
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

M. Steyvers, H. Tejeda, G. Kerrigan, and P. Smyth. Bayesian modeling of human–ai complemen-
tarity. Proceedings of the National Academy of Sciences, 119(11):e2111547119, 2022.

T. Sühr, S. Samadi, and C. Farronato. A dynamic model of performative human-ml collabora-
tion: Theory and empirical evidence. ArXiv, abs/2405.13753, 2024. URL https://api.
semanticscholar.org/CorpusID:269982203.

R. Verma and E. Nalisnick. Calibrated learning to defer with one-vs-all classifiers. In International
Conference on Machine Learning, pages 22184–22202. PMLR, 2022.

R. Verma, D. Barrejón, and E. Nalisnick. Learning to defer to multiple experts: Consistent surrogate
losses, confidence calibration, and conformal ensembles. In International Conference on Artificial
Intelligence and Statistics, pages 11415–11434. PMLR, 2023.

A PROOF OF REGRET GUARANTEE

For simplicity, we drop the a suffix and look at a single parameter θ∗. Note that all the following
also apply to w.

Define Ct = {θ : ∥θ − θ̂t∥Mt
≤ σ

κ

√
2d log

(
1+2td

δ

)
= β(t)}. Let τ = mint∈[T ] : λmin(Mt) ≥ 1.

It was shown by Li et al. (2017) that with probability 1 − δ, τ = O
(
(d+ log 1/δ)/σ2

0

)
(recalling

σ0 = λminEx∼Dxx
⊤ > 0).

We present two key lemmas from Li et al. (2017) on generalized linear bandits.
Lemma A.1 (Lemma 3 of Li et al. (2017)). With probability 1− δ, for all t ≥ τ , θ∗ ∈ Ct.

Lemma A.2 (Lemma 2 of Li et al. (2017)). For all t > τ

t∑
s=τ+1

∥xs∥M−1
t
≤
√
2(t− τ)d log

t

d

These three results lead to the following two corollaries, corresponding to two corollaries given by
Agrawal and Devanur (2016) in the linear bandit case.
Corollary A.3 (Corollary 1 of Agrawal and Devanur (2016)). Let θ̄ ∈ Ct. Then,

T∑
s=τ

|x⊤
t θ̄ − x⊤

t θ
∗| ≤ β(T )

√
2Td log

T

d

Proof.

T∑
s=τ

|x⊤
t θ̄ − x⊤

t θ
∗| ≤

T∑
t=τ

∥θ̄ − θ∗∥Vt
∥xt∥V −1

t

≤ β(T )

√
2dT log

T

d

The first line comes from a known matrix-norm inequality (Lemma 7 of Agrawal and Devanur
(2016)).

The second line comes from Lemmas A.1 and A.2.

Via the definition of the optimistic estimate:
Corollary A.4 (Corollary 2 of Agrawal and Devanur (2016)). With probability 1− δ, for all t ≥ τ ,
µ(x⊤

t θ̃t) ≥ µ(x⊤
t θ

∗), and

T∑
t=1

µ(x⊤
t θ̃t)− µ(x⊤

t θ
∗) ≤ Lµβ(T )

√
2dT log

T

d

12

https://api.semanticscholar.org/CorpusID:269982203
https://api.semanticscholar.org/CorpusID:269982203


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Proof. The first part comes from the assumption that µ is an increasing function. Thus, µ(x⊤
t θ̃t) ≥

µ(x⊤
t θ

∗) by Lemma A.1 and the definition of θ̃ as an optimistic estimator.

The second part follows from the assumption that µ is Lµ−Lipschitz. So,
∑T

t=1 µ(x
⊤
t θ̃t) −

µ(x⊤
t θ

∗) ≤
∑T

t=1 Lµ(x
⊤
t θ̃t − x⊤

t θ
∗), and the result follows from Corollary A.3.

Now we have the tools we need to prove the regret bound.

Corollary A.5. Given Z, the algorithm achieves the following with probability 1− δ:

regret(T ) = O

((
OPT
B

+ 1

)
Lµdσ

κ

√
T log

T

dδ
log

T

d

)

Proof. We follow the proof steps presented in Agrawal and Devanur (2016), extending the claims
to the generalized linear model when necessary.

Let Tstop be the stopping time of the algorithm. Let R′(T ) = O
(

dσ
κ

√
T log T

dδ log
T
d

)
. Fix a. Also

define Ta = {τ < s < Tstop : at = a}. Via the Azuma-Hoeffding inequality,∣∣∣∣∣∣
Tstop∑
s=τ+1

cs − µ(x⊤
s w

∗
at
)

∣∣∣∣∣∣ ≤ R′(T )

∣∣∣∣∣∣
Tstop∑
s=τ+1

rs − µ(x⊤
s θ

∗
at
)

∣∣∣∣∣∣ ≤ R′(T )

Additionally, recalling Corollary A.4, with probability 1 − δ,
∑Tstop

t=τ+1 µ(x
⊤
t θ̃at,t) − µ(x⊤

t θ
∗
at
) ≤

LµR
′(T ) (and similarly for w). Therefore, as in the linear case, a bound on the estimated reward

with θ̃ can serve as a proxy for the bound with θ∗.

Define r̃t = µ(x⊤
t θ̃at,t) and c̃t = µ(x⊤

t w̃at,t).

Lemma A.6 (Lemma 8 of Agrawal and Devanur (2016)).

Tstop∑
t=τ

E[r̃t] ≥
Tstop

T
OPT + Z

Tstop∑
t=τ

γtE[c̃t −B/T ]

Proof. Let a∗ be the action taken by the optimal static policy at t. By Corollary A.4, for any xt,
µ(x⊤

t θ̃t,a∗) ≥ µ(x⊤
t θ

∗
a∗). Therefore, E[µ(x⊤

t θ̃t,a∗)] ≥ OPT/T and E[µ(x⊤
t w̃a∗,T )] ≤ B/T (taking

the expectation over the choice of xt, conditioned on the history). However, since the algorithm
chooses the optimal optimistic action:

r̃t − Zγtc̃t ≥ µ(x⊤
t θ̃t,a∗)− Zγtµ(x

⊤
t w̃t,a∗)

E[r̃t − Zγtc̃t] ≥ E[µ(x⊤
t θ̃t,a∗)]− ZγtE[µ(x⊤

t w̃t,a∗)]

≥ OPT
T
− Zγt

B

T

Sum to Tstop to get the Lemma statement.

The rest of the proof follows identically to Agrawal and Devanur (2016).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B TRAINING DETAILS FOR NEURAL ALGORITHM

For both the ImageNet16H data and the Knapsack data, the Neural algorithm trained three separate
neural networks with the same architecture. They consist of an input layer with the same dimension
as the context, a hidden layer of dimension 50, and a single output layer. Note that this means that in
both experiments, the dimension of the linear system is 50. There is a ReLU activation between the
input layer and the hidden layer, and a Sigmoid activation on the output. The weights of the networks
were updated every 10 steps for the Knapsack data. For the ImageNet16H data, the weights were
initially updated every 20 steps, decreasing to every 100 steps after time step 4000. Both were
trained with mini-batches of size 500 using the Adam optimizer with learning rate 0.0005 for the
Knapsack data and 0.0001 for the ImageNet16H data. The experiments were run on Google Colab
servers using their T4 GPU.

Figure 7: The architecture for computing the embedding for the human arm. An identical architec-
ture exists for the model arm and the cost.

After updating the network weights, the embeddings for all previous contexts are recomputed using
the new networks. These new embeddings are used to recompute the estimated parameters per
Definition 4.2 and 4.1. As noted in (Riquelme et al., 2018), this may not be practical in applications
where all previous contexts cannot be stored, either due to space constraints or legal concerns. In
these settings, one can continue to use the previous embeddings and apply weights which decrease
the influence of old embeddings on the linear system over time.

C BANDIT FEEDBACK EXPERIMENTS

Overall, we do not observe a significant difference in performance between the bandit feedback
setting and the full information setting. With random reward and cost functions, the average per-
formance in the full information setting is slightly better, as seen in Figure 8. Interestingly, in the
Knapsack dataset, the linear algorithm seemed to perform slightly better in the pure bandit setting
(as shown in Figure 9). This may indicate that the full information setting overexplored the human
arm.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 8: The experiment described in Figure 2 with the Pure Bandit setting included. Mean and
standard deviation of the regret over 100 trials. The reward and cost functions are sampled uniformly
at random from [0, 1]d for each trial.The algorithm is run over T = 50000 random contexts with
B = 8000. Then, the reward received by OPT is computed for the same contexts.

Figure 9: The experiment described in Figure 5 with the Pure Bandit setting included. For clarity,
only the means are plotted.

15


	Proof of Regret Guarantee
	Training Details for Neural Algorithm
	Bandit Feedback Experiments

