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Abstract InferenceQL is a probabilistic programming system for scalable Bayesian AutoML from
database tables. InferenceQL is designed to help make Bayesian approaches to data analysis
more accessible to broad audiences and to assist experts in auditing and improving the qual-
ity of data, models, and inferences. Unlike traditional probabilistic programming systems,
InferenceQL provides automation for learning models online using nonparametric Bayesian
structure learning of probabilistic programs. Experts can override these models with custom
probabilistic programs for speci�c subsets of variables and conditional distributions. For
a broad class of models, InferenceQL can generate realistic synthetic data subject to con-
straints and can automatically compute exact probabilities and mutual information values.
Finally, InferenceQL aims to enable scalable Bayesian model criticism via posterior predictive
checks, data quality screening via conditional probability calculation, fairness auditing via
conditional probability ratios, and synthetic data generation to enhance privacy. These
capabilities are accomplished using constructs that interleave standard database queries
with Bayesian inference.

Automated Bayesian inference from databases is important and useful in several ways. First,
many real-world databases have high rates of missing values, more �elds than observed records,
heterogeneous data types, high rates of data entry error, and other factors that complicate the
application of traditional ML-based AutoML techniques [9, App. E]. Second, many real-world
applications bene�t from uncertainty quanti�cation, interactive model checking and model criticism,
and conditional probability estimation for ad-hoc fairness auditing. These problems are naturally
formulated in terms of Bayesian inference [11, 28].

InferenceQL is a probabilistic programming system for automated Bayesian inference from
database tables. InferenceQL provides a domain-general mechanism for online Bayesian structure
learning of probabilistic program source code, as well as domain-general mechanisms for scalable
exact and approximate inference in these probabilistic programs. Users thus do not have to know
how to write probabilistic programs in order to use InferenceQL to solve problems. Instead, users
rely on automated data modeling techniques to navigate the design choices that might otherwise
be handled by experienced modelers. InferenceQL also enables Bayesian inference operations
to be interleaved with ordinary SQL operations, yielding complex database-native work�ows
for Bayesian AutoML. InferenceQL has been used successfully in �eld tests for a broad range of
applications, including AutoML for clinical trial oversight in three real-world clinical trials.

This workshop paper introduces InferenceQL via an exploratory data analysis application. It
also brie�y reviews the system architecture of InferenceQL and the class of probabilistic programs
that deliver its AutoML capabilities. It presents preliminary quantitative results from experiments
comparing InferenceQL’s modeling accuracy to GLM, VAE, and CTGAN baselines. Finally, it
reviews related work, including both modeling formalisms and ML and database integrations, and
discusses some limitations and broader impacts.
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Figure 1: System architecture of InferenceQL.

Name Country_of_Operator Operator_Owner Users Purpose Class_of_Orbit Type_of_Orbit

Prometheus 1A USA Los Alamos Nati Military Technology Develo LEO Sun-Synchronous
Eutelsat 28A Multinational European Teleco Commercial Communications GEO NaN
SMDC-ONE 1.2 USA U.S. Army Space Military Technology Develo LEO NaN
Lacrosse/Onyx USA National Reconn Military Surveillance LEO Intermediate
SMOS (Soil Mo ESA Centre National Government Earth Observation LEO Sun-Synchronous
Compass G-11 China (PR) Chinese Defense Military Navigation/Global GEO NaN
Echostar 6 USA Echostar Techno Commercial Communications GEO NaN
INMARSAT 4 F2 United Kingdom INMARSAT, Ltd. Commercial Communications GEO NaN
Eutelsat 25C Multinational European Teleco Commercial Communications GEO NaN
Vinasat 2 Vietnam Vietnamese Post Government Communications GEO NaN

Perigee_km Apogee_km Eccentricity Period_minutes Launch_Mass_kg Dry_Mass_kg Power_watts

500 506 0.00044 94.68 NaN NaN NaN
35788 35794 0.00007 1436.10 2950 1375 5900
483 789 0.02184 97.40 3 NaN NaN
574 676 0.00729 97.21 14500 NaN NaN
759 760 0.00007 100.00 658 630 1065
35776 35799 0.00027 1436.15 2300 NaN NaN
35775 35798 0.00027 1436.12 3700 1493 11000
35773 35800 0.00032 1436.11 5458 NaN 13000
35780 35790 0.00012 1436.04 3170 1900 5900
35742 35776 0.00040 1434.69 2970 NaN NaN

Date_of_Launch Anticipated_Lifetime Contractor Launch_Site Launch_Vehicle longitude_radians Inclination_radians

41597 NaN Los Alamos Nation Wallops Island Fl Minotaur 1 NaN 0.707033
36958 12 Alcatel Space Ind Guiana Space Cent Ariane 5 0.498466 0.001222
41165 NaN Miltec Vandenberg AFB Atlas 5 NaN 1.127483
36755 9 Lockheed Martin A Vandenberg AFB Titan IV NaN 1.186824
40119 3 Thales Alenia Spa Plesetsk Cosmodro Breeze KM NaN 1.717404
40963 8 Space Technology Xichang Satellite Long March 3A 1.029744 0.032638
36721 12 Lockheed Martin M Cape Canaveral Atlas 2 AS -1.269029 0.001222
38664 15 EADS Astrium Sea Launch (Odyss Zenit 3SL -0.920836 0.040666
37580 12 Alcatel Space Ind Cape Canaveral Atlas 2 AS 0.445059 0.000349
41044 15 Lockheed Martin C Guiana Space Cent Ariane 5 ECA 2.300344 0.001396

(a) Subset of satellites data table showing 21 variables and 10 records

# FIRST GROUP OF DEPENDENT VARIABLES
cluster_view_1 ~ categorical(
{0: 0.945, 1: 0.02, 2: 0.01, ...})

if (cluster_view_1 == 0)
Eccentricity ~ norm(0.002, 0.01)

elif (cluster_view_1 == 2)
Eccentricity ~ norm(0.075, 0.015)

elif (cluster_view_1 == 3)
Eccentricity ~ norm(0.028, 0.017)

...

# SECOND GROUP OF DEPENDENT VARIABLES
cluster_view_2 ~ categorical(
{0: 0.45, 1: 0.365, 2: 0.01, ...})

if (cluster_view_2 == 0)
Power_watts ~ norm(870.32, 877.80)
Launch_mass_kg ~ norm(442.08, 528.63)
Dry_mass_kg ~ norm(362.45, 321.64)
Period_miniutes ~ norm(101.67, 56.02)
Perigee ~ norm(683.49, 56.02)
Apogee ~ norm(742.68, 2411.91)

elif (cluster_view_2 == 1)
Power_watts ~ norm(7157.58, 4629.09)
Launch_mass_kg ~ norm(3870.96, 1417.09)
Dry_mass_kg ~ norm(1921.21, 762.07)
Period_miniutes ~ norm(1435.63, 57.13)
Perigee ~ norm(35820.37, 1434.57)
Apogee ~ norm(35701.83, 2548.60)

...

(b) Synthesized row generator

Figure 2: Synthesizing probabilistic programs that model heterogeneously typed cross-sectional data.

1 Example

The InferenceQL system automates data analysis and machine learning tasks by allowing users to
input data tables and queries and to automatically generate answers for them (Figure 1). It consists
of a probabilistic program synthesis component [27] that creates generative model programs that
are called row generators. The InferenceQL query planner and query engine use row generators to
answer questions about the data and the domain by querying an underling probabilistic model.

Figure 2 shows an example of probabilistic program synthesis, which takes a heterogeneously-
typed data table of satellites (maintained by the Union of Concerned Scientists [32]) and returns a
probabilistic program that models the data. Figure 3(a) shows the high-level interface to creating
synthesizing programs. Users can then compare synthetic data (generated from the probabilistic
programs) with observed data in order to develop intuition about what the model learned from the
data, shown in Figure 3(b). InferenceQL can generate virtual data from both marginal distributions
and conditional distributions given a user-speci�ed predicate (code box in Figure 3(b)). The two
plots in Figure 3(b) illustrate a qualitative goodness-of-�t in the sense that distribution of synthetic
(orange dots) samples appears to approximately match the observed data (black dots).

Data analysts can use the query language to search for probable anomalies and data-entry errors,
shown in Figure 3(c). To �nd values for the column Period_minutes that the model considers
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# Synthesize probabilistic
# programs given user-specified
# parameters in parameters.yaml
WITH LOAD 'parameters.yaml'

AS params:
BUILD default_model
FOR data
USING params;

#---- (parameters.yaml) ----#
# PARAMETERS FOR MODEL BUILDING
strategy: Gibbs # or SMC
number_models_in_ensemble: 100
inference_minutes: 10
override_schema:

Perigee_km: numerical
Purpose: nominal 0 2 4 6 8 10

Time (Minutes)

−100000

−80000

−60000

−40000

Lo
g

sc
or

e

Model 1
Model 2
…

(a) Step 1: Synthesize probabilistic programs using the observed data table.

SELECT Perigee_km, Apogee_km FROM data INNER JOIN
SELECT Perigee_km AS Perigee_km_generated, Apogee_km AS Apogee_km_generated
FROM GENERATE Perigee_km, Apogee_km UNDER default_model;

SELECT Perigee_km, Apogee_km FROM data INNER JOIN
SELECT Perigee_km AS Perigee_km_generated, Apogee_km AS Apogee_km_generated
FROM GENERATE Perigee_km, Apogee_km GIVEN Period_minutes < 1000
UNDER default_model

WHERE Period_minutes < 1000; 0 40000 80000 120000
Apogee km

0

20000

40000

Pe
rig

ee
km

SELECT
GENERATE

0 40000 80000 120000
Apogee km

0

20000

40000

Pe
rig

ee
km

SELECT
GENERATE

(b) Step 2: Compare virtual data generated from the probabilistic programs to observed data.

WITH SELECT STDEV(Period_minutes) FROM data AS std_period:
SELECT Period_minutes, Class_of_Orbit, Perigee_km, Apogee_km
FROM data
WHERE

(PROBABILITY OF
Period_minutes > (data.Period_minutes - std_period) AND
Period_minutes < (data.Period_minutes + std_period)
UNDER default_model)

<
(PROBABILITY OF
Period_minutes > (data.Period_minutes - std_period) AND
Period_minutes < (data.Period_minutes + std_period)
GIVEN (* EXCEPT Period_minutes)
UNDER default_model)

Period_minutes Class_of_Orbit Perigee_km Apogee_km
23.9 GEO 35771.0 35805.0
142.0 GEO 35897.0 35909.0
14.3 GEO 35770.0 35803.0
23.9 GEO 35771.0 35805.0
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(c) Step 3: Search for probable anomalies, which include data entry errors.

WITH SELECT * FROM data WHERE rowid <= 1000 AS training_data:
BUILD default_model FOR training_data AND
BUILD linear_model FOR training_data AND

WITH SELECT * FROM data
WHERE rowid > 1000 AS test_data:
SELECT

period,
(PREDICT period GIVEN Perigee_km, Apogee_km UNDER
default_model)
(PREDICT period GIVEN Perigee_km, Apogee_km UNDER
linear_model)
(PREDICT period GIVEN Perigee_km, Apogee_km UNDER
custom_model)

FROM test_data;

function keplers_law(apogee , perigee)
GM = 398600.4418; earth_radius = 6378;
a = (abs(apogee) + abs(perigee )) * 0.5 + earth_radius;
return 2 * c * sqrt(a^3 / GM) / 60 end;

@gen function custom_model(Perigee_km , Apogee_km)
out = {: Period} ∼ normal(keplers_law(Perigee_km , Aogee_km), .01)
return out end;
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(d) Step 4: Customize probabilistic programs using an orbital model from physics.

Figure 3: A representative data analysis work�ow in InferenceQL on the satellites data.

improbable in light of the data, the query (left code box) produces the result by comparing the
probability of the value for Period_minutes marginally and conditionally in the WHERE clause.
The only rows returned are those whose conditional probability is lower than the marginal; the
corresponding Period_minutes values are highlighted in red in the table and plots of Figure 3(c).

Finally, users with domain expertise can customize probabilistic programs. Figure 3(d) shows
an example custom orbital model from physics. To quantitatively assess the goodness-of-�t, we
�rst split the data into training and test data and build three models: the automatically synthesized
default model, a generalized linear model (GLM), and a custom probabilistic program for noisy
orbital physics. We then predict a column in the held-out data set. The default model predicts more
accurately than the GLM (4x more accurate via root mean square error (RMSE)) and the custom
probabilistic program beats the default (a further 300x improvement in RMSE).
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Table 1: Virtual data benchmark.
Jensen-Shannon Divergence to True Data

Dataset InferenceQL CTGAN Copulas TVAE

Nursery 0.04 0.14 0.29 0.05
Tumor 0.06 0.40 0.20 0.45
Flare 0.05 0.22 0.23 0.28
Car 0.05 0.16 0.12 0.08
Mushroom 0.08 0.15 0.33 0.11
Soybean 0.10 0.18 0.22 0.36
Breast-cancer 0.15 0.38 0.43 0.38
Heart-disease 0.08 0.16 0.30 0.44
Connect-4 0.04 0.10 0.22 0.08
Chess 0.03 0.10 0.17 0.05

Table 2: Anomaly detection benchmark.
Anomaly Detection Accuracy

Dataset Target InferenceQL GLM

Abalone Rings 86% 82%
Breast-cancer class 100% 60%
Heart-disease num 97% 47%

Table 3: Runtime optimization benchmark.
InferenceQL (SPPL backend) Python API (SPPL)

Dataset Target Independence Analysis Default Optimization Default Optimization

Nursery Evaluation 11.14 ± 7.31 501.35 ± 571.08 302.29 ± 366.1
Tumor Type 1.99 ± 0.34 3.21 ± 0.51 3.24 ± 0.8
Flare Num_common_�ares 6.96 ± 2.56 14.32 ± 14.27 8.84 ± 7.78
Car Evaluation 13.03 ± 4.69 153.91 ± 275.4 92.3 ± 158.98
Mushroom Edible? 31.34 ± 6.17 34.07 ± 6.87 24.74 ± 5.78
Soybean Disease 9.44 ± 3.05 11.7 ± 2.26 9.05 ± 2.19
Breast-cancer Diagnosis 5.07 ± 0.71 6.78 ± 0.73 3.93 ± 0.82
Heart-disease Present? 3.49 ± 1.49 11.61 ± 8.11 8.99 ± 6.02
Connect-4 White_can_win 34.24 ± 24.61 65.26 ± 59.99 44.61 ± 36.0
Chess Outcome 61.83 ± 45.34 86.27 ± 51.3 62.79 ± 34.56

2 Experiments

We now report experiments evaluating InferenceQL against statistical and neural baselines.

Virtual data benchmark. Table 1 shows the average Jensen-Shannon divergence between vir-
tual and observed data for all pairwise marginals in 10 datasets from the UCI machine learning
repository [8], according to simulations from InferenceQL, Gaussian copulas [23], CTGAN [34],
and TVAE [34]. The bold entries indicate statistically signi�cant lowest error under a Bonferroni
corrected Mann-Whitney* test, which are achieved by InferenceQL in 8 of 10 benchmark problems
and zero times by other techniques.

Anomaly detection benchmark. Table 2 shows that InferenceQL detects a higher percentage of
anomalies than does a GLM baseline on three datasets from the UCI repository. Anomalies were
inserted into a target column by �ipping the class label in each row with probability 0.05 and
detected using a query similar to the one in Figure 3(d).

Query optimization. The InferenceQL query planner contains a built-in optimization for querying
row generators speci�ed in the SPPL language [28]. Table 3 shows the runtime of InferenceQL
queries for computing the conditional probability of all cell values in one target column given all
the other values in the same row, for 10 datasets from the UCI repository. The third column shows
the runtime using InferenceQL’s independence analysis optimization, which statically eliminates
from the query all conditioning variables that are structurally independent of the target variable.
The fourth column shows the runtime using InferenceQL without independence analysis and the
�nal column shows the runtime using the Python API to SPPL, which both do not automatically
leverage independence analysis and are slower in cases where independencies can be exploited.
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3 Related Work

Various AutoML systems have been developed for tabular data, many of which focus on solving
a speci�c discriminative problem (e.g., regression or classi�cation); whereas in InferenceQL the
user automatically obtains a generative model that can be queried repeatedly to answer a wide
range of questions about the data. These include Amazon’s AutoGluon-Tabular [9] and SageMaker
Autopilot [7], Google Cloud Platform AutoML Tables [17], Uber’s Ludwig [20], H2O AutoML [16],
and a number of earlier systems such as Auto-WEKA [31], auto-sklearn [10], hyperopt-sklearn
[2], TPOT [21], autoxgboost [30], ML-Plan [19], OBOE [35], GAMA [12], and Auto-Keras [15]. A
survey and comparison of many of these systems can be found in Erickson et al. [9, §3].

InferenceQL is most similar to the BayesDB [18] probabilistic programming system. Like
InferenceQL, BayesDB requires the underlying models to satisfy the composable generate population
model interface [24]. InferenceQL aims to support new queries that include predicates as constraints
and custom models in the Gen probabilistic programming language [5].

InferenceQL makes use of sum-product expressions [28], which are a type of of probabilistic
circuit [6]. These symbolic representations are designed to to balance modeling expressiveness
with tractable inference. Previous database systems have incorporated probabilistic circuit repre-
sentations to speed up queries [13, 22, 33] outside of a probabilistic programming context.

Probabilistic databases [29] are a class of systems that take a di�erent approach from Infer-
enceQL, where they typically assign weights to facts in a database and implement queries that
compute the probability of Boolean formulas. Unlike InferenceQL, standard probabilistic databases
do not include automatic probabilistic model discovery from high-dimensional and heterogeneously-
typed data tables. Another probabilistic approach to database systems and query languages involves
augmenting relational algebras with techniques that enable predictive modeling, learning, and
inference. Relational algebras have been extended by functions for imputation [4], time series
prediction [1], random data generation [14] and simulation [3].

4 Conclusion

Limitations. A central limitation of InferenceQL is the lack of large-scale evaluations of its accuracy
and performance that span a range of di�erent data regimes. In principle, InferenceQL should be
able to match the accuracy of many real-world ML deployments by using hybrids of generative
models with decision-tree classi�ers (as implemented in its SPPL backend), though it remains to be
seen how e�ective and competitive with other AutoML approaches this approach is in practice. Also,
once users leave the fully-automated setting (e.g., to customize or override the learned probabilistic
programs), the InferenceQL API for custom models as in Figure 3(d) can be challenging to implement
correctly. Finally, InferenceQL only applies to cross-sectional data tables; it would be worthwhile
to extend InferenceQL with domain-general Bayesian structure learning methods for multivariate
time series [25] or relational systems [26].

Broader Impact. One potential bene�t of InferenceQL is educational. If it turns out (much like
SQL) to be learnable by many end-users, then InferenceQL has the potential to increase access
to and literacy in Bayesian reasoning for a broad audience. InferenceQL also has the potential to
reduce the marginal cost of Bayesian data analysis for applied practitioners, which drives both
bene�cial impact and risks of harm. Bene�ts include improved analytics and decision-making
capabilities in the public interest, especially in applications where realtime learning is valuable,
such as adaptive design of scienti�c experiments. The risks include reduced cost for invasion of
privacy, as well as analytics and decision-making towards other harmful aims.
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