 8t 2 E/Etrain, we have

(t) 
2�

1� �

N(E)

✏
+ 4⌘tL+ (E)

Consequently, we have

J t(⇡G)� J t(⇡) 
4�

1� �
(1 +

�N

(1� �)✏
)(E) +

(14� 12�)�

(1� �)2
⌘tL

Proof. It is the straight forward to check that the statement and the proofs in Proposition 2 also
hold under the policy class ⇧E

�,L ⇢ ⇧Etrain
�,L when � is (⌘t, t)-perfect alignment over E . Namely,

8⇡,⇡G 2 ⇧E
�,L, training environment set Etrain and the target environment t 2 E/Etrain, we have

J t(⇡G)� J t(⇡) 
2�

1� �

2

66664
1

N

NX

i=1

✏ei(⇡ k ⇡G)

| {z }
(E)

+(3 +
�

1� �
)⌘tL

3

77775

+
2�

1� �

2

664✏
t(⇡⇤

k ⇡G) + d⇧E
�,L�⇧E

�,L
(⇢̃(x, g), ⇢t⇡G

(xt, g))
| {z }

(t)

3

775 .

By definition, 8e 2 Etrain, we have ⇢e⇡ 2 B(�, Etrain|⇧E
�,L). As a consequence, we have

(t) =
1

N

NX

i=1

(✏t(⇡⇤
k ⇡G)� ✏ei(⇡⇤

k ⇡G)) +
1

N

NX

i=1

✏ei(⇡⇤
k ⇡G)

+ d⇧E
�,L�⇧E

�,L
(⇢̃(x, g), ⇢t⇡G

(xt, g))

24

 max
e2Etrain

✏t(⇡⇤
k ⇡G)� ✏e(⇡⇤

k ⇡G) + d⇧E
�,L�⇧E

�,L
(⇢e⇡(x, g), ⇢

t
⇡G

(xt, g)) + �

 2 max
e2Etrain

d⇧E
�,L�⇧E

�,L
(⇢e⇡(x

e, g), ⇢t⇡G
(xt, g)) + �

 �+ 2 max
e2Etrain

d⇧E
�,L�⇧E

�,L
(⇢e⇡(x

e, g), ⇢e⇡G
(xe, g))

+ 2 max
e2Etrain

d⇧E
�,L�⇧E

�,L
(⇢e⇡G

(xe, g), ⇢t⇡G
(xt, g))

Without loss of generality, we have

d⇧E
�,L�⇧E

�,L
(⇢e⇡G

(xe, g), ⇢t⇡G
(xt, g)) = sup

⇡,⇡02⇧E
�,L

|E⇢e⇡G (s,g)[DTV(⇡(·|x
e(s), g) k ⇡0(·|xe(s), g))]

� E⇢t⇡G (s,g)[DTV(⇡(·|x
t(s), g) k ⇡0(·|xt(s), g))]|

 E⇢⇡G (s,g)[sup
⇡,⇡02⇧E

�,L

|DTV(⇡(·|x
e(s), g) k ⇡0(·|xe(s), g))

�DTV(⇡(·|x
t(s), g) k ⇡0(·|xt(s), g))|]

 E⇢⇡G (s,g)[sup
⇡,⇡02⇧E

�,L

|DTV(⇡(·|x
e(s), g) k ⇡(·|xt(s), g))

+DTV(⇡(·|x
t(s), g) k ⇡0(·|xt(s), g))

+DTV(⇡
0(·|xt(s), g) k ⇡0(·|xe(s), g))

�DTV(⇡(·|x
t(s), g) k ⇡0(·|xt(s), g))|]

 E⇢⇡G (s,g)[sup
⇡,⇡02⇧E

�,L

|DTV(⇡(·|x
e(s), g) k ⇡(·|xt(s), g))

+DTV(⇡
0(·|xt(s), g) k ⇡0(·|xe(s), g))|]

Clearly, we have 8e, e0 2 E , DTV(⇡(·|xe(s), g) k ⇡(·|xe0(s), g))  ⌘tL and 8e, e0 2

Etrain, DTV(⇡(·|xe(s), g) k ⇡G(·|xe(s), g)) 
N(E)
✏ . Thus, by Lemma 3, we have 8e 2

Etrain, DTV(⇢e⇡(s, g) k ⇢
e
⇡G

(s, g))  �
1��

N(E)
✏ . By the fact that �  (E), we have

(t) 
2�

1� �

N(E)

✏
+ 4⌘tL+ (E)

Consequently, we have

J t(⇡G)� J t(⇡) 
4�

1� �
(1 +

�N

(1� �)✏
)(E) +

(14� 12�)�

(1� �)2
⌘tL

Intuitively speaking, when the RL policy converges to nearly optimal on Etrain, the generalization
regret over target environment can be bounded by the sum of two components: training environment
performance regret and the level of invariant over the target environment. The former is relative small
as the policy is near optimal. The latter can be reduced by learning perfect alignment encoder on the
training environments. As shown in Figure 4, the LER of different ablations over test environments
suggests that ⌘t is reduced empirically in PA-SF. Moreover, both losses LMMD and LDIFF contribute to
the reduction. Furthermore, we notice that PA-SF < PA-SF (w/o D) < PA-SF (w/o MD) < Skew-Fit
in both LER and generalization performance, which coincides with our theoretical analysis.

C.5 Discussions on LMMD

Noticing that the (⌘,)-perfect alignment requires the l2 distance of ze(s)� ze
0
(s) is bounded for

any state s. In practice, we adopt the convention Schulman et al. [2015] to minimize the average
l2 distance over the state space as a surrogate objective, i.e., E⇢(s)[k �(xe(s)) � �(xe0(s)) k22]. It
prevents the unstable and intractable training of robust optimization in our setting and we find it
works well empirically. Here, we introduce a theoretical property of LMMD, which justifies its validity
to ensure the if condition of perfect alignment. To begin with, we prove the following Lemma.

25

Lemma 4. For some distribution P (x) and two functions f, g : X ! Rd, we have

Ex,x0⇠P (x)[k f(x)� g(x0) k22] �
1

2
Ex⇠P (x)[k f(x)� g(x) k22]

Proof. Without loss of generality, we assume Ex⇠P (x)[g(x)] = 0. Then, we have

Ex,x0⇠P (x)[k f(x)� g(x0) k22] = Ex⇠P (x)[k f(x) k22] + Ex0⇠P (x0)[k g(x0) k22]

� 2Ex,x0⇠P (x)[hf(x), g(x
0)i]

= Ex⇠P (x)[k f(x) k22] + Ex0⇠P (x0)[k g(x0) k22]

� 2hEx⇠P (x)[f(x)],Ex0⇠P (x0)[g(x
0)]i

= Ex⇠P (x)[k f(x) k22] + Ex0⇠P (x0)[k g(x0) k22]

�
1

2
Ex⇠P (x)[k f(x)� g(x) k22]

Proposition 5. Under mild assumptions, if Ee,e0⇠Etrain,Balign⇠Ralign [k �(xe(s)) � �(xe0(s)) k22] � �,
then LMMD(�) � O(�).

Proof. We assume that 8z, z0, k (z)� (z0) k2� u k z � z0 k2 for some u > 0. For brevity, we
denote ze(s) = �(xe(s)) and seb = set (a

b
0:t) (the bth sample: state s sampled in environment e after

executing some action ab0:t).

LMMD(�) = Ee,e0⇠Etrain,Balign⇠Ralign [k
1

B

BX

b=1

 (ze(seb))�
1

B

BX

b=1

 (ze
0
(se

0

b)) k
2
2]

�
1

B2
Ee,e0⇠Etrain,{seb ,se

0
b }B

b=1⇠Ralign
[
BX

b=1

k (ze(seb))� (ze
0
(se

0

b)) k
2
2] +

1

B2

Ee,e0⇠Etrain,{seb ,se
0

b }B
b=1⇠Ralign

[
X

i 6=j

h (ze(sei))� (ze
0
(se

0

i)), (z
e(sej))� (ze

0
(se

0

j))i]

Since sebs are sampled from Ralign independently, we have

LMMD(�) �
1

B
Ee,e0⇠Etrain,seb ,s

e0
b ⇠Ralign

[k (ze(seb))� (ze
0
(se

0

b)) k
2
2]

+
B � 1

B
k Ee,e0⇠Etrain,seb ,s

e0
b ⇠Ralign

[(ze(seb))� (ze
0
(se

0

b))] k
2
2

�
1

B
Ee,e0⇠Etrain,seb ,s

e0
b ⇠Ralign

[k (ze(seb))� (ze
0
(se

0

b)) k
2
2]

�
u

B
Ee,e0⇠Etrain,seb ,s

e0
b ⇠Ralign

[k ze(seb)� ze
0
(se

0

b) k
2
2]

=
u

B
Ee,e0⇠Etrain,ab

0:t⇠Ralign,seb⇠⇢(set (ab
0:t)),s

e0
b ⇠⇢(se0t (ab

0:t))
[k ze(seb)� ze

0
(se

0

b) k
2
2]

�
u

2B
Ee,e0⇠Etrain,ab

0:t⇠Ralign,sb⇠⇢(st(ab
0:t))

[k ze(sb)� ze
0
(sb) k

2
2] (Lemma 4)

=
u

2B
Ee,e0⇠Etrain,sb⇠Ralign [k ze(sb)� ze

0
(sb) k

2
2]

This completes the proof.

D Additional Results

Here, we show the ablation study of PA-SF on other tasks: Reach, Push, and Pickup. Figure 7
demonstrates that similar results in Section 4.2 also holds on Reach and Push while on Pickup, PA-SF
(w/o D) outperforms PA-SF on test environments marginally. We also find that the LER is relatively

26

(a) Reach

(b) Push

(c) Pickup

Figure 7: Ablations of our algorithm PA-SF and visualization of the latent representation via LER
metric on Reach, Push, and Pickup. All curves represent the mean and one standard deviation (except
Pickup with half standard deviation) across 7 seeds.

large in Pickup, perhaps owing to the relative large stochasity in this environment. However, the
training and test performance are still satisfactory.

Additionally, we compare t-SNE plots of PA-SF with that of vanilla Skew-Fit in Figure 8. Clearly,
the t-SNE plot generated from PA-SF are more aligned than that in Skew-Fit. Noticing that Skew-Fit
also encodes the irrelevant environmental factors into the latent embedding.

Finally, we visualize how well the VAE trained with LPA satisfies the perfect alignment condition. In
Figure 9, we visualize the reconstruction (middle line) of the original input (bottom line) as well as
the shuffled reconstruction (top line), i.e., reconstruction with the same latent representation z but a
different environment index e (Figure 2(b)). Clearly, in all tasks, the VAE successfully acquires the
perfectly aligned latent space w.r.t the training environments as the shuffled reconstruction shares
the almost same ground truth state s with the reconstruction and the original input. Noticing that the
original input images are sampled uniformly from the state space S .

27

(a) Reach

(b) Door

(c) Push

(d) Pickup

Figure 8: t-SNE visualization of the latent space �(xe) trained with PA-SF and Skew-Fit for three
environments, i.e., 2 training and 1 testing on different tasks.

28

(a) Reach

(b) Door

(c) Push

(d) Pickup

Figure 9: Visualization of the VAE on all four tasks. For each figure, the bottom line shows the
original input images (sampled uniformly from the state space). The middle line is the reconstruction
of the input image. The top line show the shuffled reconstruction image, i.e., reconstruction with the
same latent space z but a shuffled environment index e.

29

E Experiment Details

E.1 Task Setups

(a) Reach

(b) Door

(c) Push

(d) Pickup

Figure 10: Task setups for training (left) and test (right) environments

Our base environments are first used in Nair et al. [2018]. Figure 10 illustrates some of the environ-
ments and we provide brief descriptions as follows.

Reach: A 7-DoF sawyer arm task in which the goal is to reach a desired target position. We construct
multiple training and test environments by altering the backgrounds with various images and dynamic
videos and the foregrounds with diverse textures.

Door: A 7-DoF sawyer arm task with a box on the table. The goal is to open the door to a target
angle. We construct multiple environments in the same way as Reach but with different ingredients.
Additionally, we use the task with reset at the end of each episode.

Push: A 7-DoF sawyer arm task and a small puck on the table. The goal is to push the puck to a
target position. We only change table textures as the camera has almost no background as input.

Pickup: The task setting is the same as Push. The goal is to pick up the object and place it in the
desired position. We construct different environments with different backgrounds.

30

E.2 Implementation Details of PA-SF

In our experiments, we use the same VAE architecture as Skew-Fit except for the environment index
as an extra input for the decoder. Most of the hyper-parameters in VAE including the training schedule
is the same as that in Skew-Fit except for the components we added in our algorithm. In LMMD,
we use the same random expansion function as in Louizos et al. [2016] as it works well in practice.
Namely,

 (z) =

s
2

D
cos

 s
2

�
Wz + b

!

where z 2 Rd denotes latent embedding of observation, and W 2 RD ⇥d and b 2 RD are random
weight and bias. LMMD and LDIFF are computed with respect to samples from the replay buffer and
the aligned buffer. Table 3 lists the hyper-parameters that are shared across four tasks. Table 4 lists
hyper-parameters specified to each task. Notice that we fine-tune the hyper-parameters on some
validation environments and test on other environments.

Table 3: Shared hyper-parameters for PA-SF

Hyper-parameter Value

Aligned Path Length 50

VAE Relay Buffer Batch Size 32

VAE Aligned Buffer Batch Size 32

Random Expansion Function Dimension D 1024

Random Expansion Function Scalar � 1.0

Number of Training per Train Loop 1500

Number of Total Exploration Steps per Epoch 900

Table 4: Task specific hyper-parameters for PA-SF

Hyper-parameter Reach Door Push Pickup

MMD Coefficient ↵MMD 1000 1000 200 100
Difference Coefficient ↵DIFF 0.1 1.0 0.04 0.04
� for �-VAE 20 20 20 10
Skew Coefficient ↵ -0.1 -0.5 -1 -1
Proportion of Aligned Sampling in Exploration 1

6
1
3

1
6

1
6

E.3 Implementation of Baselines

Skew-Fit Pong et al. [2020]: Skew-Fit is designed to learn a goal-conditioned policy by self-learning
in Goal-conditioned MDPs. We extend it to Goal-conditioned Block MDPs by training the �-VAE
with observations sampled from replay buffers of each training environments and constructing skewed
distribution respectively. We modified some of the hyper-parameters of Skew-Fit in Table 5, did a
grid search over latent dimension size, �, VAE training schedule, and number of training per train
loop (Table 6).

Skew-Fit + RAD Laskin et al. [2020b]: Previous work Kostrikov et al. [2020] and Laskin et al.
[2020b] have found that data augmentation is a simple yet powerful technique to enhance performance
for visual input agents. We compare to the most well known method, i.e., Reinforcement Learning
with Augmented Data (RAD) and re-implement 4 it upon Skew-Fit for Goal-conditioned Block

4https://github.com/MishaLaskin/rad

31

https://github.com/MishaLaskin/rad

Table 5: Modified general hyper-parameters for Skew-Fit

Hyper-parameter Value

Exploration Noise None
RL Batch Size 1200
VAE Batch Size 96
Replay Buffer Size for each e 2 Etrain 50000

Table 6: Task specific hyper-parameters for Skew-Fit

Hyper-parameter Reach Door Push Pickup

Path Length 50 100 50 50

� for �-VAE 20 20 40 15

Latent Dimension Size 8 25 15 20

↵ for Skew-Fit 0.1 0.5 1.0 1.0

VAE Training Schedule 2 1 2 1

Sample Goals From qG� pskewed pskewed pskewed

Number of Training per Train Loop 1200 2000 2000 2000

MDPs. Note that RAD is originally designed to augment states for agents directly. In our setting, the
augmentation is added to �-VAE training phase, which increases the robustness of latent space against
irrelevant noise. Specifically, we augmented observations for training �-VAE as well as constructing
skewed data distributions. At the beginning of each episode, we sample goals from the skewed
distribution and encode augmented goal as latent goal. The training of SAC algorithm depends on
the latent code of augmented current and next state. We also incorporate data augmentation with
the skewed distribution and hindsight relabeling steps. To investigate the performance of different
augmentation methods, we chose to experiment with crop, cutout-color, color-jitter, and grayscale
and found that crop worked best among the four augmentations as reported in the RAD paper. Other
augmentation methods such as cutout-color and color-jitter either replace a patch of images with
single color, which may include the end-effector of Sawyer arm, or alter the color of the whole image,
which may include target object (i.e., puck in Push) and thus hurt performance. We use the same
hyper-parameters as in Skew-Fit.

MISA Zhang et al. [2020a] and DBC Zhang et al. [2020b]: Bisimulation metrics have been used to
learn minimal yet sufficient representations in Block MDPs. We compare with two SOTA methods:
Model-irrelevance State Abstraction (MISA) and Deep Bisimulation for Control (DBC), and modify
the code for Goal-conditioned Block MDPs. In particular, we add goals’ inputs into the reward
predictor and use oracle ground truth distance between the current state and goal state (i.e., end-
effector’s position and object’s position) as rewards. Our code is built upon the publicly available
codes 5 6.For fair comparison, we also fine-tuned some hyper-parameters on each task respectively.
For MISA, we did a grid search over the encoder and decoder learning rates 2 {10�3, 10�5

} and
reward predictor coefficient 2 {0.5, 1.0, 2.0}. For DBC, we did a grid search over the encoder and
decoder learning rates 2 {10�3, 10�4

} and bisimulation coefficients 2 {0.25, 0.5, 1}. Please refer to
Table 7 and Table 8 for our final choices.

Table 8: Task specific hyper-parameters for DBC

Hyper-parameter Reach Door Push Pickup

Encoder and Decoder Learning Rate 10�4 10�4 10�4 10�3

Bisimulation Coefficient 0.5 1.0 0.25 1.0

5https://github.com/facebookresearch/icp-block-mdp
6https://github.com/facebookresearch/deep_bisim4control

32

https://github.com/facebookresearch/icp-block-mdp
https://github.com/facebookresearch/deep_bisim4control

Table 7: Task specific hyper-parameters for MISA

Hyper-parameter Reach Door Push Pickup

Encoder and Decoder Learning Rate 10�5 10�3 10�3 10�5

Reward Predictor Coefficient 0.5 1.0 2.0 0.5

33

	Introduction
	Problem Formulation
	Method
	Domain Generalization Theory for GBMDP
	Learning Domain Invariant via Aligned Sampling
	Perfect Alignment for Skew-Fit

	Experiments
	Comparative Evaluation
	Design Evaluation

	Related Work
	Conclusion
	Notation
	Algorithm
	Proofs and Discussions
	Illustration of Different MDP Problems
	Proof of Proposition 1
	Proof of Proposition 2
	Discussions on Eq. (3)
	Discussions on LMMD

	Additional Results
	Experiment Details
	Task Setups
	Implementation Details of PA-SF
	Implementation of Baselines

