
A Further discussion on BPP payment

In this section, we discuss the connection of bonus-penalty payment and existing peer prediction
mechanisms. First, if we substitute the third input with a uniformly random bit, denoted as 𝑠𝑘 = 𝑍 ∼𝑢

{−1, 1}, the bonus-penalty payment simplifies to the agreement mechanism [62, 61, 63], one of the
most basic peer prediction mechanisms,

E
[
𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑠 𝑗 , 𝑍)

]
= 𝑠𝑖𝑠 𝑗 = 21[𝑠𝑖 = 𝑠 𝑗 ] − 1.

However, the agreement mechanism is not symmetrically strongly truthful, as all agents always
reporting 1 and −1 can result in higher payments than truth-telling.

The bonus-penalty payment eq. (1) is originally proposed by [11, 57] for the multi-task setting.
Our BPP mechanism in Mechanism 3 can be seen as a generalization of multi-task setting. In the
multi-task setting, agents works on multiple tasks and for each task the private signals are jointly
identically and independently (iid) sampled from a fixed distribution and the each agent’s strategy
also are iid. Take two agents (Isabel and Julia) and two tasks as an example: Isabel has a private
signal (𝑠1

𝑖
, 𝑠2

𝑖
) and reports (𝑠1

𝑖
, 𝑠2

𝑖
) and Julia has (𝑠1

𝑗
, 𝑠2

𝑗
) and reports (𝑠1

𝑗
, 𝑠2

𝑗
) where (𝑠𝑙

𝑖
, 𝑠𝑙

𝑗
) are iid

from random vector (𝑆𝑖 , 𝑆 𝑗 ). Isabel and Julia decide their reports on each task using random function
𝜎𝑖 , 𝜎𝑗 : {−1, 1} ↦→ {−1, 1} respectively. Dasgupta and Ghosh [11] use the following payments for
Isabel

1[𝑠1
𝑖 = 𝑠1

𝑗 ] − 1[𝑠1
𝑖 = 𝑠2

𝑗 ] =
1
2
𝑈𝐵𝑃𝑃

(
𝑠1
𝑖 , 𝑠

1
𝑗 , 𝑠

2
𝑗

)
.

The payment is a special case of Mechanism 3 by taking the second input as 𝑠1
𝑗

and the third input as
𝑠2
𝑗
. Additionally, 𝑆1

𝑗
uniform dominates 𝑆2

𝑗
for 𝑆1

𝑖
if and only if

Pr[𝑆 𝑗 = 1 | 𝑆𝑖 = 1] > Pr[𝑆 𝑗 = 1], and Pr[𝑆 𝑗 = −1 | 𝑆𝑖 = −1] > Pr[𝑆 𝑗 = −1]

which is called categorical signal distributions [57].

Finally, similar to Shnayder et al. [57], we may extend to non-binary signal setting by extending the
payment to

𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘) = 2
(
1[𝑠𝑖 = 𝑠 𝑗 ] − 1[𝑠𝑖 = 𝑠𝑘]

)
and the definition of uniform dominance to the following.

Definition A.1. Given a random vector (𝑆𝑖 , 𝑆 𝑗 , 𝑆𝑘) ∈ Ω3 on a discrete domain, we say 𝑆 𝑗 uniformly
dominates 𝑆𝑘 for 𝑆𝑖 if

Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠] > 0 and
Pr[𝑆 𝑗 = 𝑠′ | 𝑆𝑖 = 𝑠] − Pr[𝑆𝑘 = 𝑠′ | 𝑆𝑖 = 𝑠] < 0

for all 𝑠, 𝑠′ ∈ Ω with 𝑠 ≠ 𝑠′.

However, the guarantee for truth-telling (informed truthfulness) is weaker than the binary setting.

Theorem A.2. Given any discrete domain Ω, if for each agent 𝑖 the associated agent 𝑗’s signal
uniformly dominates 𝑘’s signal for 𝑖’s signal (definition A.1), Mechanism 3’s scheme is symmetrically
informed truthful so that

1. truth-telling is a strict equilibrium, and

2. each agent’s expected payment in truth-telling is no less than the payment in any other
symmetric equilibria and strictly better than any uninformed equilibrium’s.

Proof. First truth-telling is a strict equilibrium, because if 𝑆𝑖 = 𝑠,

arg max
𝑠

E
[
𝑈𝐵𝑃𝑃 (𝑠, 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠

]
= arg max

𝑠

Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠]

=𝑠 (by definition A.1)
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Additionally, because Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠] > Pr[𝑆 𝑗 = 𝑠′ | 𝑆𝑖 = 𝑠] − Pr[𝑆𝑘 =

𝑠′ | 𝑆𝑖 = 𝑠] for all 𝑠′ ≠ 𝑠, summing over all possible 𝑠′ ∈ Ω on both sides gets Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 =
𝑠] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠] > 0 and

E
[
𝑈𝐵𝑃𝑃 (𝑆𝑖 , 𝑆 𝑗 , 𝑆𝑘)

]
> 0.

For any informed equilibrium, by a direct computation E
[
𝑈𝐵𝑃𝑃 (𝑆𝑖 , 𝑆 𝑗 , 𝑆𝑘)

]
= 0.

Finally, we show that the truth-telling has the maximum expected payment for each agents. When all
agent use a strategy 𝜎 : Ω → Ω, agent 𝑖’s expected payment is∑︁

𝑠𝑖 ,𝑠𝑖∈Ω
Pr[𝑆𝑖 = 𝑠𝑖]𝜎(𝑠𝑖 , 𝑠𝑖)E

[
𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
=2

∑︁
𝑠𝑖 ,𝑠𝑖∈Ω

Pr[𝑆𝑖 = 𝑠𝑖]𝜎(𝑠𝑖 , 𝑠𝑖)
∑︁
𝑠∈Ω

(Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠𝑖])𝜎(𝑠, 𝑠𝑖)

=2
∑︁
𝑠𝑖∈Ω

Pr[𝑆𝑖 = 𝑠𝑖]
∑︁

𝑠𝑖 ,𝑠∈Ω
𝜎(𝑠𝑖 , 𝑠𝑖)𝜎(𝑠, 𝑠𝑖) (Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠𝑖])

Let 𝑓𝑠𝑖 (𝑠) :=
∑

𝑠𝑖∈Ω 𝜎(𝑠𝑖 , 𝑠𝑖)𝜎(𝑠, 𝑠𝑖) which is between 0 and 1, because 𝑓𝑠𝑖 (𝑠) ≤∑
𝑠𝑖∈Ω 𝜎(𝑠𝑖 , 𝑠𝑖)

∑
𝑠𝑖∈Ω 𝜎(𝑠, 𝑠𝑖) = 1. Then the expectation becomes∑︁

𝑠𝑖 ,𝑠𝑖∈Ω
Pr[𝑆𝑖 = 𝑠𝑖]𝜎(𝑠𝑖 , 𝑠𝑖)E

[
𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
=2

∑︁
𝑠𝑖∈Ω

Pr[𝑆𝑖 = 𝑠𝑖]
∑︁
𝑠∈Ω

(
Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠𝑖]

)
𝑓𝑠𝑖 (𝑠)

≤2
∑︁
𝑠𝑖∈Ω

Pr[𝑆𝑖 = 𝑠𝑖]
(
Pr[𝑆 𝑗 = 𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖]

)
=E

[
𝑈𝐵𝑃𝑃 (𝑆𝑖 , 𝑆 𝑗 , 𝑆𝑘)

]
The inequality holds because 𝑓𝑠𝑖 ∈ [0, 1] and definition A.1. Therefore, we complete the proof. □

B Proofs in Section 2: Bayesian SST model and other models

The proofs of propositions 2.3 and 2.5 are standard, and variations can be found in related literature.
We include proofs here for completeness.

Proof of proposition 2.3. First given 𝜃 ∈ RA , for all distinct 𝑎, 𝑎′, 𝑎′′ ∈ A, Pr[𝑇𝜃 (𝑎, 𝑎′) =

1], Pr[𝑇𝜃 (𝑎′, 𝑎′′) = 1] > 1/2 implies that 𝜃𝑎 − 𝜃𝑎′ > 0 and 𝜃𝑎′ − 𝜃𝑎′′ > 0 becuase 𝐹 is strictly
increasing and 𝐹 (0) = 1/2. Because 𝜃𝑎 − 𝜃𝑎′′ = 𝜃𝑎 − 𝜃𝑎′ + 𝜃𝑎′ − 𝜃𝑎′′ > max(𝜃𝑎 − 𝜃𝑎′ , 𝜃𝑎′ − 𝜃𝑎′′ ),
we have

Pr[𝑇𝜃 (𝑎, 𝑎′′) = 1] =𝐹 (𝜃𝑎 − 𝜃𝑎′′ )
>max 𝐹 (𝜃𝑎 − 𝜃𝑎′ ), 𝐹 (𝜃𝑎′ − 𝜃𝑎′′ )
=max Pr[𝑇𝜃 (𝑎, 𝑎′) = 1], Pr[𝑇𝜃 (𝑎′, 𝑎′′) = 1]

and thus 𝑇𝜃 is strongly stochastically transitive for all 𝜃 with distinct coordinates which happens
surely as 𝜈 is non-atomic. Finally, since the distribution on 𝜃 is exchangeable on each coordinate,
E [E [𝑇𝜃 (𝑎, 𝑎′)]] = 0 for all 𝑎, 𝑎′. □

Proof of proposition 2.5. First given 𝜃 ∈ Θ, for all distinct 𝑎, 𝑎′ ∈ A, if the rank of 𝑎 is higher than
𝑎′,

Pr[𝑇𝜃 (𝑎, 𝑎′) = 1] = ℎ𝜂 (𝜃 (𝑎′) − 𝜃 (𝑎) + 1) − ℎ𝜂 (𝜃 (𝑎′) − 𝜃 (𝑎))
where ℎ𝜂 (𝑥) = 𝑥

1−exp(−𝜂𝑥 ) by Busa-Fekete et al. [7].

Claim B.1. For any 𝜂 > 0 and 𝑥 ∈ Z>0, the difference ℎ𝜂 (𝑥 + 1) − ℎ𝜂 (𝑥) is increasing and larger
than 1/2 where ℎ𝜂 (𝑥) = 𝑥

1−exp(−𝜂𝑥 ) .
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By claim B.1, Pr[𝑇𝜃 (𝑎, 𝑎′) = 1], Pr[𝑇𝜃 (𝑎′, 𝑎′′) = 1] > 1/2 implies that 𝜃 (𝑎′) − 𝜃 (𝑎) > 0 and
𝜃 (𝑎′′) − 𝜃 (𝑎′) > 0. Thus, 𝜃 (𝑎′′) − 𝜃 (𝑎) > max(𝜃 (𝑎′′) − 𝜃 (𝑎′), 𝜃 (𝑎′′) − 𝜃 (𝑎′)), and

Pr[𝑇𝜃 (𝑎, 𝑎′′) = 1] = ℎ(𝜃 (𝑎′′) − 𝜃 (𝑎) + 1) − ℎ(𝜃 (𝑎′′) − 𝜃 (𝑎))
>max ℎ(𝜃 (𝑎′′) − 𝜃 (𝑎′) + 1) − ℎ(𝜃 (𝑎′′) − 𝜃 (𝑎′)), ℎ(𝜃 (𝑎′) − 𝜃 (𝑎) + 1) − ℎ(𝜃 (𝑎′) − 𝜃 (𝑎))
=max Pr[𝑇𝜃 (𝑎, 𝑎′) = 1], Pr[𝑇𝜃 (𝑎′, 𝑎′′) = 1]

where the second inequality is due to claim B.1. Therefore, 𝑇𝜃 is strongly stochastically transitive for
all 𝜃. Finally, E [E [𝑇𝜃 (𝑎, 𝑎′)]] = 0 for all 𝑎, 𝑎′ since 𝜃 is an uniform distribution on rankings. □

Proof of claim B.1. We first prove that the function ℎ𝜂 (𝑥) = 𝑥
1−exp(−𝜂𝑥 ) is increasing and strictly

convex on 𝑥 ≥ 0. Because ℎ𝜂 (𝑥) = 1
𝜂
ℎ1 (𝜂𝑥), for all 𝜂, 𝑥, it is sufficient to consider 𝜂 = 1. First,

ℎ′1 (𝑥) =
1−(𝑥+1)𝑒−𝑥
(1−𝑒−𝑥 )2 > 0, so ℎ1 is increasing. Second, as ℎ′′1 (𝑥) =

𝑒−𝑥 ( (𝑥−2)+(𝑥+2)𝑒−𝑥 )
(1−𝑒−𝑥 )3 , to show

ℎ′′1 (𝑥) > 0 for all 𝑥 > 0, it is sufficient to show that 𝑔(𝑥) = (𝑥 − 2) + (𝑥 + 2)𝑒−𝑥 > 0. Because
𝑔(0) = 0 and 𝑔′ (𝑥) = 1 − (𝑥 + 1)𝑒−𝑥 > 0, 𝑔(𝑥) > 0 for all 𝑥 > 0. Therefore, ℎ1 is strictly convex.

On the other hand, ℎ𝜂 (𝑥+2)−ℎ𝜂 (𝑥+1) > ℎ𝜂 (𝑥+1)−ℎ𝜂 (𝑥) for all 𝑥 by convexity, and ℎ𝜂 (2)−ℎ𝜂 (1) =
1

1+𝑒−𝜂 > 1
2 which completes the proof. □

C Proofs in Section 3 and 4

C.1 Uniform dominance from Bayesian SST

Proof of lemma 4.2. With a prior similar assumption for Bayesian SST model, we only need to show

Pr[𝑆(𝑎′′, 𝑎′) = 1 | 𝑆(𝑎, 𝑎′) = 1] > Pr[𝑆(𝑎′′, 𝑎) = 1 | 𝑆(𝑎, 𝑎′) = 1], (5)

and the other case Pr[𝑆(𝑎′′, 𝑎′) = −1 | 𝑆(𝑎, 𝑎′) = −1] > Pr[𝑆(𝑎′′, 𝑎) = −1 | 𝑆(𝑎, 𝑎′) = −1] follows
by symmetry. To prove eq. (5), we can rewrite the conditional probability in expectations of 𝑇𝜃 .

Pr[𝑆(𝑎′′, 𝑎′) = 1 | 𝑆(𝑎, 𝑎′) = 1]

=

∫
Pr[𝑇𝜃 (𝑎′′, 𝑎′) = 1, 𝑇𝜃 (𝑎, 𝑎′) = 1 | 𝜃]𝑑𝑃Θ∫

Pr[𝑇𝜃 (𝑎, 𝑎′) = 1 | 𝜃]𝑑𝑃Θ

=

∫
Pr[𝑇𝜃 (𝑎′′, 𝑎′) = 1 | 𝜃] Pr[𝑇𝜃 (𝑎, 𝑎′) = 1 | 𝜃]𝑑𝑃Θ∫

Pr[𝑇𝜃 (𝑎, 𝑎′) = 1 | 𝜃]𝑑𝑃Θ

(conditional independent)

=2
∫

Pr[𝑇𝜃 (𝑎′′, 𝑎′) = 1 | 𝜃] Pr[𝑇𝜃 (𝑎, 𝑎′) = 1 | 𝜃]𝑑𝑃Θ (a prior similar)

=2
∫
E [𝑇𝜃 (𝑎′′, 𝑎′) | 𝜃] + 1

2
E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] + 1

2
𝑑𝑃Θ (binary value)

=
1
2

∫
E [𝑇𝜃 (𝑎′′, 𝑎′) | 𝜃] E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] + E [𝑇𝜃 (𝑎′′, 𝑎′) | 𝜃] + E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] + 1𝑑𝑃Θ

=
1
2

∫
E [𝑇𝜃 (𝑎′′, 𝑎′) | 𝜃] E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] + 1𝑑𝑃Θ. (a prior similar)

Claim C.1. For any strongly stochastically transitive 𝑇𝜃 on A, and distinct 𝑎, 𝑎′, 𝑎′′ ∈ A
E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] E [𝑇𝜃 (𝑎′′, 𝑎′) | 𝜃] > E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] E [𝑇𝜃 (𝑎′′, 𝑎) | 𝜃] .

With claim C.1, we have

Pr[𝑆(𝑎′′, 𝑎′) = 1 | 𝑆(𝑎, 𝑎′) = 1] = 1
2

∫
E [𝑇𝜃 (𝑎′′, 𝑎′) | 𝜃] E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] + 1𝑑𝑃Θ

>
1
2

∫
E [𝑇𝜃 (𝑎′′, 𝑎) | 𝜃] E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] + 1𝑑𝑃Θ = Pr[𝑆(𝑎′′, 𝑎) = 1 | 𝑆(𝑎, 𝑎′) = 1] .

This completes the proof of eq. (5), and thus the uniform dominance. □
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Proof of claim C.1. We let 𝑄(𝛼, 𝛼′) := E [𝑇𝜃 (𝛼, 𝛼′) | 𝜃] = 2 Pr[𝑇𝜃 (𝛼, 𝛼′) = 1 | 𝜃] − 1 for all 𝛼, 𝛼′.
Note that 𝑄(𝛼, 𝛼′) > 0 if and only if Pr[𝑇𝜃 (𝛼, 𝛼′) = 1 | 𝜃] > 1/2 and 𝑄(𝛼, 𝛼′) = −𝑄(𝛼′, 𝛼).
By symmetry, let 𝑄(𝑎, 𝑎′) > 0. It is sufficient to show that

𝑄(𝑎′′, 𝑎′) > 𝑄(𝑎′′, 𝑎).
If 𝑄(𝑎′, 𝑎′′) > 0, by definition 2.1 𝑄(𝑎, 𝑎′′) > 𝑄(𝑎′, 𝑎′′) > 0 so 𝑄(𝑎′′, 𝑎′) > 𝑄(𝑎′′, 𝑎). Now
consider 𝑄(𝑎′, 𝑎′′) < 0. If 𝑄(𝑎′′, 𝑎) < 0, 𝑄(𝑎′′, 𝑎′) > 0 > 𝑄(𝑎′′, 𝑎). If 𝑄(𝑎′′, 𝑎) > 0, we have
𝑄(𝑎′′, 𝑎) > 0, 𝑄(𝑎, 𝑎′) > 0, and thus 𝑄(𝑎′′, 𝑎′) > 𝑄(𝑎′′, 𝑎) by definition 2.1 □

C.2 Uniform dominance and weak notions of stochastic transitivity

There are weaker forms of stochastic transitivity, raising the question of whether they are sufficient
for uniform dominance as in lemma 4.2. We show that general weak stochastic transitivity is not
sufficient. Additionally, we show that although the noisy sorting model from [5] is only weakly
stochastically transitive but does not satisfy definition 2.1, it exhibits uniform dominance.
Definition C.2 ([13]). A stochastic comparison function, 𝑇 : A2 → {−1, 1}, is weakly stochastically
transitive if for all 𝑎, 𝑎′, 𝑎′′ ∈ A with Pr[𝑇 (𝑎, 𝑎′) = 1] > 1/2 and Pr[𝑇 (𝑎′, 𝑎′′) = 1] > 1/2,

Pr[𝑇 (𝑎, 𝑎′′) = 1] > 1/2.

Compared to definition 2.1, the weak stochastic transitivity only require the item 𝑎 is favorable than
𝑎′′. Below we provide a simple weakly stochastically transitive example with a prior similar property
that does not satisfy the uniform dominance in eq. (5).
Example C.3. Consider the set of three items and Θ consists of all ranking on A with uniform prior
where 𝜃 maps each items to its value. Given 𝜃 ∈ Θ so that if 𝜃 (𝑎) > 𝜃 (𝑎′) > 𝜃 (𝑎′′),

Pr[𝑇𝜃 (𝑎, 𝑎′) = 1] = Pr[𝑇𝜃 (𝑎′, 𝑎′′) = 1] = 0.9 and Pr[𝑇𝜃 (𝑎, 𝑎′′) = 1] = 0.6.
Note that the model is weakly stochastically transitive, because an item with a larger value is more fa-
vorable and the weak stochastic transitivity is reduced to transitivity on the values. However, the model
is not strongly stochastically transitive, because Pr[𝑇𝜃 (𝑎, 𝑎′′) = 1] = 0.6 < max{Pr[(𝑇 (𝑎, 𝑎′) =

1], Pr[(𝑇 (𝑎′, 𝑎′′) = 1]]} = 0.9. Finally, as the rank 𝜃 has a uniform prior, the model satisfies a prior
similar assumption.

To conclude the example, we show that eq. (5) does not hold for the above model. By direct
computation over all six possible ranking 𝜃, we have

Pr[𝑆(𝑎′′, 𝑎′) = 1 | 𝑆(𝑎, 𝑎′) = 1]

=
1
2

∫
E [𝑇𝜃 (𝑎′′, 𝑎′) | 𝜃] E [𝑇𝜃 (𝑎, 𝑎′) | 𝜃] + 1𝑑𝑃Θ

=
1
2

(
1 − 64

6

)
,

but Pr[𝑆(𝑎′′, 𝑎) = 1 | 𝑆(𝑎, 𝑎′) = 1] = 1
2

(
1 + 64

6

)
. Therefore, we have Pr[𝑆(𝑎′′, 𝑎′) = 1 | 𝑆(𝑎, 𝑎′) =

1] < Pr[𝑆(𝑎′′, 𝑎) = 1 | 𝑆(𝑎, 𝑎′) = 1], and show that eq. (5) does not hold.

Though the above example shows that weak stochastic transitivity is not sufficient.5 Below we show a
popular weakly stochastically transitive model in Braverman and Mossel [5] has uniform dominance
as in lemma 4.2.
Example C.4. Let Θ be the set of rankings on A and 𝜂 > 0 be a parameter. Given a uniformly
distributed reference ranking 𝜃 ∈ Θ, the noise ranking model [5] ensures that for all 𝜃 (𝑎) > 𝜃 (𝑎′)

Pr[𝑇𝜃 (𝑎, 𝑎′) = 1] = 1
2
+ 𝜂

Note that the above model does not satisfy the strict inequality in definition 2.1, but by direct
computation, Pr[𝑆(𝑎′′, 𝑎′) = 1 | 𝑆(𝑎, 𝑎′) = 1] = 1

2

(
1 + 4𝛾2

3

)
and Pr[𝑆(𝑎′′, 𝑎) = 1 | 𝑆(𝑎, 𝑎′) = 1] =

1
2

(
1 − 4𝛾2

3

)
, which satisfies lemma 4.2.

5In the above example, we can also decrease 0.9 to a smaller number that satisfies both uniform dominance
and weak stochastic transitivity.
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C.3 Symmetrically strongly truthful from uniform dominance

Proof of lemma 4.3. Suppose 𝑆𝑖 = 1. Because Pr[𝑆 𝑗 = 1|𝑆𝑖 = 1] > Pr[𝑆𝑘 = 1|𝑆𝑖 = 1], Pr[𝑆 𝑗 =

−1|𝑆𝑖 = 1] < Pr[𝑆𝑘 = −1|𝑆𝑖 = 1]. Therefore, arg max𝑠∈{−1,1} Pr[𝑆 𝑗 = 𝑠 |𝑆𝑖 = 1] − Pr[𝑆𝑘 = 𝑠𝑖 |𝑆𝑖 =
1] = 1. Identical argument holds for the case of 𝑆𝑖 = −1 which completes the proof.

Additionally, the expected payment of truth-telling is

E
[
𝑈𝐵𝑃𝑃 (𝑆𝑖 , 𝑆 𝑗 , 𝑆𝑘)

]
=
∑︁
𝑎

Pr[𝑆𝑖 = 𝑠𝑖]
∑︁
𝑠 𝑗 ,𝑠𝑘

Pr[𝑆 𝑗 = 𝑠 𝑗 , 𝑆𝑘 = 𝑠𝑘 | 𝑆𝑖 = 𝑠𝑖]𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘)

=2
∑︁
𝑎

Pr[𝑆𝑖 = 𝑠𝑖]
∑︁
𝑠 𝑗 ,𝑠𝑘

Pr[𝑆 𝑗 = 𝑠 𝑗 , 𝑆𝑘 = 𝑠𝑘 | 𝑆𝑖 = 𝑠𝑖] (1[𝑠𝑖 = 𝑠𝑘] − 1[𝑠𝑖 = 𝑠𝑘])

=2
∑︁
𝑎

Pr[𝑆𝑖 = 𝑠𝑖]
(
Pr[𝑆 𝑗 = 𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖]

)
>0

The last inequality holds due to definition 4.1. □

Proof of lemma 4.4. As 𝜎 is uninformed, let 𝜇(𝑠) = 𝜎(𝑠, 𝑠) = 𝜎(−𝑠, 𝑠) and 𝜇(−𝑠) = 𝜎(𝑠,−𝑠) =

𝜎(−𝑠,−𝑠) for all 𝑠.

E
[
𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
=

∑︁
𝑠 𝑗 ,𝑠𝑘

𝜇(𝑠 𝑗 )𝜇(𝑠𝑘)𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) =
∑︁
𝑠 𝑗 ,𝑠𝑘

𝜇(𝑠 𝑗 )𝜇(𝑠𝑘) (𝑠𝑖𝑠 𝑗 − 𝑠𝑖𝑠𝑘) = 0

The first equality holds as the reports are independent of signals. □

Proof of lemma 4.5.
E𝑃,𝜎

[
𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
=

∑︁
𝑠 𝑗 ,𝑠𝑘 ,𝑠 𝑗 ,𝑠𝑘

Pr[𝑆 𝑗 = 𝑠 𝑗 , 𝑆𝑘 = 𝑠𝑘 | 𝑆𝑖 = 𝑠𝑖]𝜎(𝑠 𝑗 , 𝑠 𝑗 )𝜎(𝑠𝑘 , 𝑠𝑘)𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘)

=2
∑︁

𝑠 𝑗 ,𝑠𝑘 ,𝑠 𝑗 ,𝑠𝑘

Pr[𝑆 𝑗 = 𝑠 𝑗 , 𝑆𝑘 = 𝑠𝑘 | 𝑆𝑖 = 𝑠𝑖]𝜎(𝑠 𝑗 , 𝑠 𝑗 )𝜎(𝑠𝑘 , 𝑠𝑘)
(
1[𝑠𝑖 = 𝑠 𝑗 ] − 1[𝑠𝑖 = 𝑠𝑘]

)
(by eq. (1))

=2
∑︁
𝑠 𝑗 ,𝑠 𝑗

Pr[𝑆 𝑗 = 𝑠 𝑗 | 𝑆𝑖 = 𝑠𝑖]𝜎(𝑠 𝑗 , 𝑠 𝑗 )1[𝑠𝑖 = 𝑠 𝑗 ] − 2
∑︁
𝑠𝑘 ,𝑠𝑘

Pr[𝑆𝑘 = 𝑠𝑘 | 𝑆𝑖 = 𝑠𝑖]𝜎(𝑠𝑘 , 𝑠𝑘)1[𝑠𝑖 = 𝑠𝑘]

=2
∑︁
𝑠,𝑠

(Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠𝑖])𝜎(𝑠, 𝑠)1[𝑠𝑖 = 𝑠] (renaming dummy variables)

=2
∑︁
𝑠

(Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠𝑖])𝜎(𝑠, 𝑠𝑖)

Let 𝛿 = Pr[𝑆 𝑗 = 𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖] > 0, because 𝑆 𝑗 uniformly dominates 𝑆𝑘
for 𝑆𝑖 . Additionally, Pr[𝑆 𝑗 = −𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = −𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖] = 1 − Pr[𝑆 𝑗 = 𝑠𝑖 | 𝑆𝑖 =

𝑠𝑖] − 1 + Pr[𝑆𝑘 = 𝑠𝑖 | 𝑆𝑖 = 𝑠𝑖] = −𝛿. We have
E𝑃,𝜎

[
𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
=2

∑︁
𝑠

(Pr[𝑆 𝑗 = 𝑠 | 𝑆𝑖 = 𝑠𝑖] − Pr[𝑆𝑘 = 𝑠 | 𝑆𝑖 = 𝑠𝑖])𝜎(𝑠, 𝑠𝑖)

=2𝛿 (𝜎(𝑠𝑖 , 𝑠𝑖) − 𝜎(−𝑎, 𝑠𝑖)) ,
so arg max𝑠𝑖∈{−1,1} E𝑃,𝜎

[
𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
= arg max𝑠𝑖∈{−1,1} {𝜎(𝑠𝑖 , 𝑠𝑖) − 𝜎(−𝑠𝑖 , 𝑠𝑖)}

which completes the proof. □

D Proofs in Section 5.1

Before diving into the proof, we introduce some notations. We further introduce Ising models with
bias parameter 𝜶 ∈ R𝑉≥0 in addition to 𝜷 where

𝐻 (s) =
∑︁
𝑖, 𝑗∈𝑉

𝛽𝑖, 𝑗 𝑠𝑖𝑠 𝑗 +
∑︁
𝑖∈𝑉

𝛼𝑖𝑠𝑖
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and Pr𝜶,𝜷 [S = s] ∝ exp(𝐻 (s)), for all configuration s. Given 𝑖 ∈ 𝑉 , let the expectation and ratio be

𝜈𝑖 (𝜶, 𝜷) = E𝜶,𝜷 [𝑆𝑖] = Pr
𝜶,𝜷

[𝑆𝑖 = 1] − Pr
𝜶,𝜷

[𝑆𝑖 = −1] and 𝜌𝑖 (𝜶, 𝜷) =
Pr𝜶,𝜷 [𝑆𝑖 = 1]

Pr𝜶,𝜷 [𝑆𝑖 = −1]

respectively which are monotone to each other. We will omit 𝜶, 𝜷 when clear. Given a subset 𝑈 ⊆ 𝑉 ,
s𝑈 ∈ {−1, 1}𝑈 is a configuration over the nodes in 𝑈, and s𝑈 = 1 if 𝑥 𝜄 = 1 for all 𝜄 ∈ 𝑈. We write
Pr[·|S𝑈 = s𝑈], 𝜈𝑖 |S𝑈=s𝑈 , and 𝜌𝑖 |S𝑈=s𝑈 for the conditional probability, expectation and ratio when the
configuration in 𝑈 is fixed as specified by s𝑈 .

A lower bound for LHS Informally, we want to lower bound the correlation between adjacent 𝑖 and
𝑗 (friends). Note that as we remove edges (setting coordinates of 𝜷 to zeros), the correlation should
decrease, and the smallest correlation between neighboring nodes 𝑖 and 𝑗 happens when 𝐸 = {(𝑖, 𝑗)}.
Lemma D.2 formalizes this idea using the following monotone inequality [44, Theorem 17.2].

Theorem D.1 (Griffiths’ inequality). For any 𝑖 ∈ 𝑉 , 𝜈𝑖 (𝜶, 𝜷) = E𝜶,𝜷 [𝑆𝑖] is non-negative and
non-decreasing in all 𝛽 𝑗 ,𝑘 ≥ 0 and 𝛼 𝑗 ≥ 0 with 𝑗 , 𝑘 ∈ 𝑉 .

Lemma D.2. Given 𝑉 and 𝑖, 𝑗 ∈ 𝑉 , for all 𝜶, 𝜷, and 𝜷′, if 𝛽′𝑒 = 𝛽𝑒 when 𝑒 = (𝑖, 𝑗) and 𝛽′𝑒 = 0
otherwise, we have

𝜈𝑖 |𝑆 𝑗=1 (𝜶, 𝜷) ≥ 𝜈𝑖 |𝑆 𝑗=1 (𝜶, 𝜷′) and 𝜌𝑖 |𝑆 𝑗=1 (𝜶, 𝜷) ≥ 𝜌𝑖 |𝑆 𝑗=1 (𝜶, 𝜷′).

Proof. First, note that we can write the conditional expectation E𝜶,𝜷
[
𝑆𝑖 | 𝑆 𝑗 = 1

]
as marginal

expectation. Formally, consider 𝜶𝜂 so that 𝛼
𝜂
𝜄 = 𝛼 𝜄 if 𝜄 ≠ 𝑗 and 𝛼

𝜂

𝑗
= 𝛼 𝑗 + 𝜂. Because

𝜂 → 𝜶𝜂 is non-decreasing, 𝜂 → 𝜈𝑖 (𝜶𝜂 , 𝜷) is non-decreasing by theorem D.1. In addition,
Pr𝜶𝜂 ,𝜷 [𝑆𝑖 | 𝑆 𝑗 = 𝑠] = Pr𝜶,𝜷 [𝑆𝑖 | 𝑆 𝑗 = 𝑠] for all 𝑠, and Pr𝜶𝜂 ,𝜷 [𝑆 𝑗 = −1] = 𝑂 (𝑒−2𝜂), so

𝜈𝑖 |𝑆 𝑗=1 (𝜶, 𝜷) = E𝜶,𝜷 [𝑆𝑖 | 𝑆 𝑗 = 1] = lim
𝜂→+∞

𝜈𝑖 (𝜶𝜂 , 𝜷).

Similarly,
𝜈𝑖 |𝑆 𝑗=1 (𝜶, 𝜷′) = E𝜶,𝜷′ [𝑆𝑖 | 𝑆 𝑗 = 1] = lim

𝜂→+∞
𝜈𝑖 (𝜶𝜂 , 𝜷′).

On the other hand, consider 𝜷𝜆 so that 𝛽𝜆𝑒 = 𝛽𝑒 if 𝑒 ≠ (𝑖, 𝑗) and 𝛽𝜆
𝑖, 𝑗

= 𝛽𝑖, 𝑗 + 𝜆. By theorem D.1,
𝜈𝑖 (𝜶𝜂 , 𝜷𝜆) is non-decreasing in 𝜆 for all 𝜂. Because 𝜷0 = 𝜷′ and 𝜷1 = 𝜷, we have

𝜈𝑖 |𝑆 𝑗=1 (𝜶, 𝜷′) = lim
𝜂→+∞

𝜈𝑖 (𝜶𝜂 , 𝜷′) ≤ lim
𝜂→+∞

𝜈𝑖 (𝜶𝜂 , 𝜷) = 𝜈𝑖 |𝑆 𝑗=1 (𝜶, 𝜷)

Because 𝜌𝑖 =
1+𝜈𝑖
1−𝜈𝑖 is monotone in 𝜈𝑖 , the second part follows. □

Given 𝜷′ defined in lemma D.2, by some direct computation with 𝜶 = 0

𝜌𝑖 |𝑆 𝑗=1 (𝜶, 𝜷) ≥ 𝜌𝑖 |𝑆 𝑗=1 (𝜶, 𝜷′) = 𝑒2𝛼𝑖+2𝛽𝑖, 𝑗 = 𝑒
2𝛽
. (6)

An upper bound for RHS Now, we need to upper bound the correlation between non-adjacent
𝑖 and 𝑘 (non-friends). We will use Weitz’s self-avoiding walks reduction [65] to upper bound the
correlation on general graph 𝐺 by the correlation on trees.

Given a general graph 𝐺, and an arbitrary node 𝑖, we can construct the Self Avoiding Walk Tree
of 𝐺 rooted at 𝑖, denoted 𝑇𝑆𝐴𝑊 (𝐺, 𝑖), so that Pr[𝑆𝑖 = 1 | S𝑈 = s𝑈] is the same in 𝐺 as in the tree.
We outline the construction. 𝑇𝑆𝐴𝑊 (𝐺, 𝑖) enumerates all self-avoiding walks in 𝐺 starting at 𝑖 which
terminates when it revisits a previous node (closes a cycle). Then, 𝑇𝑆𝐴𝑊 (𝐺, 𝑖) introduces a leaf with
a certain boundary condition. The self-avoiding walk never revisits a node immediately, so there all
the leaves with fixed boundary conditions are at least three hops away from node 𝑖. Note that if 𝐺 has
maximum degree 𝑑, 𝑇𝑆𝐴𝑊 is a 𝑑-ary tree.

Theorem D.3 ([65]). For any 𝜶, 𝜷, node 𝑖 ∈ 𝑉 , and configuration s𝑈 on 𝑈 ⊂ 𝑉 ,

Pr
𝜶,𝜷

[𝑆𝑖 = 1 | S𝑈 = s𝑈] = Pr
𝑇𝑆𝐴𝑊 (𝐺,𝑖)

[𝑆𝑖 = 1 | S𝑈 = s𝑈] .
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First, with the above theorem, we have 𝜈𝑖 |𝑆𝑘=1 (𝜶, 𝜷) = E𝜶,𝜷 [𝑆𝑖 | 𝑆𝑘 = 1] = E𝑇𝑆𝐴𝑊 (𝐺,𝑖) [𝑆𝑖 | 𝑆𝑘 = 1].
By the monotone property in theorem D.1, setting all two-hop neighbors 𝑈 in 𝑇𝑆𝐴𝑊 (𝐺, 𝑖) to 1
(recalled that any boundary conditions for 𝑇𝑆𝐴𝑊 (𝐺, 𝑖) being at least three hops away) increases the
conditional expectation,

E𝑇𝑆𝐴𝑊 (𝐺,𝑖) [𝑆𝑖 | 𝑆𝑘 = 1] ≤ E𝑇𝑆𝐴𝑊 (𝐺,𝑖) [𝑆𝑖 | S𝑈 = 1, 𝑆𝑘 = 1] .
Let 𝑇 be the tree by truncating 𝑇𝑆𝐴𝑊 (𝐺, 𝑖) at level 2. By the Markov property of Ising models, the
expectation is equal to the expectation on 𝑇 .

E𝜶,𝜷 [𝑆𝑖 | 𝑆𝑘 = 1] ≤ E𝑇𝑆𝐴𝑊 (𝐺,𝑖) [𝑆𝑖 | S𝑈 = 1] = E𝑇 [𝑆𝑖 | S𝑈 = 1] . (7)

Finally, we can recursively compute the probability ratio 𝜌𝑖 (and thus expectation 𝜈𝑖) on trees.
Specifically, given a rooted tree 𝑇 ′, we define 𝜌𝑇 ′ as the ratio of probabilities for the root to be
+1 and −1 respectively, and 𝜌𝑇 ′ |S𝑈=s𝑈 for the ratio of conditional probabilities. As stated in the
following lemma, it is well known (see, for example, [22]) that the ratio of each node can be computed
recursively over the children’s ratio.
Lemma D.4. Given a tree 𝑇 rooted at 𝑖 with parameter (𝜶, 𝜷) and boundary condition s𝑈 ,

𝜌𝑇 |S𝑈=s𝑈 = 𝑒2𝛼𝑖

𝑑∏
𝑙=1

𝜌𝑇𝑙 |S𝑈=s𝑈 𝑒
2𝛽𝑖, 𝑗𝑙 + 1

𝑒2𝛽𝑖, 𝑗𝑙 + 𝜌𝑇𝑙 |S𝑈=s𝑈

where 𝑗1, . . . , 𝑗𝑑 are children of 𝑖 and 𝑇𝑙 is the subtree rooted at 𝑗𝑙 for all 𝑙.

By the monotone property in theorem D.1, the maximum of right-hand side of eq. (7) happens when
𝑇 is a complete 𝑑-ary tree with 𝜷 = 𝛽. Therefore,

𝜌𝑖 |𝑆𝑘=1 (𝜶, 𝜷) ≤
(
𝑒2(𝑑+1)𝛽 + 1
𝑒2𝛽 + 𝑒2𝑑𝛽

)𝑑
. (8)

Finally, with eqs. (6) and (8), we have 𝜌𝑖 |𝑆 𝑗=1 (𝜶, 𝜷) ≥ 𝑒
2𝛽 ≥

(
𝑒2(𝑑+1)𝛽+1
𝑒2𝛽+𝑒2𝑑𝛽

)𝑑
≥ 𝜌𝑖 |𝑆𝑘=1 (𝜶, 𝜷) which

implies eq. (4).

Remark D.5. Note that for any graph 𝐺 there exists small enough 𝛽, 𝛽 so that the condition in

theorem 5.1 is satisfied, because the inequality become equality when 𝛽 = 𝛽 = 0, and 𝜕
𝜕𝛽

2𝛽
𝑑

> 0 =

𝜕
𝜕𝛽

ln 𝑒2(𝑑+1)𝛽+1
𝑒2𝛽+𝑒2𝑑𝛽 .

The bound between 𝜷 and 𝑑 is necessary as shown in fig. 3. On the other hand, by the Markov
property of the Ising model, the majority of all neighbor’s signals is a sufficient statistic, and we
can show the majority of all neighbor’s signals are uniformly dominant to a non-neighbor’s signal.
Therefore, we can get a symmetrically strongly truthful mechanism by replacing 𝑗’s reports with the
majority of reports from 𝑖’s neighbors.

E Proof of Theorem 5.3

The sufficient condition is done by lemma 4.3, because

arg max
𝑠𝑖∈{−1,1}

E
[
𝜆𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) + 𝜇(𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
= arg max

𝑠𝑖∈{−1,1}
E

[
𝜆𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
= arg max

𝑠𝑖∈{−1,1}
E

[
𝑈𝐵𝑃𝑃 (𝑠𝑖 , 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 𝑠𝑖

]
(𝜆 > 0)

=𝑠𝑖 (by lemma 4.3)

For the necessary, given 𝑈, define 𝐷 (𝑠 𝑗 , 𝑠𝑘) = 1
2
(
𝑈 (1, 𝑠 𝑗 , 𝑠𝑘) −𝑈 (−1, 𝑠 𝑗 , 𝑠𝑘)

)
and 𝜇(𝑠 𝑗 , 𝑠𝑘) =

1
2 (𝑈 (1, 𝑠 𝑗 , 𝑠𝑘) +𝑈 (−1, 𝑠 𝑗 , 𝑠𝑘)) for all 𝑠 𝑗 and 𝑠𝑘 in {−1, 1}. Hence

𝑈 (𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘) = 𝑠𝑖 · 𝐷 (𝑠 𝑗 , 𝑠𝑘) + 𝜇(𝑠 𝑗 , 𝑠𝑘),∀𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 ∈ {−1, 1} (9)
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Figure 3: As fixing any 𝛽, 𝛽, we can construct a simple graph with 𝑉 = {𝑣0, . . . , 𝑣𝑛−1} and 𝐸 =

{(𝑣0, 𝑣𝑙), (𝑣𝑙 , 𝑣𝑛−1) : 𝑙 = 1, . . . , 𝑛 − 2} where agent 𝑣0 and 𝑣𝑛−1 are not connected but share 𝑛 − 2
common friends. We can show that the correlation between 𝑆0 and 𝑆𝑛−1 converge to 1 as the number
of common friends 𝑑 increases, while the correlation between 𝑆0 and 𝑆1 is bounded away from 1.

Given a joint distribution satisfying definition 4.1, we let 𝑝𝑠𝑖 (𝑠 𝑗 , 𝑠𝑘) = Pr[𝑆 𝑗 = 𝑠 𝑗 , 𝑆𝑘 = 𝑠𝑘 | 𝑆𝑖 = 𝑠𝑖]

and additionally write 𝑝𝑠𝑖 =

[
𝑝𝑠𝑖 (1, 1) 𝑝𝑠𝑖 (1,−1)
𝑝𝑠𝑖 (−1, 1) 𝑝𝑠𝑖 (−1,−1)

]
. Then definition 4.1 ensures that

𝑝1 (1,−1) > 𝑝1 (−1, 1) and 𝑝−1 (1,−1) < 𝑝−1 (−1, 1).

Because 𝑈 is truthful for all uniformly dominant tuples, we have

0 <E
[
𝑈 (1, 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 1

]
− E

[
𝑈 (−1, 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = 1

]
= 2

∑︁
𝑠 𝑗 ,𝑠𝑘

𝐷 (𝑠 𝑗 , 𝑠𝑘)𝑝1 (𝑠𝑖 , 𝑠 𝑗 )

0 >E
[
𝑈 (1, 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = −1

]
− E

[
𝑈 (−1, 𝑆 𝑗 , 𝑆𝑘) | 𝑆𝑖 = −1

]
= 2

∑︁
𝑠 𝑗 ,𝑠𝑘

𝐷 (𝑠 𝑗 , 𝑠𝑘)𝑝−1 (𝑠𝑖 , 𝑠 𝑗 ).
(10)

Suppose the following are true

𝐷 (1,−1) = −𝐷 (−1, 1) > 0 (11)
𝐷 (1, 1) = 𝐷 (−1,−1) = 0 (12)

Let 𝜆 = 𝐷 (1,−1) > 0. By eqs. (11) and (12), we have

𝑈 (𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘) =𝑠𝑖 · 𝐷 (𝑠 𝑗 , 𝑠𝑘) + 𝜇(𝑠 𝑗 , 𝑠𝑘) (by eq. (9))
=𝜆 · 𝑠𝑖 (𝑠 𝑗 − 𝑠𝑘) + 𝜇(𝑠 𝑗 , 𝑠𝑘) (by eqs. (9) and (11))

which completes the proof. Thus, we will construct three joint distributions satisfying definition 4.1
to prove eqs. (11) and (12).

The first joint distribution 𝑝
𝑠𝑖
1 (𝑠 𝑗 , 𝑠𝑘) with 0 < 𝛿 ≤ 1/2

𝑝1 =

[
0 1/2 + 𝛿

1/2 − 𝛿 0

]
and 𝑝−1 =

[
0 1/2 − 𝛿

1/2 + 𝛿 0

]
.

Then eq. (10) on the first distribution reduces to

0 <𝐷 (1,−1)𝑝1
1 (1,−1) + 𝐷 (−1, 1)𝑝1

1 (−1, 1) = 1
2
(𝐷 (1,−1) + 𝐷 (−1, 1)) + 𝛿(𝐷 (1,−1) − 𝐷 (−1, 1))

0 >𝐷 (1,−1)𝑝−1
1 (1,−1) + 𝐷 (−1, 1)𝑝−1

1 (−1, 1) = 1
2
(𝐷 (1,−1) + 𝐷 (−1, 1)) − 𝛿(𝐷 (1,−1) − 𝐷 (−1, 1)).

As we take 𝛿 to zero, we prove 𝐷 (1,−1) = −𝐷 (−1, 1). Then plugging in with nonzero 𝛿, we have
𝐷 (1,−1) > 0 and complete the proof of eq. (11).
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The second joint distribution 𝑝
𝑠𝑖
2 (𝑠 𝑗 , 𝑠𝑘) with 0 ≤ 𝜖 ≤ 1 is

𝑝1 =

[
1 − 𝜖 3

4 𝜖
𝜖
4 0

]
and 𝑝−1 =

[
1 − 𝜖 𝜖

4
3𝜖
4 0

]
.

With eq. (11), eq. (10) reduces to

0 <(1 − 𝜖)𝐷 (1, 1) + 𝜖

4
(𝐷 (1,−1) − 𝐷 (−1, 1))

0 >(1 − 𝜖)𝐷 (1, 1) − 𝜖

4
(𝐷 (1,−1) − 𝐷 (−1, 1)).

By taking 𝜖 to zero, we prove 𝐷 (1, 1) = 0. We can prove 𝐷 (−1,−1) = 0 using the similar trick and
complete the proof of eq. (12).

F Additional empirical results

F.1 Comparison data

Here we test if the dataset satisfy transitivity property. We denote the proportion of rankings such that
item 𝑎 is higher than item 𝑎′ in the dataset by 𝑝𝑎>𝑎′ . If 𝑝𝑎>𝑎′ > 1/2, 𝑝𝑎′>𝑎′′ > 1/2, and 𝑝𝑎>𝑎′′ > 1/2,
we say the triple of items {𝑎, 𝑎′, 𝑎′′} empirically satisfies transitivity. If 𝑝𝑎>𝑎′ > 1/2, 𝑝𝑎′>𝑎′′ > 1/2,
and 𝑝𝑎>𝑎′′ > max{𝑝𝑎>𝑎′ , 𝑝𝑎′>𝑎′′ }, we say the triple of items {𝑎, 𝑎′, 𝑎′′} empirically satisfies strong
transitivity. We first test the transitivity of the SUSHI subdataset selected in section 6.1. We find that
100% of the item triples empirically satisfy transitivity, and 69.17% of the item triples empirically
satisfy strong transitivity. This suggests that our transitivity assumption for the comparison data is
mostly aligned.

Moreover, we conducted an experiment on the entire SUSHI dataset without any selection criteria
and demonstrated the results in fig. 4. Observe that the ECDF of payments from original human users
also dominates the payments under the uninformed strategy and the unilateral deviating strategy. This
is consistent with our experimental results in section 6.1. However, there are two minor difference.
First the separation of truth-telling from the other two is slightly less prominent than fig. 1 with
the selection criteria. This may be due to a slightly lower degree of transitivity across agents with
different backgrounds. In particular, we found the average value of 𝑝𝑎>𝑎′′ − max{𝑝𝑎>𝑎′ , 𝑝𝑎′>𝑎′′ } is
0.0559 without the selection criteria which is less than 0.0604 with the selection criteria in fig. 1.
Second, the fraction of agents receiving positive payments is slightly higher than in fig. 1 (0.785
and 0.763 respectively). This aligned with or empirical (strong) transitively which are 1 and 0.7667
compared to the above 1 and 0.69117. Furthermore, we also conducted experiments on other groups
of users by changing the selection criteria. Those interested can refer to fig. 5, fig. 6 and table 1 for
the results, which further verify the effectiveness of our mechanism.

Selection criteria Number of users Average utility Fraction of positive utility
All (No selection) 5000 0.138 78.5%
Female, 30-49, Kanto/Shizuoka 249 0.137 76.3%
Male, 30-49, Kanto/Shizuoka 185 0.167 82.2%
Female, 5-29, Kanto/Shizuoka 146 0.175 84.2%
Female, 50+, Kanto/Shizuoka 26 0.13 80.8%
Female, 30-49, Tohoku 30 0.174 83.3%
Female, 30-49, Hokuriku 23 0.105 69.6%

Table 1: Summary of truth-telling utility in appendix F.1.

F.2 Networked data

Alongside fig. 2, Figure 7 and table 2 present empirical results for the top five popular artists in the
dataset, excluding Lady Gaga, who are Britney Spears, Rihanna, The Beatles, and Katy Perry. All
these settings show similar results. However, the Beatles’ data is less conclusive as the payment
distribution under the uninformed strategy profile is close to the truth-telling. This observation is
also documented in Daskalakis et al. [12] which notes that the Ising model performs much better for
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Figure 4: ECDF comparisons on all users without any selection.

rock artists than for pop artists. The authors conjecture that this may be due to the highly divisive
popularity of pop artists like Lady Gaga and Britney Spears, whose listeners may form dense cliques
within the graph.

Note that there is a buck of agent with a payment of around 0.5 under the truth-telling. This is because
many non-listeners have no listener friends, and payment is 1 − [(1 − 𝑝) − 𝑝] = 2𝑝 is twice the
popularity 𝑝 ≈ 0.25. Moreover, the jump is most minor for the Beatles, and indicates less agreement
between non-listeners. Additionally, by the definition of bonus-penalty payment, we can see the
payment of deviation is the minus of the truthful payment, so that the ECDF is symmetric around
(0, 0.5).

Artists Fraction of listener Average utility Fraction of positive utility
Lady Gaga 32.2% 0.37 76%
Britney Spears 27.6% 0.420 82.6%
Rihanna 25.6% 0.422 83.4%
The Beatles 25.4% 0.137 68.5%
Katy Perry 25.0% 0.361 79.9%

Table 2: Summary of truth-telling utility in appendix F.2.

Figure 8 further shows the scatter plot of average payment and fraction of agents with positive
payments across the top fifty popular artists where all settings have more than 60% percent of agents
get positive payment. However, for less popular artists, the performance of our mechanism declines.
This is expected, as we cannot provide effective incentives when only one agent listens to an artist.
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Figure 5: In each of the rows, we present the ECDF comparisons after changing the selection criteria
for the user group as follows: from female to male, from ages 30–49 to ages 5–29, from ages 30–49
to ages 50+, respectively.
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Figure 6: In each of the rows, we present the ECDF comparisons after changing the location criteria
for the user group as follows: from mostly living in Kanto or Shizuoka to Tohoku until age 15, and
from mostly living in Kanto or Shizuoka to Hokuriku until age 15, respectively.
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Figure 7: Last.fm dataset for other top five popular artists excluding Lady Gaga.

27



Figure 8: Average payment and fraction of positive payment under the truth-telling across top fifty
popular artists.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims accurately reflect the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section 7, we discuss potential future research directions, which are the
limitations of our current work.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We present all the assumptions. The complete proofs are provided in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is uploaded in the supplementary material. All the information
required to reproduce the experimental results is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is uploaded in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Most of these details are explained in section 6 and in the provided code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We believe the error bars are not relevant to our empirical metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We believe the computer resources are not relevant to our main contributions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in our paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work contributes to the theory of information elicitation. We discussed
the applicability and limitations for elicitation settings.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe this paper poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets used in this paper are mentioned with URLs and the licenses and
terms of use are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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