
Bayesian AutoML for Databases via the InferenceQL
Probabilistic Programming System

Ulrich Schaechtle1 Cameron Freer2 Zane Shelby1 Feras Saad2 Vikash Mansinghka2

1Digital Garage
2Massachusetts Institute of Technology

Abstract InferenceQL is a probabilistic programming system for scalable Bayesian AutoML from
database tables. InferenceQL is designed to help make Bayesian approaches to data analysis
more accessible to broad audiences and to assist experts in auditing and improving the qual-
ity of data, models, and inferences. Unlike traditional probabilistic programming systems,
InferenceQL provides automation for learning models online using nonparametric Bayesian
structure learning of probabilistic programs. Experts can override these models with custom
probabilistic programs for speci�c subsets of variables and conditional distributions. For
a broad class of models, InferenceQL can generate realistic synthetic data subject to con-
straints and can automatically compute exact probabilities and mutual information values.
Finally, InferenceQL aims to enable scalable Bayesian model criticism via posterior predictive
checks, data quality screening via conditional probability calculation, fairness auditing via
conditional probability ratios, and synthetic data generation to enhance privacy. These
capabilities are accomplished using constructs that interleave standard database queries
with Bayesian inference.

Automated Bayesian inference from databases is important and useful in several ways. First,
many real-world databases have high rates of missing values, more �elds than observed records,
heterogeneous data types, high rates of data entry error, and other factors that complicate the
application of traditional ML-based AutoML techniques [9, App. E]. Second, many real-world
applications bene�t from uncertainty quanti�cation, interactive model checking and model criticism,
and conditional probability estimation for ad-hoc fairness auditing. These problems are naturally
formulated in terms of Bayesian inference [11, 28].

InferenceQL is a probabilistic programming system for automated Bayesian inference from
database tables. InferenceQL provides a domain-general mechanism for online Bayesian structure
learning of probabilistic program source code, as well as domain-general mechanisms for scalable
exact and approximate inference in these probabilistic programs. Users thus do not have to know
how to write probabilistic programs in order to use InferenceQL to solve problems. Instead, users
rely on automated data modeling techniques to navigate the design choices that might otherwise
be handled by experienced modelers. InferenceQL also enables Bayesian inference operations
to be interleaved with ordinary SQL operations, yielding complex database-native work�ows
for Bayesian AutoML. InferenceQL has been used successfully in �eld tests for a broad range of
applications, including AutoML for clinical trial oversight in three real-world clinical trials.

This workshop paper introduces InferenceQL via an exploratory data analysis application. It
also brie�y reviews the system architecture of InferenceQL and the class of probabilistic programs
that deliver its AutoML capabilities. It presents preliminary quantitative results from experiments
comparing InferenceQL’s modeling accuracy to GLM, VAE, and CTGAN baselines. Finally, it
reviews related work, including both modeling formalisms and ML and database integrations, and
discusses some limitations and broader impacts.

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0

mailto:u.schaechtle@gmail.com
mailto:freer@mit.edu
mailto:zshelby@mit.edu
mailto:fsaad@mit.edu
mailto:vkm@mit.edu
https://creativecommons.org/licenses/by/4.0/


InferenceQL
Query Planner

Query

Data Table

Query Plan InferenceQL
Query Engine Query Results

Probabilities Virtual Data

Probabilistic Row Generator
(in SPPL [28], Gen [5], etc.)

Probabilistic
Program
Synthesis

Program
Analysis

Query
API

Figure 1: System architecture of InferenceQL.

Name Country_of_Operator Operator_Owner Users Purpose Class_of_Orbit Type_of_Orbit

Prometheus 1A USA Los Alamos Nati Military Technology Develo LEO Sun-Synchronous
Eutelsat 28A Multinational European Teleco Commercial Communications GEO NaN
SMDC-ONE 1.2 USA U.S. Army Space Military Technology Develo LEO NaN
Lacrosse/Onyx USA National Reconn Military Surveillance LEO Intermediate
SMOS (Soil Mo ESA Centre National Government Earth Observation LEO Sun-Synchronous
Compass G-11 China (PR) Chinese Defense Military Navigation/Global GEO NaN
Echostar 6 USA Echostar Techno Commercial Communications GEO NaN
INMARSAT 4 F2 United Kingdom INMARSAT, Ltd. Commercial Communications GEO NaN
Eutelsat 25C Multinational European Teleco Commercial Communications GEO NaN
Vinasat 2 Vietnam Vietnamese Post Government Communications GEO NaN

Perigee_km Apogee_km Eccentricity Period_minutes Launch_Mass_kg Dry_Mass_kg Power_watts

500 506 0.00044 94.68 NaN NaN NaN
35788 35794 0.00007 1436.10 2950 1375 5900
483 789 0.02184 97.40 3 NaN NaN
574 676 0.00729 97.21 14500 NaN NaN
759 760 0.00007 100.00 658 630 1065
35776 35799 0.00027 1436.15 2300 NaN NaN
35775 35798 0.00027 1436.12 3700 1493 11000
35773 35800 0.00032 1436.11 5458 NaN 13000
35780 35790 0.00012 1436.04 3170 1900 5900
35742 35776 0.00040 1434.69 2970 NaN NaN

Date_of_Launch Anticipated_Lifetime Contractor Launch_Site Launch_Vehicle longitude_radians Inclination_radians

41597 NaN Los Alamos Nation Wallops Island Fl Minotaur 1 NaN 0.707033
36958 12 Alcatel Space Ind Guiana Space Cent Ariane 5 0.498466 0.001222
41165 NaN Miltec Vandenberg AFB Atlas 5 NaN 1.127483
36755 9 Lockheed Martin A Vandenberg AFB Titan IV NaN 1.186824
40119 3 Thales Alenia Spa Plesetsk Cosmodro Breeze KM NaN 1.717404
40963 8 Space Technology Xichang Satellite Long March 3A 1.029744 0.032638
36721 12 Lockheed Martin M Cape Canaveral Atlas 2 AS -1.269029 0.001222
38664 15 EADS Astrium Sea Launch (Odyss Zenit 3SL -0.920836 0.040666
37580 12 Alcatel Space Ind Cape Canaveral Atlas 2 AS 0.445059 0.000349
41044 15 Lockheed Martin C Guiana Space Cent Ariane 5 ECA 2.300344 0.001396

(a) Subset of satellites data table showing 21 variables and 10 records

# FIRST GROUP OF DEPENDENT VARIABLES
cluster_view_1 ~ categorical(
{0: 0.945, 1: 0.02, 2: 0.01, ...})

if (cluster_view_1 == 0)
Eccentricity ~ norm(0.002, 0.01)

elif (cluster_view_1 == 2)
Eccentricity ~ norm(0.075, 0.015)

elif (cluster_view_1 == 3)
Eccentricity ~ norm(0.028, 0.017)

...

# SECOND GROUP OF DEPENDENT VARIABLES
cluster_view_2 ~ categorical(
{0: 0.45, 1: 0.365, 2: 0.01, ...})

if (cluster_view_2 == 0)
Power_watts ~ norm(870.32, 877.80)
Launch_mass_kg ~ norm(442.08, 528.63)
Dry_mass_kg ~ norm(362.45, 321.64)
Period_miniutes ~ norm(101.67, 56.02)
Perigee ~ norm(683.49, 56.02)
Apogee ~ norm(742.68, 2411.91)

elif (cluster_view_2 == 1)
Power_watts ~ norm(7157.58, 4629.09)
Launch_mass_kg ~ norm(3870.96, 1417.09)
Dry_mass_kg ~ norm(1921.21, 762.07)
Period_miniutes ~ norm(1435.63, 57.13)
Perigee ~ norm(35820.37, 1434.57)
Apogee ~ norm(35701.83, 2548.60)

...

(b) Synthesized row generator

Figure 2: Synthesizing probabilistic programs that model heterogeneously typed cross-sectional data.

1 Example

The InferenceQL system automates data analysis and machine learning tasks by allowing users to
input data tables and queries and to automatically generate answers for them (Figure 1). It consists
of a probabilistic program synthesis component [27] that creates generative model programs that
are called row generators. The InferenceQL query planner and query engine use row generators to
answer questions about the data and the domain by querying an underling probabilistic model.

Figure 2 shows an example of probabilistic program synthesis, which takes a heterogeneously-
typed data table of satellites (maintained by the Union of Concerned Scientists [32]) and returns a
probabilistic program that models the data. Figure 3(a) shows the high-level interface to creating
synthesizing programs. Users can then compare synthetic data (generated from the probabilistic
programs) with observed data in order to develop intuition about what the model learned from the
data, shown in Figure 3(b). InferenceQL can generate virtual data from both marginal distributions
and conditional distributions given a user-speci�ed predicate (code box in Figure 3(b)). The two
plots in Figure 3(b) illustrate a qualitative goodness-of-�t in the sense that distribution of synthetic
(orange dots) samples appears to approximately match the observed data (black dots).

Data analysts can use the query language to search for probable anomalies and data-entry errors,
shown in Figure 3(c). To �nd values for the column Period_minutes that the model considers

2



# Synthesize probabilistic
# programs given user-specified
# parameters in parameters.yaml
WITH LOAD 'parameters.yaml'

AS params:
BUILD default_model
FOR data
USING params;

#---- (parameters.yaml) ----#
# PARAMETERS FOR MODEL BUILDING
strategy: Gibbs # or SMC
number_models_in_ensemble: 100
inference_minutes: 10
override_schema:

Perigee_km: numerical
Purpose: nominal 0 2 4 6 8 10

Time (Minutes)

−100000

−80000

−60000

−40000

Lo
g

sc
or

e

Model 1
Model 2
…

(a) Step 1: Synthesize probabilistic programs using the observed data table.

SELECT Perigee_km, Apogee_km FROM data INNER JOIN
SELECT Perigee_km AS Perigee_km_generated, Apogee_km AS Apogee_km_generated
FROM GENERATE Perigee_km, Apogee_km UNDER default_model;

SELECT Perigee_km, Apogee_km FROM data INNER JOIN
SELECT Perigee_km AS Perigee_km_generated, Apogee_km AS Apogee_km_generated
FROM GENERATE Perigee_km, Apogee_km GIVEN Period_minutes < 1000
UNDER default_model

WHERE Period_minutes < 1000; 0 40000 80000 120000
Apogee km

0

20000

40000

Pe
rig

ee
km

SELECT
GENERATE

0 40000 80000 120000
Apogee km

0

20000

40000

Pe
rig

ee
km

SELECT
GENERATE

(b) Step 2: Compare virtual data generated from the probabilistic programs to observed data.

WITH SELECT STDEV(Period_minutes) FROM data AS std_period:
SELECT Period_minutes, Class_of_Orbit, Perigee_km, Apogee_km
FROM data
WHERE

(PROBABILITY OF
Period_minutes > (data.Period_minutes - std_period) AND
Period_minutes < (data.Period_minutes + std_period)
UNDER default_model)

<
(PROBABILITY OF
Period_minutes > (data.Period_minutes - std_period) AND
Period_minutes < (data.Period_minutes + std_period)
GIVEN (* EXCEPT Period_minutes)
UNDER default_model)

Period_minutes Class_of_Orbit Perigee_km Apogee_km
23.9 GEO 35771.0 35805.0
142.0 GEO 35897.0 35909.0
14.3 GEO 35770.0 35803.0
23.9 GEO 35771.0 35805.0

100 102 104

Period minutes

0.0

0.5

1.0
Pr

ob
ab

ili
ty

(M
ar

gi
na

l)

100 102 104

Period minutes

0.0

0.5

1.0

Pr
ob

ab
ili

ty
(C

on
di

tit
io

na
l)

(c) Step 3: Search for probable anomalies, which include data entry errors.

WITH SELECT * FROM data WHERE rowid <= 1000 AS training_data:
BUILD default_model FOR training_data AND
BUILD linear_model FOR training_data AND

WITH SELECT * FROM data
WHERE rowid > 1000 AS test_data:
SELECT

period,
(PREDICT period GIVEN Perigee_km, Apogee_km UNDER
default_model)
(PREDICT period GIVEN Perigee_km, Apogee_km UNDER
linear_model)
(PREDICT period GIVEN Perigee_km, Apogee_km UNDER
custom_model)

FROM test_data;

function keplers_law(apogee , perigee)
GM = 398600.4418; earth_radius = 6378;
a = (abs(apogee) + abs(perigee )) * 0.5 + earth_radius;
return 2 * c * sqrt(a^3 / GM) / 60 end;

@gen function custom_model(Perigee_km , Apogee_km)
out = {: Period} ∼ normal(keplers_law(Perigee_km , Aogee_km), .01)
return out end;

0 500 1000 1500
Predicted

0

500

1000

1500

H
el

d-
ou

t

RMSE: 25.9
Default model

0 500 1000 1500
Predicted

0

500

1000

1500

H
el

d-
ou

t

RMSE: 97.73
Linear model

0 500 1000 1500
Predicted

0

500

1000

1500

H
el

d-
ou

t

RMSE: 0.08
Custom model

(d) Step 4: Customize probabilistic programs using an orbital model from physics.

Figure 3: A representative data analysis work�ow in InferenceQL on the satellites data.

improbable in light of the data, the query (left code box) produces the result by comparing the
probability of the value for Period_minutes marginally and conditionally in the WHERE clause.
The only rows returned are those whose conditional probability is lower than the marginal; the
corresponding Period_minutes values are highlighted in red in the table and plots of Figure 3(c).

Finally, users with domain expertise can customize probabilistic programs. Figure 3(d) shows
an example custom orbital model from physics. To quantitatively assess the goodness-of-�t, we
�rst split the data into training and test data and build three models: the automatically synthesized
default model, a generalized linear model (GLM), and a custom probabilistic program for noisy
orbital physics. We then predict a column in the held-out data set. The default model predicts more
accurately than the GLM (4x more accurate via root mean square error (RMSE)) and the custom
probabilistic program beats the default (a further 300x improvement in RMSE).

3



Table 1: Virtual data benchmark.
Jensen-Shannon Divergence to True Data

Dataset InferenceQL CTGAN Copulas TVAE

Nursery 0.04 0.14 0.29 0.05
Tumor 0.06 0.40 0.20 0.45
Flare 0.05 0.22 0.23 0.28
Car 0.05 0.16 0.12 0.08
Mushroom 0.08 0.15 0.33 0.11
Soybean 0.10 0.18 0.22 0.36
Breast-cancer 0.15 0.38 0.43 0.38
Heart-disease 0.08 0.16 0.30 0.44
Connect-4 0.04 0.10 0.22 0.08
Chess 0.03 0.10 0.17 0.05

Table 2: Anomaly detection benchmark.
Anomaly Detection Accuracy

Dataset Target InferenceQL GLM

Abalone Rings 86% 82%
Breast-cancer class 100% 60%
Heart-disease num 97% 47%

Table 3: Runtime optimization benchmark.
InferenceQL (SPPL backend) Python API (SPPL)

Dataset Target Independence Analysis Default Optimization Default Optimization

Nursery Evaluation 11.14 ± 7.31 501.35 ± 571.08 302.29 ± 366.1
Tumor Type 1.99 ± 0.34 3.21 ± 0.51 3.24 ± 0.8
Flare Num_common_�ares 6.96 ± 2.56 14.32 ± 14.27 8.84 ± 7.78
Car Evaluation 13.03 ± 4.69 153.91 ± 275.4 92.3 ± 158.98
Mushroom Edible? 31.34 ± 6.17 34.07 ± 6.87 24.74 ± 5.78
Soybean Disease 9.44 ± 3.05 11.7 ± 2.26 9.05 ± 2.19
Breast-cancer Diagnosis 5.07 ± 0.71 6.78 ± 0.73 3.93 ± 0.82
Heart-disease Present? 3.49 ± 1.49 11.61 ± 8.11 8.99 ± 6.02
Connect-4 White_can_win 34.24 ± 24.61 65.26 ± 59.99 44.61 ± 36.0
Chess Outcome 61.83 ± 45.34 86.27 ± 51.3 62.79 ± 34.56

2 Experiments

We now report experiments evaluating InferenceQL against statistical and neural baselines.

Virtual data benchmark. Table 1 shows the average Jensen-Shannon divergence between vir-
tual and observed data for all pairwise marginals in 10 datasets from the UCI machine learning
repository [8], according to simulations from InferenceQL, Gaussian copulas [23], CTGAN [34],
and TVAE [34]. The bold entries indicate statistically signi�cant lowest error under a Bonferroni
corrected Mann-Whitney* test, which are achieved by InferenceQL in 8 of 10 benchmark problems
and zero times by other techniques.

Anomaly detection benchmark. Table 2 shows that InferenceQL detects a higher percentage of
anomalies than does a GLM baseline on three datasets from the UCI repository. Anomalies were
inserted into a target column by �ipping the class label in each row with probability 0.05 and
detected using a query similar to the one in Figure 3(d).

Query optimization. The InferenceQL query planner contains a built-in optimization for querying
row generators speci�ed in the SPPL language [28]. Table 3 shows the runtime of InferenceQL
queries for computing the conditional probability of all cell values in one target column given all
the other values in the same row, for 10 datasets from the UCI repository. The third column shows
the runtime using InferenceQL’s independence analysis optimization, which statically eliminates
from the query all conditioning variables that are structurally independent of the target variable.
The fourth column shows the runtime using InferenceQL without independence analysis and the
�nal column shows the runtime using the Python API to SPPL, which both do not automatically
leverage independence analysis and are slower in cases where independencies can be exploited.

4



3 Related Work

Various AutoML systems have been developed for tabular data, many of which focus on solving
a speci�c discriminative problem (e.g., regression or classi�cation); whereas in InferenceQL the
user automatically obtains a generative model that can be queried repeatedly to answer a wide
range of questions about the data. These include Amazon’s AutoGluon-Tabular [9] and SageMaker
Autopilot [7], Google Cloud Platform AutoML Tables [17], Uber’s Ludwig [20], H2O AutoML [16],
and a number of earlier systems such as Auto-WEKA [31], auto-sklearn [10], hyperopt-sklearn
[2], TPOT [21], autoxgboost [30], ML-Plan [19], OBOE [35], GAMA [12], and Auto-Keras [15]. A
survey and comparison of many of these systems can be found in Erickson et al. [9, §3].

InferenceQL is most similar to the BayesDB [18] probabilistic programming system. Like
InferenceQL, BayesDB requires the underlying models to satisfy the composable generate population
model interface [24]. InferenceQL aims to support new queries that include predicates as constraints
and custom models in the Gen probabilistic programming language [5].

InferenceQL makes use of sum-product expressions [28], which are a type of of probabilistic
circuit [6]. These symbolic representations are designed to to balance modeling expressiveness
with tractable inference. Previous database systems have incorporated probabilistic circuit repre-
sentations to speed up queries [13, 22, 33] outside of a probabilistic programming context.

Probabilistic databases [29] are a class of systems that take a di�erent approach from Infer-
enceQL, where they typically assign weights to facts in a database and implement queries that
compute the probability of Boolean formulas. Unlike InferenceQL, standard probabilistic databases
do not include automatic probabilistic model discovery from high-dimensional and heterogeneously-
typed data tables. Another probabilistic approach to database systems and query languages involves
augmenting relational algebras with techniques that enable predictive modeling, learning, and
inference. Relational algebras have been extended by functions for imputation [4], time series
prediction [1], random data generation [14] and simulation [3].

4 Conclusion

Limitations. A central limitation of InferenceQL is the lack of large-scale evaluations of its accuracy
and performance that span a range of di�erent data regimes. In principle, InferenceQL should be
able to match the accuracy of many real-world ML deployments by using hybrids of generative
models with decision-tree classi�ers (as implemented in its SPPL backend), though it remains to be
seen how e�ective and competitive with other AutoML approaches this approach is in practice. Also,
once users leave the fully-automated setting (e.g., to customize or override the learned probabilistic
programs), the InferenceQL API for custom models as in Figure 3(d) can be challenging to implement
correctly. Finally, InferenceQL only applies to cross-sectional data tables; it would be worthwhile
to extend InferenceQL with domain-general Bayesian structure learning methods for multivariate
time series [25] or relational systems [26].

Broader Impact. One potential bene�t of InferenceQL is educational. If it turns out (much like
SQL) to be learnable by many end-users, then InferenceQL has the potential to increase access
to and literacy in Bayesian reasoning for a broad audience. InferenceQL also has the potential to
reduce the marginal cost of Bayesian data analysis for applied practitioners, which drives both
bene�cial impact and risks of harm. Bene�ts include improved analytics and decision-making
capabilities in the public interest, especially in applications where realtime learning is valuable,
such as adaptive design of scienti�c experiments. The risks include reduced cost for invasion of
privacy, as well as analytics and decision-making towards other harmful aims.

5



References

[1] Anish Agarwal, Abdullah Alomar, and Devavrat Shah. tspDB: Time series predict DB. In
Proceedings of the NeurIPS 2020 Competition and Demonstration Track, volume 133 of Proceedings
of Machine Learning Research, pages 27–56. PMLR, 2021.

[2] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: A
python library for model selection and hyperparameter optimization. Computational Science
& Discovery, 8(1):014008, 2015. doi:10.1088/1749-4699/8/1/014008/meta.

[3] Zhuhua Cai, Zografoula Vagena, Luis Perez, Subramanian Arumugam, Peter J. Haas, and
Christopher Jermaine. Simulation of database-valued Markov chains using SimSQL. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pages
637–648. ACM, 2013. doi:doi/10.1145/2463676.2465283.

[4] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. Query optimiza-
tion for dynamic imputation. Proceedings of the VLDB Endowment, 10(11):1310–1321, 2017.
doi:10.14778/3137628.3137641.

[5] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka.
Gen: A general-purpose probabilistic programming system with programmable inference.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 221–236. ACM, 2019. doi:10.1145/3314221.3314642.

[6] Adnan Darwiche. Tractable boolean and arithmetic circuits. In Pascal Hitzler and Md Kam-
ruzzaman Sarker, editors, Neuro-Symbolic Arti�cial Intelligence: The State of the Art, volume
342 of Frontiers in Arti�cial Intelligence and Applications, chapter 6, pages 146–172. IOS Press
Ebooks, 2021. doi:10.3233/FAIA210353.

[7] Piali Das, Nikita Ivkin, Tanya Bansal, Laurence Rouesnel, Philip Gautier, Zohar Karnin, Leo
Dirac, Lakshmi Ramakrishnan, Andre Perunicic, Iaroslav Shcherbatyi, Wilton Wu, Aida Zolic,
Huibin Shen, Amr Ahmed, Fela Winkelmolen, Miroslav Miladinovic, Cedric Archembeau, Alex
Tang, Bhaskar Dutt, Patricia Grao, and Kumar Venkateswar. Amazon SageMaker Autopilot: a
white box AutoML solution at scale. In Proceedings of the 4th International Workshop on Data
Management for End-to-End Machine Learning. ACM, 2020. doi:10.1145/3399579.3399870.

[8] Dheeru Dua and Casey Gra�. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[9] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. AutoGluon-Tabular: robust and accurate AutoML for structured data. arXiv,
2003.06505, 2020. doi:10.48550/arXiv.2003.06505.

[10] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. E�cient and robust automated machine learning. In Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[11] Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling
Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. Bayesian
work�ow. arXiv, 2011.01808, 2020. doi:10.48550/arXiv.2011.01808.

[12] Pieter Gijsbers and Joaquin Vanschoren. GAMA: Genetic automated machine learning assistant.
Journal of Open Source Software, 4(33):1132, 2019. doi:10.21105/joss.01132.

6

https://doi.org/10.1088/1749-4699/8/1/014008/meta
https://doi.org/doi/10.1145/2463676.2465283
https://doi.org/10.14778/3137628.3137641
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.3233/FAIA210353
https://doi.org/10.1145/3399579.3399870
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.48550/arXiv.2003.06505
https://doi.org/10.48550/arXiv.2011.01808
https://doi.org/10.21105/joss.01132


[13] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting,
and Carsten Binnig. DeepDB: learn from data, not from queries! Proceedings of the VLDB
Endowment, 13(7):992–1005, 2020. doi:10.14778/3384345.3384349.

[14] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Perez, Chris Jermaine, and Peter J. Haas. The Monte
Carlo database system: Stochastic analysis close to the data. ACM Transactions on Database
Systems, 36(3), 2011. doi:10.1145/2000824.2000828.

[15] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-Keras: An e�cient neural architecture search
system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1946–1956. ACM, 2019. doi:10.1145/3292500.3330648.

[16] Erin LeDell and Sebastien Poirier. H2O AutoML: Scalable automatic machine learning. In
Proceedings of the 7th ICML Workshop on AutoML, 2020.

[17] Yifeng Lu. An end-to-end AutoML solution for tabular data at KaggleDays, 2019. URL
https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html.

[18] Vikash K. Mansinghka, Richard Tibbetts, Jay Baxter, Pat Shafto, and Baxter Eaves. BayesDB:
a probabilistic programming system for querying the probable implications of data. arXiv,
1512.05006, 2015. doi:10.48550/arXiv.1512.05006.

[19] Felix Mohr, Marcel Wever, and Eyke Hüllermeier. ML-Plan: Automated machine learning
via hierarchical planning. Machine Learning, 107(8):1495–1515, 2018. doi:10.1007/s10994-018-
5735-z.

[20] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. Ludwig: A type-based declarative
deep learning toolbox. arXiv, 1909.07930, 2019. doi:10.48550/arXiv.1909.07930.

[21] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and
Jason H. Moore. Automating biomedical data science through tree-based pipeline optimization.
In Applications of Evolutionary Computation, volume 9597 of Lectures Notes in Computer Science,
pages 123–137. Springer, 2016. doi:10.1007/978-3-319-31204-0_9.

[22] Dan Olteanu and Maximilian Schleich. Factorized databases. SIGMOD Record, 45(2):5–16,
2016. doi:10.1145/3003665.3003667.

[23] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In Proceedings
of the 3rd IEEE International Conference on Data Science and Advanced Analytics, pages 399–410.
IEEE, 2016. doi:10.1109/DSAA.2016.49.

[24] Feras Saad and Vikash K. Mansinghka. A probabilistic programming approach to probabilistic
data analysis. In Advances in Neural Information Processing Systems, pages 2011–2019. Curran
Associates, Inc., 2016.

[25] Feras A. Saad and Vikash K. Mansinghka. Temporally-reweighted Chinese restaurant process
mixtures for clustering, imputing, and forecasting multivariate time series. In Proceedings of
the 21st International Conference on Arti�cial Intelligence and Statistics, volume 84 of Proceedings
of Machine Learning Research, pages 755–764. PMLR, 2018.

[26] Feras A. Saad and Vikash K. Mansinghka. Hierarchical in�nite relational model. In Proceedings
of the 37th Conference on Uncertainty in Arti�cial Intelligence, volume 161 of Proceedings of
Machine Learning Research, pages 1067–1077. PMLR, 2021.

7

https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/2000824.2000828
https://doi.org/10.1145/3292500.3330648
https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html
https://doi.org/10.48550/arXiv.1512.05006
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.48550/arXiv.1909.07930
https://doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1109/DSAA.2016.49


[27] Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K.
Mansinghka. Bayesian synthesis of probabilistic programs for automatic data modeling.
Proceedings of the ACM on Programming Languages, 3(POPL), 2019. doi:10.1145/3290350.

[28] Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. SPPL: Probabilistic programming
with fast exact symbolic inference. In PDLI 2021: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Design and Implementation, pages 804–819. ACM,
2021. doi:10.1145/3453483.3454078.

[29] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Num-
ber 16 in Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.
doi:10.2200/S00362ED1V01Y201105DTM016.

[30] Janek Thomas, Stefan Coors, and Bernd Bischl. Automatic gradient boosting. In Proceedings
of the International Workshop on Automatic Machine Learning, 2018.

[31] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-WEKA: Com-
bined selection and hyperparameter optimization of classi�cation algorithms. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 847–855. ACM, 2013. doi:10.1145/2487575.2487629.

[32] Union of Concerned Scientists. UCS satellite database, 2016. URL https://www.ucsusa.org/
resources/satellite-database.

[33] Guy Van den Broeck and Dan Suciu. Query processing on probabilistic data: A survey.
Foundations and Trends® in Databases, 7(3-4):197–341, 2017. doi:10.1561/1900000052.

[34] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling
tabular data using conditional GAN. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[35] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. OBOE: Collabora-
tive �ltering for AutoML model selection. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pages 1173–1183. ACM, 2019.
doi:10.1145/3292500.3330909.

8

https://doi.org/10.1145/3290350
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.1145/2487575.2487629
https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/resources/satellite-database
https://doi.org/10.1561/1900000052
https://doi.org/10.1145/3292500.3330909

	Example
	Experiments
	Related Work
	Conclusion

