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ABSTRACT

The significant resource requirements associated with Large-scale Language
Models (LLMs) have generated considerable interest in the development of tech-
niques aimed at compressing and accelerating neural networks. Among these
techniques, Post-Training Quantization (PTQ) has emerged as a subject of consid-
erable interest due to its noteworthy compression efficiency and cost-effectiveness
in the context of training. Existing PTQ methods for LLMs limit the optimiza-
tion scope to scaling transformations between pre- and post-quantization weights.
This constraint results in significant errors after quantization, particularly in low-
bit configurations. In this paper, we advocate for the direct optimization using
equivalent Affine transformations in PTQ (AffineQuant). This approach extends
the optimization scope and thus significantly minimizing quantization errors. Ad-
ditionally, by employing the corresponding inverse matrix, we can ensure equiv-
alence between the pre- and post-quantization outputs of PTQ, thereby maintain-
ing its efficiency and generalization capabilities. To ensure the invertibility of
the transformation during optimization, we further introduce a gradual mask op-
timization method. This method initially focuses on optimizing the diagonal ele-
ments and gradually extends to the other elements. Such an approach aligns with
the Levy-Desplanques theorem, theoretically ensuring invertibility of the trans-
formation. As a result, significant performance improvements are evident across
different LLMs on diverse datasets. Notably, these improvements are most pro-
nounced when using very low-bit quantization, enabling the deployment of large
models on edge devices. To illustrate, we attain a C4 perplexity of +4-89-15.76
(16:602. 26¢ VS %85%18 02 in Omeuant) on the I:b&MA-LLaMAZ 7B model

%ﬁmﬂﬂ%ﬁd&ﬁcmwmgﬁwemkﬂfw%%wwmw@%
overhead. On_zero-shot tasks, AffineQuant achieves an average of 58.61%
accuracy (3344£1.98% T vs 75:43-56.63 in OmniQuant) when using 24/4-bit
%Wﬁwmm%wmw&wwg which set-
ting a new state-of-the-art benchmark for PTQ in LLMs. Codes are available in
the supplementary materials.

1 INTRODUCTION

Large Language Models (LLMs) (Zhang et al., |2022; [Touvron et al., |2023a;b)) attract increasing
attention due to their impressive performance. However, emergent logical reasoning abilities (Wei
et al.} [2022a)) are only present in models above a certain size threshold. Hence, the training and in-
ference efficiency of LLMs necessitates careful consideration. Specifically, the potential utilization
of LLMs for inference on mobile and edge devices drives our motivation to focus on accelerat-
ing model inference. Quantization is regarded as one of the most promising methods among these
compression methods. In particular, it maps weights or activations to lower bit representations,
effectively reducing the memory usage of the model. Additionally, optimizing the compilation of
operators for low-bit operations (MLC, [2023) significantly enhance their efficiency and accelerate
model inference.

Meanwhile, due to the substantial computational resources and high-quality data required for train-
ing LLMs, implementing quantization through model fine-tuning is challenging. Therefore, the
research community is increasingly emphasizing training-free algorithms, termed as Post-Training
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Figure 1: The effect of scaling, translation and affine transformation on the quantization of the
weights. The term “Fixed Point” refers to the 2™ — 1 quantization levels in n-bit quantization. s, b,
and A are the scaling factor, translation factor, and affine transformation matrix, respectively. We
assume that the input channel and output channel of W is 2. We consider each output channel as a
two-dimensional vector.

Quantization (PTQ) (Wei et al.l 2022¢}, [Xiao et al., [2023; |Wei et al., 2023} [Lin et al., 2023} |Shao
et al.|[2023; Yuan et al.,|2023)). Post-training quantization allows for efficient optimization with less
calibration data. However, this process can lead to significant performance degradation, particularly
in small-sized models or low-bit scenarios.

Equivalent transformations are widely adopted in most PTQ methods. As illustrated in Figure [T}
AWAQ (Lin et al.| 2023)) enhances scale computation by optimizing statistics and introduces the mean
square error loss between the pre- and post-quantization feature maps as an optimization metric for
the first time in LLMs. Recently, Omniquant (Shao et al., |2023) introduces block-wise learnable
scale and shift parameters for enhanced optimization. In higher dimensions, the concept of equiva-
lent quantization is also gaining attention. RPTQ (Yuan et al.,|2023)) achieves activation quantization
per-cluster by sorting the columns of activation values. The reordering can be mathematically rep-
resented by converting the scale from a vector into a matrix form, where each row and column cor-
responds to a single scale value. This transformation effectively rearranges the activation columns
and weight rows in an equivalent manner.

In summary, the evolution of equivalent quantization progresses from manual design to gradient op-
timization, from low-dimensional to high-dimensional transformations, and from single-scale fuston
merging to a combination of multiple operations, including translation and reordering. Equivalent
quantization offers advantages in two main aspects. Firstly, by ensuring consistency between the pre-
and post-quantization outputs, the introduced quantization noise can be effectively mitigated through
optimization of the equivalence transform parameters. This aligns with the concept of post-training
quantization, where the equivalence transform acts as an intermediate agent for noise improvement.
Secondly, different types of equivalence transforms are orthogonal to each other. Intuitively, the
introduction of each new type of equivalence transform expands the parameter optimization space,
resulting in performance improvements.

Therefore, we propose an algorithm for equivalent affine transformation. Specifically, we left-
multiply the affine transform matrix to weights in the linear layer and right-multiply the activa-
tions with the transform matrix inverse. Guided by the mean square error loss, we optimize the
affine transformation matrix, resulting in consistently lower loss compared to other algorithms on
a wide range of models during the optimization process. Furthermore, we explore the invertibility
of matrices during the optimization process. The Levy-Desplanques theorem (Naimark & Zeheb,
1997)) demonstrates that the strictly diagonally dominant matrices are invertible. To ensure that the
affine transformation matrix is strictly diagonally dominant, we employ diagonal initialization and
gradual mask methods. In this way, the optimization of high-dimensional matrices with limited
calibration data is stabilized through a gradual optimization process that involves freezing the pa-
rameters. In terms of inference efficiency, our method is consistent with other methods after matrix
fustonmerging. Finally, our method achieves state-of-the-art performance in LLMs quantization,
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particularly in scenarios involving small-scale models or lower bit configurations. Overall, our con-
tributions are summarized as follows:

* We propose a novel affine transform in PTQ, which retains the benefits of PTQ, assures
efficiency and generalization, significantly minimizes quantization error, especially under
low-bit quantization, and enables the deployment of LLMs on edge devices.

* We propose a novel optimization algorithm that guarantees invertibility throughout the pro-
cess, utilizing the Levy-Desplanques theorem, and simultaneously reduces computational
costs.

* Our method obtains the state-of-the-art performance for large language model quantiza-
tion, especially on low-bit or small models. As-an-iHustrationWithout additional overhead,
on the w2al6gl28-configuration-of OPT-125M4a4 configuration of LLaMA2-7B, our per-
plexity on the WikiText2-datasetis42-29-C4 dataset is 15.76 (33-442.26] vs 75-43-18.02 in
OmniQuant). Similarly, on the w2at6-w4a4 configuration of LLaMA-730B, our pefp}eiﬂfy

onthe- C4-datasetis14-89-accuracy on 6 zero-shot tasks is 58.61% (M%M%\I vs 24-89
56.63 in OmniQuant),

2 RELATED WORK

Quantization can be classified into two main categories based on algorithmic efficiency and data
requirements: Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ). QAT
(Bondarenko et al., 2023}, |Choi et al., [2018}|Yao et al., 2021; |Gong et al., 2019; Wang et al., 2019;
Esser et al., 2019} |Sun et al., [2020; [Lee et al., 2021)) requires a substantial amount of data for fine-
tuning the model weights, making it challenging to support LLMs. In contrast, we focus on PTQ
(Nagel et al., 2020; [Li et al., 2021} Wei1 et al.l [2022b; Ma et al.| 2023} [Liu et al., 2021} |Cai et al.|
2020; |Cheng et al., 2023)) in this study due to its efficient algorithmic approach.

Post-Training Quantization (PTQ). In traditional-vision-medelsthe field of CNN, PTQ primarily
focuses on optimizing weight rounding strategies. Adaround (Nagel et al., [2020) improves quanti-
zation models through optimized weight rounding, considering rounding up or down. BRECQ (Li
et al., 2021) introduces a block-wise optimization process and incorporates squared gradient infor-
matlon QDROP (Wel et al 2022b) enhances the performance of quantized models by randomly

sdrop quantized activations.

Large Language Model Quantization. To address computational resource constraints, the com-
munity has focused on efficient quantization algorithms for Large Language Models (LLMs). LLMs
quantization can be categorized into weight-only quantization (Frantar & Alistarh) 2022} Lin et al.,
2023;Shao et al., 2023} |[Kim et al., [2023)) and weight-activation quantization (Xiao et al., 2023 Wei1
et al., [2023; |Yao et al.| [2022; Dettmers et al, [2022; [Shao et al.| [2023), depending on whether acti-
vations are quantized. Given the large size of LLMs, memory access efficiency becomes a primary
bottleneck for acceleration. Weight-only quantization addresses this by compressing model weights
to lower bit precision, effectively mitigating the memory wall problem (Kim et al., 2023)).

3 METHODOLOGY

In this section, we introduce AffineQuant, an approach that utilizes equivalent affine transformation
for quantization. Compared to other methods, AffineQuant consistently maintains optimal mean
square error throughout the optimization process. We also explore the reversibility of the affine
transform matrix during optimization. To ensure stability, we propose a gradual masking approach
based on the Levy—Desplanques theorem (Naimark & Zeheb, |1997) to maintain the affine transform
matrix as a strictly diagonally dominant matrix. Lastly, we analyze the inference efficiency of LLMs
following the optimization performed by AffineQuant.

3.1 AFFINEQUANT

When considering the concept of equivalent transformations from a physical perspective, we can
draw analogies to certain operations. For instance, in SmoothQuant (Xiao et al., 2023), we can
analogize scale to scaling operations for vectors, while in Outlier Suppression+ (Wei et al.l [2023),
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we can analogize shift to translation operations for vectors. Similarly, rotations of vectors can also
be classified as equivalent transformations.

We define the pseudo-quantization function as follows:

T

Q(zr) = Ax (clamp QA

|+2p.0.27=1) - 2), ()
where A, zp and n are the quantization step-size, zero point and bits, respectively. |-] is the round-
ing operation. As depicted in Figure [T} AffineQuant involves left-multiplying the affine transform
matrix A by weight matrix W to better align the weight distribution with the quantization func-
tion Q(-). Expanding the optimization space enables smaller quantization errors in the transformed
weights, leading to a reduction in perplexity. Simultaneously, we right-multiply the inverse of the
affine transform matrix A by the activation value X to maintain the invariance of the matrix multi-
plication output between activations and weights. For a single linear layer, AffineQuant formulates
the following optimization problem:

argmin || XW — XA~1Q(AW)|[%. 2)
A

AffineQuant incorporates the essence of AWQ (Lin et al.,[2023)) and SmoothQuant (Xiao et al.,[2023)
when the main diagonal elements of the matrix A are computed from weight and activation statistics.
It aligns with OmniQuant (Shao et al [2023) by exclusively updating the diagonal elements of A.
The reordering matrices used in RPTQ (Yuan et al.| 2023)) are a subset of the affine transformation
matrix A when each row and column of A contains only one occurrence of the element 1. In
summary, AffineQuant encompasses various previous equivalent quantization algorithms, thereby
expanding the optimization possibilities for the weight distribution W.

In Figure let the weight matrix W € R2*2 have 2 output channels and input channels. The scaling
factor, translation factor, and affine transformation matrix are denoted as s, b, and A, respectively.
We divide the weight matrix into 2 vectors {vy, v3} based on output channels. The scaling trans-
form s; * v; uniformly scales each element of v;. The translation transform v; + b; shifts v; along
different axes. The affine transformation Awv; allows for arbitrary repositioning of v;. However,
the scaling and translation transformations are limited in their ability to map dimensions in v; to
adjacent quantized fixed points. In contrast, the affine transformation guarantees convergence of all
dimensions in a vector to the quantized fixed point. In other words, the affine transformation aligns
the weight distribution with the noise introduced by the quantization function Q(z) in Equation
resulting in reduced quantization error. It is worth noting that normalizing the affine transformation

matrix by rows (A — S,A/) , where each row of the matrix A’ has a norm of 1, transforms A’ into

a standard rotation matrix. This rotation matrix rotates the output channels of the weights while pre-
serving their magnitudes. The scaling factor s performs scaling on the rotated vectors. Therefore,
the affine transformation matrix A combines both scaling and rotation equivalent transformations
and is orthogonal to the translation transformation.

The perplexity (ppl) exhibits an exponential relationship with the cross-entropy (CE) loss, which is
positively correlated with the mean square error of the output activation before and after quantiza-
tion, as demonstrated in (Nagel et al.l [2020; L1 et al., 2021). Hence, optimizing perplexity can be
achieved by optimizing the mean square error before and after quantization. Specifically,

PPL o Log o || XW — XA Q(AW)|[2, 3)

In large language models quantization, the optimization objective of AffineQuant is as follows,

argAn;in | fi (X, W) = f; (X —6) A7, Q(AW) b+ W) ||i : 4)

where f; is the i-th transformer block. (X — &) A%, Q (AW), b+ 6W are the activation, weight
and bias after the equivalent transformation, respectively. We combine the affine and translation
transformations and use the mean square error of the transformer block output, both pre- and post-
quantization, as the optimization objective.
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Figure 2: The gradual mask operates on the affine transformation matrix, gradually incorporating
the elements of matrix A near the diagonal into the training process as training progresses.

FigureJ]illustrates the mean square error loss optimization for the last transformer block of LLaMA-
7B and OPT-1.3B. Notably, AffineQuant exhibits a lower initial loss compared to OmniQuant (Shao
et al. [2023) due to the superior performance of the affine transformation matrices in the preceding
blocks. Additionally, AffineQuant demonstrates faster loss convergence and superior overall opti-
mization performance in the last block compared to OmniQuant. These results reaffirm the signifi-

cant potential of invertible matrix optimization. Figure[5] and [6lin Appendix [A,4] presents a random
sampling of multiple stability factors (alpha), which impact on guantization loss convergence. The
data reveals a notable link between the last transformer block’s quantization loss and the quantized
model’s performance. This implies AffineQuant’s effectiveness in reducing guantization loss in

Figure|3| thereby enhancing the model’s quantization performance during optimization.

3.2 REVERSIBILITY AND GRADUAL MASK

In the optimization process, it is necessary to invert the affine transformation matrix. However, we
do not include any constraints in the objective function (Equation [d) to ensure the matrix remains
full rank or well-conditioned. Therefore, how to keep the matrix invertible during the optimization
process? To begin, let’s define a strictly diagonally dominant matrix as follows:

Definition 1 (Strictly Diagonally Dominant Matrix) A matrix A is considered strictly diagonally
dominant if the absolute value of each diagonal element is greater than the sum of the absolute
values of the remaining elements in the corresponding row. Specifically,

la;| > Z laij|, foralli. (5)
i#i

The Levy-Desplanques theorem (Naimark & Zeheb, |1997) establishes that all strictly diagonally
dominant matrices are invertible. By initializing the affine transformation matrix with diagonal
elements, we ensure it initially is strictly diagonally dominant. Although utilizing second-order
momentum in-the-optimizer-and-employing-and lower learning rates in_the optimizer can assist
in satisfying the requirements of the Levy-Desplanques theorem, the optimization of large affine
transform matrices still faces instability challenges as the model size increases.

To ensure that the affine transformation matrix remains strictly diagonally dominant during opti-
mization, we introduce a gradual mask approach, as illustrated in Figure 2] At the start of each
optimization block, we freeze all elements except for those on the main diagonal. As the optimiza-
tion progresses, we gradually unfreeze the elements near the main diagonal. Eventually, all matrix
elements become learnable for optimization. This freezing mechanism, referred to as the Gradual
Mask (GM), is defined as follows:

1 t=17
GM;; = { a 0<|i—j| <% x hidden size, (6)
0 otherwise,
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Where G'M;; is the i-th row, j-th column element of the mask matrix. ¢ is the target epochs. e € [1,¢]
is the current epochs. “hidden size” is the dimension of the affine transformation matrix. « is the
stablhty factor W1th1n the attent1on module we apply a gradual mask in each attentlon head The

updated—thfettgheu%GM is a learnln rate re ulator that achleves 1ts urpose b element wise
dot-productin W1th the matrix A S ecnﬁcall the impact of the GM matrlx on the optimization
process si : aih ' atmatrix-can be divided into

two aspects. Here, we present the optimization process for the matrleafter incorporating the GM.

Forward: A{ = A, o GM., 7
OL OA:
Backward:_ Ace1 = Ae 070 o ®)
oL
= A, +nGM, .
FGM. ©)

Where o is the Hadamard product. A, and GM, are the matrices A and Gradual Mask (GM)
matrix in e och . 1es ectlvel is the learmn rate of matrix A. Geﬂveﬁeiyee}ementﬂeeateéﬂf

loss. The GM matnx effectlvel reduces the ma nltude of non-principal dia onal elements in
matrix A during forward propagation when the stability factor o —is less than 1. This ensures
the existence of a stable inverse matrix of A* in the optimization process during epoch e, as per
the Levy-Desplanques theorem. In backward propagation, GM affects the learning rate n, thereb
suppressing the update rate of non-primary diagonal elements in matrix A. Consequently, the impact
of GM on 71 ensures that matrix A in epoch e + 1 maintains strictly diagonally dominant, satisfyin
the Levy-Desplanques theorem. Notably, as  approaches 0, the optimization process converges sta-

bly and becomes equivalent to OmniQuant . Additionally, Appendix includes
1

a theorem demonstrating that a sufficiently small stability factor « ensures the strictly diagonal
dominance of matrix A during optimization.

The concept of gradual adaptation is also present in the post-training quantization of vision models.
In Adaround 2020), the gradient update of parameters is controlled using gradual pow-
ers of /3 in the soft quantization function. When /3 is sufficiently large, only values close to 0 or 1 are
updated due to gradient limitations. As optimization progresses, the gradient of all rounded values is
gradually released. However, it is important to note that the goals and approaches of the two methods
are distinct. Adaround employs the gradual power 3 to prevent fast convergence
of the objective function, which can lead to suboptimal optimization. On the other hand, the gradual
mask in AffineQuant ensures the strictly diagonally dominant property of the affine transformation
matrix. Appendix [A.6] showcases heat maps depicting different block affine transformation matri-
ces at various epochs, demonstrating the effectiveness of the gradual mask approach in maintaining
strictly diagonally dominant matrices.

3.3 EFFICIENCY

Optimize Efficiency. PyTorch’s linear algebra library (Paszke et all 2019) offers matrix inverse
computations in both float and double precision. Consequently, we maintain the model’s precision as
either float or double throughout the optimization process. Furthermore, approximate computations
of the matrix inverse may contain errors due to the numerical precision limitations of the computer.
Therefore, we analyze memory consumption, optimization time, error magnitude, and the impact on
model performance for both precision types in Section &3]

Inference Efficiency. In line with similar algorithms, we integrate the affine transformation ma-
trix with other layers. Subsequently, we perform half-precision inference on the network. For
all linear layers, we fuse-merge the affine transformation matrix with the weight and bias param-

eters. Hewever—in-thenermtayer;—the-direetfusion—In addition, we only optimize the diagonal
elements of the affine transform-matrix after LayerNorm for weight-activation quantization. This
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Figure 3: Mean square error loss of the last transformer block of LLaMA-7b and OPT-1.3b. “w2al6”
means 2-bit weight-only quantization. “w3al6g128” means 3-bit grouping 128 weight-only quanti-
zation. We optimize 40 and 20 epochs in the last block of LLaMA-7b and OPT-1.3b, respectively.

Table 1: Weight-only quantization PPL({) results on the OPT model WikiText2 dataset.

Config Method 125M  1.3B 2.7B 6.7B 13B 30B
FP16 - 27.65  14.63 12.47 10.86 10.12 9.56
RTN 1.2e3 1.3e4 1.6e4 6.5e3 4.6e3 1.5e3

GPTQ (Frantar et al,[2022) 53.05 21.17 16.83 15.09 11.73 10.30

w3al6 AWQ (]Lm et al.[[2023) 69.43 28.01 263.10 15.13 20.09 35.74
OmniQuant (Shao et al.l, 2023) 35.66 16.68 13.80 11.65 10.87 10.00
AffineQuant 30.56  15.94 13.15 1144 10.76 9.98

RTN 51.22 119.00 297.98 23.54 46.03 18.80

GPTQ (Frantar et al,[2022) 39.24 1647 13.69 11.65 10.35 9.73
w3al6gl28 AWQ (]Lm et al.[[2023) 36.74 16.32 13.58 1141 10.68 9.85
OmniQuant (Shao et al.l, 2023) 32.25 15.72 13.18 11.27 1047 9.79
AffineQuant 30.21  15.61 12.98 11.18 10.51 9.81

RTN 37.28  48.17 16.92 12,10 11.32 10.97

GPTQ (Frantar et al,[2022) 31.43 15.56 12.82 11.41 10.31 9.63

wdal6 AWQ (]Lm et al.|[2023) 32.28 15.49 12.93 11.30 10.39 9.77
OmniQuant (Shao et al.l, 2023) 29.45 15.04 12.76 11.03 10.30 9.65
AffineQuant 28.39 14.92 12.64 1096 10.26 9.65

RTN 30.47 15.29 13.02 11.15 10.30 9.94

GPTQ (Frantar et al |, 2022) 29.81 14.89 12.52 10.93 10.17 9.58
wdal6gl28  AWQ (Lin et al. |,|2023|) 29.15 1494 12.74 10.93 10.21 9.59
OmniQuant (Shao et al I, 2023) 28.86  14.88 12.65 10.96 10.20 9.62
AffineQuant 28.33  14.79 12.58 10.92 10.19 9.62

allows us to merge the affine matrix Wlth the norm’s-LayerNorm weights and biasisnot-feasible
Consequently, AffineQuant can be achieved

without introducing any additional overhead to model inference. Tables [2| and |3] demonstrate

AffineQuant’s superior performance over other methods in zero-shot and PPL tasks, even without
additional overhead usin 4/4 bit quantization. Ne%&b%y—éespﬁe—ﬂ%ese—addmma&kepeﬂ%ms—euf
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Table 2: AffineQuant and OmniQuant quantization performance of LLaMA-7B, 13B, 30B on six
zero-shot datasets using 4/4 bit quantization.

Dataset PIQA ARC-e WinoGrande BoolQ ARC-c HellaSwag Avg.
QD) (D) M M Q)] ™ M

LLaMA-7B FP16. 77.47 52.48 67.07 73.08 41.46 73.00  64.09
wlad OmniQuant Shao et al.|(2023) | 66.15 45.20 53.43 63.51 31.14 56.44 52.65
AffineQuant 69.37 42.55 55.33 63.73 31.91 57.65  53.42

LLaMA-13B FP16. 79.10 59.89 70.31 68.01 44.45 76.21  66.33
wdad OmniQuant|Shao et al.|(2023)) | 69.69 47.39 55.80 62.84 33.10 58.96  54.37
AffineQuant 66.32 43.90 54.70 64.10 29.61 56.88  52.58

LLaMA-30B FP16. 80.08 58.92 72.53 68.44 45.47 79.21  67.44
wdad OmniQuant |Shao et al.|(2023) | 71.21 49.45 59.19 65.33 34.47 64.65  56.63
AffineQuant 70.84 49.41 58.64 70.12 37.12 65.53  58.61

Table 3: Quantization performance of LLaMA1&2 on WikiText2 and C4 datasets using 4/4 bit

Datasets | LLaMA1&?2 | Methods 1-7B 1-13B 1-30B 2-7TB 2-13B
FP16 - 5.68 5.09 4.10 5.47 4.88

WikiText2 SmoothQuant |Xiao et al.[(2023) | 25.25 40.05 192.40 83.12 35.88
W4A4 OmniQuant Shao et al.|(2023) |11.26 10.87 10.33 14.26 12.30

AffineQuant 10.28 10.32 9.35 12.69 11.45

FP16 - 7.08 6.61 598 6.97 6.46

c4 SmoothQuant Xiao et al.|(2023) [ 32.32 47.18 122.38 77.27 43.19
W4A4 OmniQuant|Shao et al.[(2023) |14.51 13.78 12.49 18.02 14.55

AffineQuant 13.64 13.44 11.58 15.76 13.97

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Algorithm Details. In AffineQuant, the stab1hty factor o decreases as the model size increases, the
quantlzatlon b1ts decrease and the group size 1ncreases ¢ ¢

and smaller models, we set & = 1. As the model size increases, we use o = le — 2 for configu-
rations with weight quantization of 3 bits or more. For other configurations, we select o from the
set {le — 2,1e — 3,1e — 4}. Then, we exclude the affine transformation between the two linear
layers in the MLP module. This is because the optimization of the large transformation matrix in
inflated dimensions is challenging. Additionally, the presence of the activation function renders the
equivalent transformation of the matrix invalid.

Weicht-onl ——— sults on the LLaMALES modelCh-datases

4.2 PERPEEXITY-EVALUATION EXPERIMENTS

As demonstrated in Tables |I| and [FBl we observe consistent performance improvements across all
models with various quantization configurations. This indicates that AffineQuant is not reliant on a
particular quantization configuration. Notably, AffineQuant exhibits significant improvements, par-
ticularly in cases of low-bit quantization or smaller model sizes. Specifically, in the w23a16g128
configuration on the OPT-125M model, we achieve a perplexity reduction of 33-145.10, surpassing
the performance of OmniQuant (Shao et al.|[2023) by a large margin. Furthermore, we . we achieve per-
plexity reductions of +6-66-and-5-85-en-tlaMA-7B-and-2.26 and 1.57 on LLaMA2-13B-medels—
respeetively7B models with C4 and WikiText2 datasets, under the w2at6-4a4 quantization configu-
ration. The aforementioned results underscore the importance of expandlng the optimization space
for the equivalence factor in challenging quantization tasks. For additional dataset results, please
refer to the AppendixfA3]
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Table 4: PPL, memory usage, optimization runtime, and fusten—merge error for the OPT model
under three precision schemes. The “double” scheme maintains double precision for both the model
and the transform matrix. The “float” scheme indicates that both the model and the transform matrix
are in float precision. The “float-double” scheme denotes that the model is in float precision while
the transform matrix is in double precision.

OPT-125M w2al6g64 OPT-6.7B w4al6

Merge Error PPL  Memory Utilization Runtime PPL Memory Utilization Runtime
FP16 - 24.60 - - 11.74 - -
Double 1.88e—16 42.43 7065.5Mb 1.19h 11.91 41414.3Mb 16.7h
Float 2.58e—3 4291 3586.6Mb 0.78h  11.90 21188.9Mb 8.65h
Float-Double 3.48e—4 42.88 3663.6Mb 0.85h 11.96 23189.5Mb 12.72h

Table 5: Effect of different stability factors a on model performance of OPT-125M and LLaMA-7B.

Dataset | FP16 | 1le0 1le—1 1le—2 1le—3 1le—4 1le—5 1le—6 1le—7 1le—8
OPT-125M WikiText2 [ 27.65|42.08 45.32 65.77 76.03 76.78 76.00 76.48 76.55 76.46
w2al6g128 PTB 32.54163.60 68.29 114.41 135.72 125.38 124.12 132.36 132.45 113.75
C4 24.60(45.80 50.84 70.44 79.60 81.48 79.72 79.67 80.70 79.54

LLaMA-7B | WikiText2 | 5.68 | NaN NaN 9.53 10.63 10.90 10.99 10.72 11.63 11.67
w2al6 C4 7.08 | NaN NaN 14.89 14.62 15.31 15.22 14.78 16.66 17.33

Table 6: Contributions of gradual mask on OPT-125M and LLaMA-7B model.

Scheme WikiText2 PTB C4 \ Scheme WikiText2 C4

FPi6 27.65  32.54 24.60 FPi6 568 7.08

Oaré;fé’M With Gradual 3210 39.85 20.97 | "MATE Wik Gradual 953 14.89
Without Gradual 53.52 90.47 62.17 Without Gradual NaN NaN

4.3 ABLATION STUDY

Impact of numerical precision. We compare various metrics, including fusion-merge error, PPL,
memory usage, and optimization runtime, for different precision schemes. Specifically, in the “float-
double” scheme, we convert the activations or weights to double precision, multiply them with the
transformation matrix, and then truncate them to float precision. For the fusien-merge error, we
define two linear layers with input and output channels set to 4, 096. We randomly sample the affine
transformation matrix A € R4096>409 and the input activation X € R2948x409 ‘We conduct 1,000
runs to calculate the mean square error averages of the linear layer outputs before and after fusion
merging A for different precision schemes. The results are presented in Table [4] Notably, in the
case of double precision optimization, the computational error of the matrix inverse is minimized.
Despite the higher time and memory usage compared to other schemes, the smaller fusien-merge
error results in a minor improvement in PPL. However, this improvement is not significant for larger-
scale models.

Effects of stability factor. In Table [5} we adjust the stability factor « in Equation [6] The affine
transform theoretically converges to the scale transform as o approaches 0. We observe that as «
decreases, the model performance of OPT-125M and LLaMA-7B converges to OmniQuant (Shao
et al., 2023). However, in the case of LLaMA-7B, a larger stability factor does not guarantee the
strictly diagonal dominance of the transformation matrix, which can lead to training collapse. Hence,
it is necessary to increase o while ensuring the validity of the Levy-Desplanques theorem (Naimark
& Zeheb| [1997).

Contribution of gradual mask. In Equation [f] we gradually release the elements of the mask ma-
trix close to the diagonal. In Table [6] when we remove the gradual approach, the OPT-125M and
LLaMA-7B models exhibit poor performance or fail to complete training. This indicates that updat-
ing all parameters of the affine transformation matrix at the outset is not conducive to maintaining
its invertible or well-conditioned properties. The gradual mask approach provides a stable means to
optimize large matrices.
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5 CONCLUSION

Post-training quantization based on equivalence shows significant potential. However, previous
equivalence methods have limited the optimizable weight space, resulting in a large quantization
error in the transformed weight distribution. This limitation becomes more pronounced in the case
of small models and low-bit quantization. Affine transformation methods address this issue by sig-
nificantly expanding the optimizable weight space. Previous transformation methods can be seen
as a special case of affine transformation or orthogonal to it. Moreover, the Levy-Desplanques
theorem provides a theoretical foundation for maintaining the stability of matrix optimization in
high-dimensional spaces. Following this theorem, our proposed gradual mask ensures that the ma-
trix remains strictly diagonally dominant during the optimization process. This guarantees the ma-
trix’s invertibility or well-conditioned property and further reduces the mean square error objective
function. Our approach consistently improves performance across a wide range of quantization con-
figurations for all models. Notably, the affine transformation method demonstrates great potential
for improving performance, particularly for small models and low-bit configurations. In the future,
optimizing the affine transformation matrix more effectively deserves careful consideration.

10
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A APPENDIX

A.1  PARETO FRONTS BASED ON WEIGHTED MEMORY

In Figure We show the Pareto frontiers of AffineQuant and OmniQuant based on weighted
memory and PPL trade-off for LLaMA1&2 models of the-affinetransformation—matrix—different

sizes in the 4/4 bit quantization configuration. The results clearly demonstrate that AffineQuant
consistently outperforms the current State-Of-The-Art method, OmniQuant, without any additional

overhead.

A.2 STRICTLY DIAGONAL DOMINANCE GUARANTEED

To avoid confu510n in the proof between « and the elements in the matrix A we tem oraril deno

fneefpef&eeﬁeep&m&&neﬂ—e#

Theorem 1 When the stability factor o is small enough, if N, is strictly diagonally dominant, then
N, is strictly diagonally dominant.

Proof 1 Without loss of generality, we take the i-th row of N.. Since N, is a strictly diagonall
dominant matrix, we have,
ngil > > - (10)
J#i

né. are the elements of the epoch ¢ in the i-th row, i-th column and z th row, '-th

column of the matrix N. According to the learnable—parameter—shift—and—initialize—it—using
Outlier—Suppressionabove Equation the absolute value of the i-th diagonal element of the

13
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Figure 4: PPL vs. weight-memory Pareto-optimal curves for LLaMA 1&2 models of different sizes
in the 4/4 bit quantization configuration on C4 and WikiText2.

matrix N is.

marrix v 1s,

[ = nfi + g SL:* ] (1

= |ng; + ngi . (12)

o °* are the i-th diagonal elements of GM, N at epoch e, respectively. L€ is the
MM&@%

5| = \%Jrnz SL; : (13)

> 1s the scale when the matrix is initialized. Therefore, the diagonal values of the matrix N are not
equal to 0 during the optimization process. Next, we focus on the right-hand side of Equation|[0 at

epoch e+1. Similarly,

. oL*
E |TL +1‘_ E |n’LJ + 779218 ex |7 (14)
mw

_Z|n”+7729“8 z* . (15)

J#i

Where 1 < h < e is the epoch at which n;; starts updating. In other words, n?'. = 0, and as h gets

smaller n;: gets closer to the diagonal. In addition, ¥ = o. Therefore, we have

> gt = naZlZ ) (16)

J#i JjAi x= h ’J

14
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Tomake S .. InSH < n?“ , we let
8L$
naZIZ M|< \mﬁnza M (17)
j#i = h i =0 "~

‘nm + 120 877,“"*
Q OL™
772]761 | Zz h On”*

(18)

Thus, when the stability factor o is sufficiently small, if N, is a strictly diagonally dominant matrix,

then N, is a strictly diagonally dominant matrix. The theorem is proved.
O

A3 COMPARISON WITH FLEXROUND

Please refer to Table[Zl

Table 7: AffineQuant vs. FlexRound. We perform accuracy comparisons on 6 zero-shot tasks.

Dataset PIQA ARC-e WinoGrande BoolQ ARC-c HellaSwag Avg.

M M M () (@) M M

LLaMA.7B | FP16 77.37 52.52 66.85 73.12 41.38  72.99 64.04
wialb FlexRound [Lee et al[(2023) | 77.75 50.80 66.06 70.73 40.27  71.97  62.93
AffineQuant 77.53 51.85 66.93 70.89 38.65 71.49  62.89
LLaMA.138 | FP16 79.11 59.89 70.01 6853 4454 7623 66.38
waal6 FlexRound |Lee et al|(2023) | 78.78  59.55 70.40 66.39 43.77  75.52  65.73
AffineQuant 78.84 59.55 69.38 69.48 4352  75.18  65.99

A4 LOsS AND MODEL PERFORMANCE

We maintain consistent matrix initialization while randomly sampling the stability factor «v, which
influences loss convergence, for LLaMA-7B and OmniQuant-{Shao-etak2023)0OPT-6.7B. Usin
AffineQuant, we obtain the performance of 4/4 bit quantized models based on the sampled solution.

In Figure we present scatter plots depicting the output loss of the last transformer block and

the corresponding model performance on different datasets. These plots demonstrate a significant
positive correlation between loss and model performance, with correlation coefficients of 0.95,0.96
on OPT-6.7B and LLaMA-7B in WikiText2, respectively. Based on this observation, we conclude
that the quantization loss of the last transformer block’s output exhibits a strong correlation with
overall model performance.

A.5 ADDITIONAL EXPERIMENT
We list additional experiments including:

1. the OPT model on the PTB dataset.
2. OPT model on C4 dataset.
3. LLaMA1&2 on the WikiText2 dataset.

Each experiment included models at different scales and a wide range of quantitative configurations.

A.6 AFFINE MATRIX

Figure [7] presents a comprehensive collection of affine transformation matrices, encompassing
various transformer block locations, training epochs, layers, and quantization configurations.
“fc1_Affine_Matrix_A” denotes the affine transformation matrix at fcl, “out_Affine_Matrix_A” rep-
resents the affine transformation matrix at out_proj, and “qkv_Affine_Matrix_A” corresponds to the
affine transformation matrix at gkv. To ensure consistency, we normalize the matrix values within

15
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Figure 5: The relationship between WikiText2 PPL and quantization loss of last transformer block
on LLaMA-7B and OPT-6.7B with 4/4 bit quantization.
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Figure 6: The relationship between C4 PPL and quantization loss of last transformer block on
LLaMA-7B and OPT-6.7B with 4/4 bit quantization.

the range of 0 to 1 using a specified normalization method. Notably, all matrices exhibit the property
of being strictly diagonally dominant. Additionally, the low-bit affine transformation matrix demon-
strates a higher capability to learn rotational features, thereby reducing the model’s quantization
error compared to the high-bit configuration.

Furthermore, as the training epochs progress, the affine transformation matrix acquires more non-
primary diagonal elements. On the other hand, the persistence of an approximate diagonal matrix at
high quantization bits elucidates the modest performance improvement observed in high-bit quanti-
zation configurations. This phenomenon may also be attributed to the relatively small performance
gap between the quantized model and the full-precision model.

A.7 EXPERIMENTAL DETAILS

To ensure a fair comparison, we align most of our optimization parameters with those of OmniQuant
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Table 8: Weight-only quantization PPL(]) results on the OPT model PTB dataset.

Config Method 125M 1.3B 2.7B 6.7B 13B 30B
FP16 - 32.54 16.96 15.11 13.08 12.33 11.84
RTN 4.6e3 7.1e3 2.5e4  5.7e3 3.0e4 6.2¢3

GPTQ (Frantar et al.,[2022) 655.17 130.88 61.36 25.24 20.46 15.15

w2al6g128  AWQ (Lin et al.,[2023) 263.88 71.87 43.15 1949 17.61 14.92
OmniQuant (Shao et al.l, 2023) 126.49 34.33 25.28 18.92 16.74 14.51

AffineQuant 65.23  30.06 27.11 18.22 16.35 14.09

RTN 5.1e3 19.4e3 7.7e4 6.1e3 8.2e3 4.1e3

GPTQ (Frantar et al,[2022) 245.28  55.61 36.12 19.45 17.02 14.05

w2al6god  AWQ (]Lln et al.|[2023) 143.18  41.19 25.08 18.00 15.83 14.92
OmniQuant (Shao et al.l, 2023) 112.10 30.36 22.63 17.58 15.70 13.98

AffineQuant 60.90 27.21 21.50 17.07 15.32 13.68

RTN 1.2e3 1.1e4 1.0e4 5.2e3 3.6e3 1.4e3

GPTQ (Frantar et al,[2022) 34.05  27.39 15.94 13.75 13.71 12.54

w3al6 AWQ (]Lln et al.[[2023) 80.73  33.20 224.11 18.46 35.45 66.68
OmniQuant (Shao et al.l, 2023)  40.76 19.06 16.29 13.77 12.96 12.19

AffineQuant 38.38 19.14 16.32 14.19 13.54 12.48

RTN 64.67 222.13 337.75 39.90 65.33 34.27

GPTQ (Frantar et al,[2022) 45.17 19.90 17.06 14.24 12.84 12.54

w3al6gl28  AWQ (Lin et al.[[2023) 44.07 19.59 16.52 13.98 12.87 66.68
OmniQuant (Shao et al.l, 2023) 45.29  20.42 17.08 14.23 1349 12.54

AffineQuant 36.70 18.64 16.11 13.59 1297 12.14

RTN 4498  33.63 22.23 16.05 15.40 14.17

GPTQ (Frantar et al,[2022) 37.75 18.23 15.94 13.75 12.58 11.98

w4al6 AWQ (]Lm et al.|[2023) 38.74 18.35 15.70 13.59 12.72 12.06
OmniQuant (Shao et al.l, 2023) 34.94 17.80 15.52 1341 12.62 11.95

AffineQuant 34.29 17.55 15.49 13.30 12.54 11.97

RTN 36.50  33.63 22.23 16.05 15.40 14.17

GPTQ (Frantar et al.,[2022) 35.48 17.41 15.42 13.21 1242 11.89

wdal6gl28  AWQ (Lin et al.,[2023) 34.95 17.46 15.33 13.28 1246 11.90
OmniQuant (Shao et al.l, 2023)  34.28 17.40 15.28 13.25 1246 11.94

AffineQuant 34.00 17.33 15.25 13.27 1244 11.94

(Zhang et al}[2022) and LLaMA1&2 (Touvron et al.l[2023aib) models. _Additionally, we employ
grouping strategies of 64 or 128 for weight guantization with different bit configurations. The
model’s performance is evaluated on the WikiText2 (Merity et al.,[2016), PTB (Marcus et al.}[1994)
. and C4 (Raffel et al.l 2020) datasets. _For algorithm optimization, we randomly select 128

segments from the WikiText2 training set, each containing 2048 tokens, as the calibration dataset.
We leverage the scale of SmoothQuant ) to initialize the diagonal of the affine

transformation matrix. As the affine transformation is orthogonal to the translation operation,
we incorporate the optimization of the learnable parameter shift and initialize it using Outlier

weight-only quantization methods, including GPTQ (Frantar et al.
».and OmniQuant (Shao et al’, 2023).
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Table 9: Weight-only quantization PPL(J) results on the OPT model C4 dataset.

Config Method 125M 1.3B 2.7B 6.7B 13B 30B
FP16 - 24.60 14.72 13.16 11.74 11.19 10.69
RTN 5.0e3 7.7e3 3.8e4 5.2e3 2.8e¢4 6.5e3
GPTQ (Frantar et al,[2022) 597.66  60.88 33.83 18.55 16.34 12.89
w2al6gl28 AWQ (]Lm et al.|[2023) 168.35 38.38 26.41 1648 14.73 12.98
OmniQuant (Shao et al.l, 2023)  80.10 27.33 21.11  16.67 14.92 13.12
AffineQuant 46.22  23.28 23.10 15.62 14.60 12.93
RTN 3.9¢e3 7.3e3 1.2e5 6.3e3 7.5e3 4.0e3
GPTQ (Frantar et al.,[2022) 133.51 31.31 23.23 16.24 14.48 12.24
w2al6g6d  AWQ (]Lm et al.[[2023) 90.19 27.34  20.01 15.20 13.90 12.43
OmniQuant (Shao et al.l, 2023) 64.01 23.71 19.16 15.44 14.16 12.80
AffineQuant 42.43  21.87 17.72  14.86 13.92 12.49
RTN 722.83  6.1e3 1.2e4 5.8¢3 3.3e3 1.4e3
GPTQ (Frantar et a1.|, 2022) 37.75 19.45 13.75 15.67 12.28 11.34
w3al6 AWQ (]Lm et al.[[2023) 55.73  24.56 154.49 15.84 23.71 55.01
OmniQuant (Shao et al.l, 2023) 32.17 17.10 14.93 12.78 12.13 11.37
AffineQuant 28.19 16.42 14.27 12.72 12.04 11.21
RTN 40.13  126.47 372.23 32.56 44.12 25.70
GPTQ (Frantar et al,[2022) 30.08 16.47 14.54 12.48 11.58 10.91
w3al6gl28 AWQ (]Lm et al.|[2023) 30.39 16.27 14.19 12.30 11.61 10.96
OmniQuant (Shao et al.l, 2023)  29.34 16.11 14.15 12.31 11.63 10.98
AffineQuant 27.53 16.02 13.92 12.21 11.63 10.99
RTN 31.58  24.68 17.61 13.38 12.35 11.90
GPTQ (Frantar et a1.|, 2022) 27.12 15.57 13.75 12.15 11.36 10.80
w4al6 AWQ (|L1n et al.[[2023) 27.64 15.65 13.71 12.04 11.42 10.83
OmniQuant (Shao et al.l, 2023)  26.36 15.28 13.568 11.97 11.41 10.80
AffineQuant 25.47 15.18 13.43 11.90 11.36 10.80
RTN 26.79 15.71 13.79 12.31 11.51 10.94
GPTQ (Frantar et al,[2022) 25.96 15.05 13.40 11.87 11.26 10.74
wdal6gl28 AWQ (]Lm et al.|[2023) 25.90 15.04 13.39 11.87 11.28 10.75
OmniQuant (Shao et al.l, 2023)  25.63 15.03 13.38 11.85 11.29 10.75
AffineQuant 25.26 14.98 13.32  11.84 11.27 10.75
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Table 10: Weight-only quantization PPL() results on the LLaMA1&2 model C4 dataset.

Config ~ Method 1-7B 1-13B 1-30B  2-7B  2-13B
FP16 - 7.08 6.61 598  6.97  6.46
RTN 2826 13.22 28.66 402.35 12.51
GPTQ (Frantar et al.|, 2022) 9.49 8.16 7.29 9.81 8.02
w3al6  AWQ (Lin et al[[2023) 1326 9.13  12.67 23.85 13.07
OmniQuant (Shao etal[[2023) 819  7.32 657  8.65  7.44
AffineQuant 8.03 720 655 857  7.56
RTN 862 749 658 840 7.8

GPTQ (Frantaretal}2022) ~ 7.85 7.10 647  7.89  7.00
w3al6gl28  AWQ (Cin et al, 2023) 792 707 637 784  6.94
OmniQuant (Shao etal}[2023) 7.34 676  6.11  7.35  6.65

AffineQuant 775 7.04 640 7.83  6.99
RTN 793 698 634 771 683

GPTQ (Frantar et al, 2022) 743 684 620 7.37  6.70

w4al6  AWQ (Lin et al}[2023) 752  6.86 617  7.68  6.74
OmniQuant (Shaoetal|2023)  7.34  6.76  6.11 735  6.65

AffineQuant 730 675 610 729  6.64

RTN 737 669 606 7.24  6.58

GPTQ (Frantar et al, 2022) 721 669 606 712  6.56

wdal6gl28  AWQ (Lin et al][2023) 721 670 605 7.3  6.56
OmniQuant (Shao et al.| 721  6.69 606 712  6.56

AffineQuant 720 6.69 605 7.2  6.56
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Table 11: Weight-only quantization PPL(]) results on the LLaMA1&2 model WikiText2 dataset.

Config Method 1-7B 1-13B 1-30B 2-7B 2-13B
FP16 - 5.68 5.09 4.10 5.47 4.88
RTN 1.1eb 6.8e4 2.4e4 3.8e4 5.6e4

GPTQ (Frantar et a1.|, 2022) 2.1e3 5.5e3  499.75  7.7e3 2.1e3

w2al6 OmniQuant (Shao et al.|, 2023)  15.47 13.21 8.71 37.37 17.21
AffineQuant 9.53 7.54 8.35 35.07 12.42
RTN 1.9e3 781.20 68.04 4.2e3  122.08
GPTQ (Frantar et al.[, 2022) 44.01 15.60 10.92 36.77 28.14
w2al6gl28 AWQ (Lin et al.;[2023) 2.6e5 2.8e5 2.4e5 2.2e5 1.2e5
OmniQuant (Shao et al.l, 2023) 10.53 8.37 7.77 12.84 9.15
AffineQuant 13.51 7.22 6.49 10.87 7.64
RTN 188.32 101.87 19.20 431.97 26.22
GPTQ (Frantar et al,[2022) 22.10 10.06 8.54 20.85 22.44
w2al6g6d AWQ (]Lm et al.[[2023) 2.5e5 2.7e5 2.3e5 2.1e5 1.2e5
OmniQuant (Shao et al.l, 2023) 9.41 7.62 7.14 10.56 8.14
AffineQuant 8.35 6.98 6.20 9.05 7.11
RTN 25.73 11.39 14.95 539.48 10.68
GPTQ (Frantar et al.L 2022) 8.06 6.76 5.84 8.37 6.44
w3al6 AWQ (]Lm et al.;[2023) 11.88 7.45 10.07  24.00 10.45
OmniQuant (Shao et al.l, 2023) 6.49 5.68 4.74 6.58 5.58
AffineQuant 6.30 5.60 4.68 6.55 5.62
RTN 7.01 5.88 4.87 6.66 5.51
GPTQ (Frantar et al.,[2022) 6.55 5.62 4.80 6.29 5.42
w3al6gl28  AWQ (Lin et al.[[2023) 6.46 5.51 4.63 6.24 5.32
OmniQuant (Shao et al.l, 2023) 6.15 5.44 4.56 6.03 5.28
AffineQuant 6.14 5.45 4.59 6.08 5.28
RTN 6.43 5.55 4.57 6.11 5.20
GPTQ (Frantar et al,[2022) 6.13 5.40 4.48 5.83 5.13
w4al6 AWQ (Lin et al.[[2023) 6.08 5.34 4.39 6.15 5.12
OmniQuant (Shao et al.l, 2023) 5.86 5.21 4.25 5.74 5.02
AffineQuant 5.84 5.20 4.23 5.69 5.01
RTN 5.96 5.25 4.23 5.72 4.98
GPTQ (Frantar et al.[, 2022) 5.85 5.20 4.23 5.61 4.98
wdal6gl28  AWQ (Lin et al.}[2023) 5.81 5.20 4.21 5.62 4.97
OmniQuant (Shao et al.l, 2023) 5.77 5.17 4.19 5.58 4.95
AffineQuant 5.77 5.17 4.19 5.58 4.95
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and different training epochs for OPT and LLaMA1&2.
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