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APPENDIX

A FRAMES VISUALIZATION

This section visualizes sample input keyframes from the videos to provide a clearer understanding of the
data used in our experiments. Each row in Figure 7 represents a distinct video sequence fed into the LVLMs
for analysis. These examples are representative of the scenarios in our dataset, encompassing a variety of
everyday actions, objects, and environments. By visualizing the raw inputs, we aim to illustrate the visual
complexities, such as changes in viewpoint, object scale, and partial occlusions, that the model must handle
to perform accurate semantic reasoning.

Figure 7: Visualization of Input Keyframes. Each row displays a sequence of frames provided to the model
as input for a specific video. The red bounding boxes highlight the ground-truth object pertinent to the task’s
question (e.g., the object being picked up, kicked, or taken). It is important to note that these bounding boxes
are included here for clarity and were not provided to the model during inference.

B THEORETICAL FRAMEWORK FOR VISUAL SEMANTIC CIRCUITS

In this section, we propose the theoretical framework built on three core principles that we hypothesize
govern the internal computations of LVLMs: Information Localization, Progressive Semantic Refinement,
and a Two-Stage Reasoning flow. We model the LVLM as a probabilistic system to formalize these principles
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into specific, falsifiable predictions. This framework provides a principled foundation for understanding and
predicting the model’s behavior, which we then validate through targeted experiments.

B.1 PROBABILISTIC MODEL FORMULATION

Let V be a video represented by a sequence of key frames, and Q be a textual question. The LVLM, denoted
by M, aims to generate an answer A. The process begins by encoding the video V into a set of N visual
tokens, EV = {e1, e2, . . . , eN}. The question Q is tokenized into M text tokens, EQ = {q1, . . . , qM}. The
model then computes the probability of an answer A:

P (A|V,Q) = M(EV , EQ). (3)
Central to our investigation is the hypothesis that the set of visual tokens EV can be partitioned into the
subset EO containing primary information about the specific object o, and the complementary subset EC

containing contextual information, such that EV = EO → EC and EO ↑ EC = ↓.

B.2 PRINCIPLE OF INFORMATION LOCALIZATION

We begin with the hypothesis that to answer a specific question, the LVLM does not treat all visual tokens
equally. Instead, we propose the Principle of Information Localization: task-critical information is spatially
concentrated in the subset of tokens corresponding to the object of interest. Let this subset be EO, with the
remainder being contextual tokens EC .

This principle leads to a direct, testable prediction. The informational value of a token set can be quantified
by the degradation in model performance upon its ablation. We model this degradation as the KL divergence
between the original and ablated posterior distributions:

Ldrop(ES) = DKL (P (A|EV , EQ) ↔ P (A|EV \ ES , EQ)) . (4)
Our principle predicts that the information is concentrated in EO. Formally, if we ablate the object tokens
EO, the resulting information loss should be significantly greater than ablating any other random subset of
tokens ER of the same size. This leads to the following inequality, which we aim to verify experimentally:

EER→EV ,|ER|=|EO| [Ldrop(ER)] ↗ Ldrop(EO). (5)
Furthermore, we hypothesize that the model internally reasons over abstract concepts. This predicts that
injecting a clean, symbolic representation of the object, ewcorrect , should be even more effective than the noisy
visual tokens EO. This can be formalized as:

P (A↑|ewcorrect , EC , EQ) > P (A↑|EO, EC , EQ). (6)
The ablation and injection experiments presented in Table 1 were designed to test these formal predictions.

B.3 HYPOTHESIS OF PROGRESSIVE SEMANTIC REFINEMENT

We hypothesize that visual information is not processed into its final semantic form in a single step. Instead,
we propose the model of Progressive Semantic Refinement, where hidden states associated with visual tokens
transition from encoding low-level perceptual features in early layers to abstract, language-aligned concepts
in later layers.

Let h(l)
i

be the hidden state for a token i at layer l. Let S(wcorrect) be the semantic space associated with the
correct object concept, represented by its text embedding ewcorrect . Our hypothesis predicts that for an object
token i ↘ EO, its representation h(l)

i
will become progressively more aligned with this semantic space as it

passes through the network. We can formalize this predicted monotonic increase in alignment for layers l
beyond a critical depth lcrit using a similarity metric:

sim(h(l)
i
, ewcorrect) is a monotonically increasing function of l for l > lcrit. (7)
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To test this prediction, we employ the logit lens technique, which projects intermediate hidden states into the
vocabulary space. We measure the Correspondence Rate (C(l)

R
) and Answer Probability (A(l)

P
) to track this

alignment across layers. The experimental results in Figure 4 are used to validate the existence and location
of the predicted critical layer depth lcrit.

B.4 THE TWO-STAGE REASONING HYPOTHESIS

Building on the previous principles, we hypothesize that the model’s reasoning is not monolithic but follows
an efficient, cognitively plausible two-stage process.

1. Stage 1 (Contextual Grounding): In the early layers (Learly), the model first processes contextual
tokens (EC) to establish a general understanding of the scene and the query.

2. Stage 2 (Focal-Point Refinement): In the late layers (Llate), after the context is established, the
model focuses its attention on the specific object tokens (EO) to extract fine-grained details neces-
sary for a precise answer.

This hypothesis can be formalized by considering the sensitivity of the final prediction to attention weights
at different layers. Let ≃

ω
(l)
S

logP (a↑1) be the gradient of the log-probability of the correct answer with
respect to the attention weights from a set of tokens S at layer l. Our two-stage hypothesis predicts a shift in
sensitivity:

∑

l↓Learly

∥∥∥≃
ω

(l)
C

logP (a↑1)
∥∥∥ >

∑

l↓Learly

∥∥∥≃
ω

(l)
O

logP (a↑1)
∥∥∥ , (8)

∑

l↓Llate

∥∥∥≃
ω

(l)
O

logP (a↑1)
∥∥∥ >

∑

l↓Llate

∥∥∥≃
ω

(l)
C

logP (a↑1)
∥∥∥ . (9)

These inequalities formalize the ”context-first, detail-later” strategy as a testable prediction. We designed
the attention masking experiments in Table 2 to directly probe these sensitivities and validate our two-stage
reasoning hypothesis.

C SCALING EXPERIMENTS

We conducted supplementary experiments to verify that our conclusions generalize to larger-scale models.
We replicated our core analyses on the LLaVA-NeXT-34B model variants, with results that closely mirror
those presented in the main body of the paper. The visual token ablation study on the 34B models reaf-
firms the principle of spatial localization for semantic information. Ablating object-specific tokens incurs
significantly more substantial performance degradation than removing larger quantity of random tokens (in
Table 3).

Furthermore, our semantic tracing analysis on the 34B architecture, depicted in Figure 8, reveals a conceptual
emergence pattern consistent with our earlier observations. Both the Correspondence Rate and Answer
Probability remain negligible through the initial layers before exhibiting a sharp, concurrent rise beginning
around layer 40. This trend indicates that abstract, language-aligned concepts are consolidated in the deeper
layers of the network, irrespective of model scale. These scaling experiments provide robust evidence that
the mechanisms of semantic localization and late-stage conceptual formation are fundamental properties of
the tested LVLM architectures.
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Ablation Tokens LLaVA-NeXT-34B-I LLaVA-NeXT-34B-V

Type Number Open Close Open Close

Control Groups (Low Tokens)
Baseline 0 100.0→0 100.0→0 100.0→0 100.0→0
Register 13 55.3→44.68 96.9→3.14 55.3→44.68 1.8→98.2

Object-based Ablation
304 9.3→90.75 29.8→70.16 14.6→85.37 11.7→88.35

Object 413 5.8→94.24 21.1→78.88 10.7→89.32 11.3→88.72
573 5.8→94.24 18.0→82.02 10.3→89.74 11.8→88.21

Control Groups (High Tokens)
100 54.3→45.72 96.9→3.14 93.1→6.92 29.7→70.26

Random 350 55.5→44.5 96.5→3.49 88.5→11.54 31.0→68.97
500 54.5→45.55 96.3→3.66 83.1→16.92 30.8→69.23
900 59.9→40.14 96.8→3.17 78.3→21.67 29.7→70.33

Table 3: Accuracy (%) from visual token ablation
on question-answering performance across 34B models.
The ⇐ symbol indicates the magnitude of this perfor-
mance drop.

LLaVA-NeXT-34B-I

LLaVA-NeXT-34B-V

Figure 8: Quantitative analysis of semantic trac-
ing on 34B model size.

Prompt 
USER: The input consists of a sequence of key 
frames from a video. Question: Which object was 
taken by the person?
ASSISTANT: The object is the

Response: Towel

Answer: Towel

Figure 9: Qualitative example of the model correctly identifying an object. The user asks which object was
taken by the person. The model correctly identifies the ”Towel”. The accompanying table shows the layer-
by-layer semantic tracing for visual and text tokens.

17



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

D QUALITATIVE EXAMPLES

We provide additional qualitative examples to visually illustrate the findings from our circuit-based analysis.
These examples showcase the model’s process of interpreting video frames to answer specific questions
about objects and actions. Each figure includes the input video frames, the posed question, the model’s
response, and a table showing the semantic evolution of key tokens across different layers, as analyzed
through our semantic tracing circuit (Circuit ✁). More examples in the anonymous interactive demo website.

Prompt 
USER: The input consists of a sequence of key 
frames from a video. Question: Which object was 
thrown by the person?
ASSISTANT: The object is the

Response: Green shirt that the person is throwing.

Answer: Clothes

Figure 10: Qualitative example where the model is prompted to identify a thrown object. The model success-
fully responds that a ”Green shirt” was thrown, correctly identifying both the object and its color. The table
illustrates the semantic trace, showing how the model processes the visual information through its layers.

E ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics and aims to enhance the understanding of the internal spa-
tiotemporal reasoning mechanisms within LVLMs through circuit-based analysis, in order to drive the de-
velopment of more robust and interpretable models. The experiments are based entirely on public academic
datasets (e.g., the STAR benchmark), and we acknowledge that these contain videos of human activities,
which were used solely for their intended academic analytical purposes. To ensure research integrity, we
explicitly state that LLMs were used only for language polishing after the manuscript was written, and that
all core scientific contributions originate from the human authors.
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F REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of this research. All experiments are based on publicly
available models (the LLaVA-NeXT and LLaVA-OV series) and datasets (the STAR benchmark). We detail
our methods for filtering and processing data from the STAR benchmark in the ”Dataset Curation” part of
Section 3, and provide visualization samples of keyframes in Appendix A. The core methodology of our
research, including the specific settings, intervention methods, and evaluation metrics for the three analyti-
cal circuits (Visual Information Auditing, Semantic Tracing, and Attention Flow), is thoroughly elaborated
in Section 3 (Subsections 3.1, 3.2, and 3.3), which includes key mathematical formulas and parameter def-
initions. The theoretical framework supporting our experimental design is fully formalized in Appendix B.
Furthermore, an anonymous interactive demo website is provided in Appendix D for reviewers to explore
additional qualitative results. We believe these detailed descriptions are sufficient to support the reproduction
of this work. All code will be made available upon acceptance of the manuscript.

Prompt 
USER: The input consists of a sequence of key 
frames from a video. Question: Which object was 
picked up by the person? 
ASSISTANT: The object is the

Response: Box of shoes

Answer: Box

Figure 11: Qualitative example demonstrating the model’s ability to recognize an object being picked up.
The model correctly identifies the object as a ”Box of shoes”. The semantic tracing table displays the
evolution of token representations across five layers that contribute to this accurate identification.
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