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ABSTRACT

In this paper, we study the loss landscape of one-hidden-layer neural networks
with ReLU-like activation functions trained with the empirical squared loss using
gradient descent (GD). We identify the stationary points of such networks, which
significantly slow down loss decrease during training. To capture such points
while accounting for the non-differentiability of the loss, the stationary points that
we study are directional stationary points, rather than other notions like Clarke
stationary points. We show that, if a stationary point does not contain “escape
neurons”, which are defined with first-order conditions, it must be a local min-
imum. Moreover, for the scalar-output case, the presence of an escape neuron
guarantees that the stationary point is not a local minimum. Our results refine the
description of the saddle-to-saddle training process starting from infinitesimally
small (vanishing) initialization for shallow ReLU-like networks: By precluding
the saddle escape types that previous works did not rule out, we advance one step
closer to a complete picture of the entire dynamics. Moreover, we are also able to
fully discuss how network embedding, which is to instantiate a narrower network
with a wider network, reshapes the stationary points.

1 INTRODUCTION

Understanding the training process of neural networks calls for insights into their loss landscapes.
Characterization of the stationary points is a crucial aspect of these studies. In this paper, we investi-
gate the stationary points of the loss of a one-hidden-layer neural network with ReLU-like activation
functions. The non-differentiability of the activation function renders such problems non-trivial. It
is worth noting that, although the non-differentiable areas only take up zero Lebesgue measure in
the parameter space, such areas are often visited by GD and thus should not be neglected.

In particular, we discover that any loss-decreasing path starting from a stationary point must involve
changes in the parameters of “escape neurons” (defined in Definition 4.1). The absence of escape
neurons guarantees the stationary point to become a local minimum. Our results provide insight
into the saddle escape process with minimal assumptions. Supplementing Maennel et al. (2018);
Boursier et al. (2022); Chistikov et al. (2024); Boursier and Flammarion (2024); Kumar and Haupt
(2024), our results lead to a fuller understanding of the saddle-to-saddle training dynamics, a typical
dynamical pattern resulted from vanishing initialization. More specifically, those previous works
studied the behavior of gradient flow near a specific type of saddle point (Kumar and Haupt, 2024),
and this work precludes the existence of other types in the general case.

We are also able to systematically describe how network embedding reshapes the stationary points
by examining whether the “escape neurons” are generated from the embedding process. This directly
extends the discussion by Fukumizu et al. (2019) to non-differentiable cases.

∗Correspondence to zhengqing.wu@epfl.ch, fged.math@gmail.com.
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1.1 RELATED WORK

Stationary Points. Stationary points abound on the loss landscape of neural networks. He et al.
(2020); Sharifnassab et al. (2020); Liu et al. (2021); Arjevani and Field (2021); Şimşek et al. (2023)
have shown that saddle points and spurious local minima exist in the landscape of non-linear net-
works. Stationary points may significantly affect training dynamics, leading to plateaus in the loss
curve (Saad and Solla, 1995; Amari, 1998; Jacot et al., 2022; Pesme and Flammarion, 2024). When
studying these stationary points, it is of both theoretical and practical interest (Fukumizu and Amari,
2000; Şimşek et al., 2021) to discriminate between their different types (Achour et al., 2022), for
they affect gradient descent differently (Lee et al., 2017; 2016). Specifically, while local minima
and non-strict saddles are not escapable (Achour et al., 2021; Lee et al., 2016; Achour et al., 2022),
strict saddles are mostly escapable under mild conditions (Lee et al., 2017; 2016; Jin et al., 2017;
Daneshmand et al., 2018; Ziyin et al., 2023). In our setting, the non-differentiability complicates
the analysis. To tame such difficulty, previous works took various simplifications, such as only
studying the differentiable areas (Zhou and Liang, 2018; He et al., 2020; Sahs et al., 2022), only
studying the non-differentiable stationary points yielded by specific constructions (Liu et al., 2021),
and only studying the first two orders of the derivatives (Yun et al., 2019). These theories appeared
inconclusive due to such simplifications. So far, a systematic characterization of the potentially
non-differentiable stationary points in our setting has yet to be established.

In this work, we consider stationary points to be where the one-sided directional derivative (ODD)
toward any direction is non-negative, which is known as directional stationary points (Li et al., 2020).
This notion effectively captures the points on the loss landscape that slow down GD and create loss
plateaus, whether differentiable or not (see Section 3.2 and Appendix C.2). Such a property of
this notion remained unnoticed by previous works. Earlier literature on ReLU network training
dynamics (Boursier et al., 2022; Lee et al., 2022; Kumar and Haupt, 2024) observed such GD-
stagnating points for specific cases but did not provide conditions to identify them in broader setup.
Notably, our notion of stationarity also contrasts with other methods based on Clarke subdifferential
(Wang et al., 2022; Davis et al., 2020a), subgradient, or right-hand derivative (Cheridito et al., 2022),
which may be less suitable for characterizing GD stationarity (see Section 3.2.1).
Training Dynamics. Different initialization scales lead to different training dynamics. In the lazy-
training regime (Chizat et al., 2019), which has relatively large initialization scales, the dynamics is
well captured by the neural tangent kernel theory (Jacot et al., 2018; Allen-Zhu et al., 2019; Arora
et al., 2019). In the regime of vanishing initialization, the training exhibits a feature learning be-
havior (Yang and Hu, 2020), which still awaits a generic theoretical account. However, it has been
widely observed that the training dynamics in this regime often displays a saddle-to-saddle pattern,
meaning the loss will experience intermittent steep declines punctuated by plateaus where it re-
mains relatively unchanged. We will describe this process for our setting, furthering the discussions
from Maennel et al. (2018); Boursier et al. (2022); Chistikov et al. (2024); Boursier and Flammar-
ion (2024); Kumar and Haupt (2024). It is noteworthy that the training dynamics often unveils the
implicit biases of the optimization algorithms. In the saddle-to-saddle regime, the learned func-
tions often prefer lower parameter ranks (Maennel et al., 2018; Luo et al., 2021; Jacot et al., 2022)
or smaller parameter norms (Boursier et al., 2022; Pesme and Flammarion, 2024), which could be
beneficial for generalization.
Network Embedding. Network embedding provides a perspective for understanding how the
optimization landscape transforms given more parameters, shedding light on the merit of over-
parameterization (Livni et al., 2014; Safran and Shamir, 2015; Soudry and Carmon, 2016; Nguyen
and Hein, 2017; Soudry and Hoffer, 2017; Du and Lee, 2018; Venturi et al., 2019; Soltanolkotabi
et al., 2022). Previously, network embedding has been studied in various setups (Fukumizu and
Amari, 2000; Fukumizu et al., 2019; Safran et al., 2020; Şimşek et al., 2021; Zhang et al., 2021),
mostly focusing on how network embedding reshapes stationary points. We extend this line of work
to the non-differentiable cases.

1.2 MAIN CONTRIBUTION

In this paper, we study the aforementioned topics for one-hidden-layer networks with ReLU-like
activation functions trained by the empirical squared loss. Our contributions are as follows.
• Noticing that the non-differentiability only lies within the hyper-planes orthogonal to training in-

puts, and derivatives can be handled easily on both sides of those hyperplanes, we develop a rou-
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tine to fully investigate the ODDs of the loss. With its help, we identify, classify, and characterize
the stationary points with non-differentiability fully considered.

• We preclude saddle escape types that previous papers (Maennel et al., 2018; Boursier et al., 2022;
Chistikov et al., 2024; Boursier and Flammarion, 2024; Kumar and Haupt, 2024) were not able
to rule out. We show that saddle escape must involve the parameter changes of escape neurons
(Definition 4.1) and apply this to describe the saddle-to-saddle dynamics.

• We study whether network embedding preserves stationarity or local minimality.

2 SETUP

Network Architecture. We study one-hidden-layer networks as illlustrated in Figure 1.

For a given input x ∈ Rd, the network output is:

Figure 1: network architecture

ŷ(H,W ;x) = ŷ(P;x) = Hρ(Wx). (1)

In Equation (1), W ∈ R|I|×d and H = (hji) ∈ R|J|×|I|

are respectively the input and output weight matrices, and
I and J are the sets of indices of the hidden neurons and
output neurons. The vector P ∈ R

D contains all the
trainable parameters W and H , so that D = |J | × |I| +
|I|×d. We denote the row of W corresponding to hidden
neuron i by wi ∈ R

d. The componentwise activation
function ρ(·) reads:

ρ(z) = α+
1z≥0z + α−

1z<0z; α+, α−, z ∈ R.

In this paper, the assumptions we make are α+ ̸= α− and d > 1. Both are for brevity in exposition,
rather than being indispensable for the validity of the outcomes.

Loss Function. The training input/targets are xk/yk with k ∈ K, where K denotes the set of the
sample indices. The empirical squared loss function takes the form:

L (P) =
1

2

∑
k∈K

∥ŷk(P)− yk∥2 =
1

2

∑
j∈J

∑
k∈K

(ŷkj(P)− ykj)
2 , (2)

where ŷk(P) := ŷ (P;xk), and ŷkj , ykj are the components of ŷk and yk at the output neuron j.

3 STATIONARY POINTS

In this section, we derive the ODDs and identify the stationary points of the loss.

3.1 DERIVING ONE-SIDED DIRECTIONAL DERIVATIVES

Non-differentiability does not completely prohibit the investigation into derivatives. For example,
studying the left and right hand derivatives at the origin of f(x) = |x| suffices to describe the func-
tion locally, despite the non-differentiability. Generalizing this methodology to higher dimensions,
we can handle the derivatives of the loss function by deriving them in different directions. Note that
the loss of ReLU-like networks is continuous everywhere and piecewise C∞, which enables us to
study its ODDs, and the ODDs are informative enough to characterize its first-order properties.

It is not hard to see that our neural network is always differentiable with respect to the output weights
hji. Non-differentiability only arises from input weights wi. More precisely, the network (thus the
loss) is non-differentiable at P if and only if a weight wi is orthogonal to some training input xk’s
(see Figure 2 for an illustration). Nonetheless, when wi moves a sufficiently small distance along a
fixed direction, the sign of wi · xk is fixed for all k ∈ K. Namely, wi · xk only moves on either the
positive leg, the negative leg of the activation function ρ(·), or stays at the kink, but it will not cross
the kink during the movement. With wi constrained within such a small local region, the loss is a
polynomial with respect to it. This allows us to study the ODDs. Below, we specify some general
directions where the ODDs can be written in closed forms.

3



Published as a conference paper at ICLR 2025

Figure 2: A diagram demonstrating the non-differentiability with re-
spect to the input weights. Here, we show a case where input weights
and training inputs are 3-dimensional. There are two training inputs
and two input weights. w1 lies in a plane orthogonal to x2. The loss
is thus locally non-differentiable since it contains the term ρ(w1 ·x2).
However, we can compute the ODD with respect to w1 since the loss
function with w1 constrained on either side of the plane or on the
plane is a polynomial of w1.

Definition 3.1. Consider a nonzero wi ∈ Rd. The radial direction of wi is ui :=
wi

∥wi∥ . Moreover,
any unit vector vi orthogonal to ui is called a tangential direction. For wi = 0, the radial direction
does not exist, and a tangential direction is defined to be any unit vector vi ∈ Rd.
Remark 3.2. The tangential direction is always definable given our assumption of d > 1.

Consider a non-zero wi ∈ Rd and let w′
i = wi + ∆wi ̸= wi be in the neighborhood of wi. The

vector ∆wi admits a unique decomposition ∆wi = ∆riui + ∆sivi with ∆si ≥ 0 and vi being
a specific tangential direction of wi. Fixing a direction for the derivative is thus equivalent to fix-
ing a tangential direction. For a generic function f , ∂f(wi)

∂ri
:= lim∆ri→0+

f(wi+∆riui)−f(wi)
∆ri

and
∂f(wi)
∂si

:= lim∆si→0+
f(wi+∆sivi)−f(wi)

∆si
are the radial derivative and the tangential derivative.

For wi = 0, we can likewise define the tangential derivative for every tangential direction vi, and
by convention, set the undefinable ui and the radial derivative to zero.
Remark 3.3. The notation of ∂

∂si
always implies a fixed tangential direction vi.

We can then study the ODDs with respect to the output weights and the radial/tangential directions
of the input weights.
Lemma 3.4. We first denote (ŷkj − ykj) := ekj . Then, we define the following quantities:

dji :=
∑
k:

wi·xk>0

α+ekjxk +
∑
k:

wi·xk<0

α−ekjxk,

dvi
ji := lim

∆si↘0+

 ∑
k:

(wi+∆sivi)·xk>0

α+ekjxk +
∑
k:

(wi+∆sivi)·xk<0

α−ekjxk

. (3)

We have that
∂L(P)

∂hji
= wi · dji, ∀ (j, i) ∈ J × I , (4)

∂L(P)

∂ri
=

∑
j∈J

hjidji · ui, ∀ i ∈ I , (5)

∂L(P)

∂si
=

∑
j∈J

hjid
vi
ji · vi, ∀ i ∈ I , ∀ tangential direction vi’s of wi. (6)

The proof for the above is in Appendix A. Such ODD computation can also be adapted for neural
networks with more than one hidden layer, which is explained in Appendix B.

It is easy to check that the network is linear with respect to the output weights and the norm of the
input weights, therefore ∂L

∂hji
and ∂L

∂ri
are continuous everywhere. But this is not the case for ∂L

∂si
.

3.2 IDENTIFYING STATIONARY POINTS

To capture the GD-stagnating points on the loss landscape while accounting for the non-
differentiability, we invoke the notion of directional stationarity to define stationary points.

Definition 3.5. A set of parameters P is a stationary point of the loss in our setting if
limα↘0+

L(P+αd)−L(P)
α ≥ 0, for all d ∈ RD.

Notice that the above definition of stationarity also incorporates the smooth stationary points, which
are where the gradient vanishes and also exist in the loss landscape of ReLU-like networks. By
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precluding first-order loss-decreasing paths in all directions, the above definition captures points
near which GD infinitely decelerates or effectively comes to a halt.1 Capturing these phenomena
is the desideratum of the notion of stationary points, which Definition 3.5 intuitively satisfies. We
showcase this on a scalar function in Appendix C.1. We also provide examples of non-differentiable
stationary points in Appendix C.2.

Exploiting the structure of our problem, we arrive at an equivalent definition of stationary points:

Definition 3.6. A set of parameters P is a stationary point of the loss in our setting if the following
holds: (1) ∂L(P)

∂hji
= 0, ∀ (j, i) ∈ J × I; (2) ∂L(P)

∂ri
= 0, ∀ i ∈ I; (3) ∂L(P)

∂si
≥ 0, ∀ i ∈ I , ∀ tangential

direction vi’s of wi.

For directions along which the loss is continuously differentiable, we require the derivatives to be 0,
which explains the first two conditions. Along the other directions, our definition permits upward
slopes in one direction and the opposite at a stationary point, as indicated in the third condition.

The equivalence between Definition 3.5 and Definition 3.6 is intuitive. For a generic function,
there is a maximal subspace in its parameter space where the function is differentiable, which we
call the differentiable subspace for convenience. The complementary subspace of the differentiable
subspace is where the function is non-differentiable, which we call the non-differentiable subspace.

To examine all the ODDs surrounding a point in the parameter space, as required by Definition 3.5,
it suffices to check the ODDs in the differentiable subspace and the non-differentiable subspace
separately. This is because an ODD toward an arbitrary direction d in the parameter space can be
written as a linear combination of the ODD along the projection of d onto the differentiable subspace
and the ODD along the project of d onto the non-differentiable subspace. The ODDs along the
coordinate axes that span the differentiable subspace are sufficient to describe any ODD within the
differentiable subspace, hence the first two conditions in Definition 3.6. However, the ODDs toward
all the directions in the non-differentiable subspace need to be examined in the general case, hence
the last condition in Definition 3.6.

Notably, Definitions 3.5 and 3.6 are tailored to capture the stationarity of GD as it admits positive
slopes around stationary points. If we were to define stationarity for, say, gradient ascent, we would
admit negative slopes around stationary points instead. One implication of such a design is that,
while all local minima are stationary points under Definitions 3.5 and 3.6, this is not the case for
non-differentiable local maxima. An interesting side note can be made about the rarity of local
maxima on our loss landscape, whether they are differentiable or not. We can prove that a necessary
condition for P ∈ R

D to become a local maximum is ŷk(P) = 0 for all k ∈ K, as shown in
Appendix D. Such a result extends the arguments regarding the non-existence of differentiable local
maxima by Liu (2021); Botev et al. (2017), offering a qualitative perspective of the loss landscape.

Definition 3.7. A saddle point is a stationary point that is not a local minimum or a local maximum.

3.2.1 COMPARISON WITH OTHER NOTIONS OF STATIONARITY

Previous results on non-smooth non-convex stationarity mostly focus on Clarke stationary points
(Davis et al., 2020b; Yun et al., 2019), which is where the Clarke subdifferential (Clarke, 1975)
includes zero. But, such a notion of stationarity is not the best fit for studying GD. For example,
the origins of f(x) = |x| and f(x) = −|x| are both Clarke stationary points, but only the former
stalls GD and qualifies as a stationary point of GD. Notably, directional stationary points are Clarke
stationary points with no negative slopes around (see Appendix C.3). As Clarke stationary points
are known to be where stochastic subgradient descent converges (Davis et al., 2020b), our notion of
stationarity offers a more refined understanding of such first-order methods. It is also noteworthy
that Clarke subdifferential (Clarke, 1975) is a widely adopted tool for characterizing gradient flow
of ReLU networks (Boursier et al., 2022; Chistikov et al., 2024; Kumar and Haupt, 2024). Given
directional stationarity is more relevant for training dynamics, it might be more advisable to use
Fréchet subdifferential, which underlies the definition of directional stationarity Li et al. (2020).2

1We consider GD oscillating around a certain point to be effectively equivalent to GD coming to a halt.
2In plain words, if the Fréchet subdifferential at a point contains 0, it is a directional stationary point. For

more details, please refer to Li et al. (2020) for a review.
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Another widely known stationarity criterion is to have the subgradient set to contain 0. However,
such a notion does not apply to our problem since the subgradient cannot be defined for non-convex
functions (see Remark C.4).

Cheridito et al. (2022) defined the stationary points of ReLU networks to be where the right-hand
directional derivatives along the canonical coordinate axes are zero. However, in the presence of
non-smoothness, ODDs derived along the canonical axes might not be informative enough to char-
acterize the local structure of the function. We demonstrate this with a toy example in Appendix C.4.

4 MAIN RESULTS

In this section, we classify and characterize stationary points (Section 4.1) and discuss its implication
for the training dynamics in the vanishing initialization limit (Section 4.2). We will also describe
how network embedding reshapes the stationary points (Section 4.3).

4.1 PROPERTIES OF STATIONARY POINTS

Definition 4.1. At a stationary point, a hidden neuron i is an escape neuron if and only if there exist
j′ ∈ J and a tangential direction vi such that ∂L(P)

∂si
=
∑

j∈J hjid
vi
ji · vi = 0, and dvi

j′i · vi ̸= 0.

Theorem 4.2. Let P be a stationary point. If P does not contain escape neurons, then P is a local
minimum. Furthermore, this sufficient condition is also a necessary one when |J | = 1.
Remark 4.3. An intuition of Definition 4.1 and Theorem 4.2 for the scalar-output case is in Ap-
pendix E. Theorem 4.2 is proved by Appendix F.1 and Appendix F.2.

Proving Theorem 4.2 requires performing Taylor expansion methodically toward all directions in the
parameter space. Taylor expansion requires differentiability and thus might seem, at first glance, pro-
hibited for our problem. We solve this by aligning the coordinate system with the non-differentiable
edges in the parameter space, so that the loss is always C∞ within each orthant. Then, we can use
Taylor expansion based on the ODDs (of any orders) along the aligned coordinate axes to accurately
characterize the function within the orthants, as it would be like studying a differentiable function
but limiting the scope to an orthant. We provide visualization for such a method in Appendix G.

Since we can also compute the ODDs for deeper nets with an aligned coordinate system, as show-
cased in Appendix B, it is conceptually easy to also compose such stationary-point-classifying the-
orems for deeper nets. However, deeper nets entail a more cumbersome proof as there will be
higher-ordered terms to be controlled. Hence, we limit our current discussion to the shallow struc-
ture, which already suffices to solve unresolved problems from previous works of training dynamics
and network embedding, discussed in Sections 4.2 and 4.3, respectively.

In the following, we refer to local minima without escape neurons as type-1 local minima, and to the
others as type-2 local minima, which does not exist when |J | = 1 as per Theorem 4.2. We tend to
argue that type-2 local minima are rare and provide our reasoning in Appendix F.2.1.

We also show that the stationary local maxima and saddle points of the loss offer “second-order
decrease” along the escape path, which can be formalized as below.
Corollary 4.4. If P is a non-minimum stationary point of L with |J | = 1, then there exist a unit
vector ℓ ∈ RD and a constant C < 0 such that 0 > L(P+ δℓ)− L(P) ∼ Cδ2, as δ → 0+.

Corollary 4.4 is explained in Remark F.2. It is established by characterizing the loss-decreasing path
caused by the variation of escape neuron parameters. It draws similarities between the potentially
non-differentiable saddle points in our setting and smooth strict saddles. It is known that saddle
points in shallow linear networks are strict (Kawaguchi, 2016).3. The above corollary thus serves to
extend (Kawaguchi, 2016) to non-differentiable stationary points.

4.1.1 A NUMERICAL EXPERIMENT FOR THEOREM 4.2

We present a numerical experiment to illustrate Theorem 4.2, also serving as a precursor to our
discussion on training dynamics in Section 4.2. We train a ReLU network that has 50 hidden neurons

3(Kawaguchi, 2016) also proved that saddle points in the true loss of shallow ReLU networks are strict.
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(a) loss curve (b) direction of wi (rad) (c) ∥wi∥ (d) hj0i

Figure 3: Evolution of all parameters during the training process from vanishing initialization.
(a) The loss curve encounters three plateaus, the last of which corresponds to a local minimum
(confirmed by Theorem 4.2). We mark the end of the plateaus with dashed vertical lines. (b) The
input weights that are not associated with dead neurons are grouped at several angles. (c) & (d)
Grouped neurons have their amplitude increased from near-zero values, which coincides with the
saddle escape. The movements of ∥wi∥ and |hj0i| are synchronous (see Fact 4.5).

with GD using 5 training samples (xk, yk). The inputs are xk = (xk, 1) ∈ R
2, and xk’s are −1,

−0.6, −0.1, 0.3, 0.7. The target yk’s, are 0.28, −0.1, 0.03, 0.23, −0.22. All the parameters are
initialized independently with law N

(
0, (5× 10−6)2

)
.4 The training lasts 500k epochs with a step

size of 0.001. We will identify the saddle points and local minima encountered during training.

The training process is visualized in Figure 3. Figure 3a is the loss curve, where the plateaus re-
flect the parameters moving near stationary points. Figures 3b to 3d show the evolution of input
weight orientations, input weight norms, and output weights. The input weight orientations are the
counterclockwise angles between wi’s and the vector (1, 0).

Each curve in Figures 3b to 3d corresponds to one hidden neuron. We see that most of the wi’s
group at several angles before all the parameters gain considerable amplitudes. This has been well
studied by Maennel et al. (2018); Kumar and Haupt (2024); Boursier and Flammarion (2024). We
denote these hidden neurons by red and yellow in the figures and call them group 1 and group 2
neurons. Notice that the wi’s between 3.93 and 5.67 rad (the grey-tinted area in Figure 3b) have
ρ(wi · xk) = 0 for all k ∈ K. This means that the gradients of all the parameters associated with
these hidden neurons are zero (from Lemma 3.4). These hidden neurons are the black curves5 in the
figures and are called the dead neurons.

We also note that the group 1 neurons are attracted to and stuck at a direction (≈ 2.53 rad) that
is orthogonal to one of the training inputs (x5 = (0.7, 1)). This implies that the GD traverses a
non-differentiable region of the loss landscape throughout the training.

In our example, the parameters escape from 2 saddles, which happens at about epochs 42k and
152k, reflected by the rapid loss drop in Figure 3a. The last plateau in the loss curve is the result of a
local minimum. To numerically verify this, we perturb the parameters obtained after 500k epochs of
training with small noises, and the resulting loss change is always non-negative (see Appendix H).

That the last plateau is a local minimum can also be confirmed by applying Theorem 4.2. In the
following, we show that the stationary points that the network parameter is close to at epoch 42k
and 152k have escape neurons, while the stationary point stalling the loss decrease in the end does
not. For clarity, the index of the only output neuron is specified to be j0.
Fact 4.5. Throughout training, (∥wi∥2−h2

j0i
) remains unchanged.6 Thus, with vanishing (small but

non-vanishing, resp.) initialization, we have ∥wi∥ = |hj0i| (∥wi∥ ≈ |hj0i|, resp.) during training.

Definition 4.1 indicates that the escape neurons have hj0i = 0 (also explained in Appendix E). By
Fact 4.5, the amplitudes of all the parameters associated with escape neurons must be small. On the
other hand, dead neurons (which only exist in the ReLU case) are not escape neurons by definition.

Thus, when the network nears a saddle point, it must contain neurons that have small amplitudes
and are not dead neurons. We will refer to such neurons as small living neurons in the following.
They are the ones corresponding to the escape neurons in the nearby saddle point. In Figure 3, at

4We chose such an initialization scale to simulate the vanishing initialization since further diminishing it
will not qualitatively change the patterns of the training dynamics.

5Note, there are black curves in Figures 3c and 3d. They stay too close to the zero line to show up.
6This conclusion was proved in Section 9.5 of Maennel et al. (2018).
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epoch 42k (152k, resp.), neurons belonging to both group 1 and 2 (group 2, resp.) are small living
neurons. However, after the network reaches the last plateau, small living neurons are depleted,
meaning the stationary point it was approaching must be a local minimum. A formal statement of
such observations for vanishing initialization is in Corollary 4.6.

We also conducted two other numerical experiments whose results are presented in Appendix I. One
used 3-dimensional input and scalar output, and the other used 2-dimensional input and output. The
former shows similar behavior as the experiment in this section, the latter reveals escape neurons
that have non-zero output weights, which exist when |J | > 1, as predicted by Definition 4.1.

4.2 SADDLE ESCAPE IN THE SADDLE-TO-SADDLE DYNAMICS

Networks trained from vanishing initialization exhibit saddle-to-saddle dynamics (Boursier et al.,
2022; Jacot et al., 2022; Pesme and Flammarion, 2024), meaning the loss experiences intermittent
decreases punctuated by long plateaus. Multiple previous works have studied this dynamics (Maen-
nel et al., 2018; Boursier et al., 2022; Chistikov et al., 2024; Boursier and Flammarion, 2024). How-
ever, previous discussions regarding saddle escape were usually premised on strong assumptions,
such as orthogonality (Boursier et al., 2022) or correlatedness of training inputs (Chistikov et al.,
2024). Without such assumptions, previous works could not go beyond the escape from the origin,
which is trivially a saddle point (Maennel et al., 2018; Boursier and Flammarion, 2024). These
simplifications/narrowing imposed a specific form on all the saddle points being discussed. Such a
form was summarized by Kumar and Haupt (2024), and they further noted that there could be other
types of saddle points that remained undiscussed (in their Section 5.2). However, we show that no
other types of saddle points need to be considered in such dynamics and demonstrate qualitatively
how saddle points are escaped from. Aligned with previous works, the discussion in this section is
for scalar-output ReLU networks.

We can see that, Theorem 4.2 and Fact 4.5 only allow gradient flow from vanishing initialization
to approach saddle points that have hidden neurons whose parameters are all zero,7 which coincide
exactly with saddle points previously studied by Kumar and Haupt (2024); Maennel et al. (2018);
Boursier et al. (2022); Chistikov et al. (2024); Boursier and Flammarion (2024), according to Section
5.2 of Kumar and Haupt (2024). To avoid ambiguity, we present our result formally:
Corollary 4.6. Following the setup and notation introduced in Section 2, let P(t) =
(wi(t), hj0i(t))i∈I ∈ R

D be the parameter trajectory of a one-hidden-layer scalar-output ReLU
network trained with the empirical squared loss L, where t ≥ 0 denotes time. Suppose the trajec-
tory satisfies dP

dt = − ∂L
∂P , in which we specify ∂ ReLU(x)

∂x = 1{x>0} in the chain rule.8 Let A ∈ RD

be an arbitrary vector. We initialize the network with P(0) := σA. Under these conditions, if
limσ↘0+

(
inft ∥P(t)−P∥

)
= 0, where P = (wi, hj0i)i∈I is a non-minimum stationary point, we

must have wi = 0 and hj0i = 0 for some i ∈ I .

We next discuss how the gradient flow escapes from the saddle points. In the vicinity of the saddle
points, the network has hidden neurons with small parameters, which can either be dead neurons or
small living neurons. It is easy to see that locally perturbing dead neurons does not change the loss
(Fukumizu et al., 2019) and they cannot move since they have zero gradients. On the other hand, a
direct consequence of Theorem 4.2 (proved in Appendix F.1 and explained in Remark F.1) states:
Fact 4.7 (A partial restatement of Theorem 4.2). A strictly loss-decreasing path from a stationary
point of the network must involve parameter variations of escape neurons.

As a result, saddle escape must change the parameters of small living neurons, and such parameter
change of small living neurons exploits the loss-decreasing path offered by the escape neurons in
the nearby saddle point (Fact 4.7). Moreover, when the training stalls near a saddle point, the small
living neurons are always attracted to where their parameter amplitudes will be increased (Maennel
et al., 2018). Combining all these, we know that escaping from saddles always entails amplitude
increase of small living neurons.

7It is worth noting that there could be saddle points with hj0i = 0 but wi ̸= 0 on the entire landscape.
However, Fact 4.5 states that such saddle points are not visited if we start from vanishing initialization.

8This subgradient-style differential cannot help us characterize the stationarity of non-convex functions
(as discussed in Appendix C.2.2), but suffices to identify a unique gradient flow without involving additional
concepts. Notably, this is also how PyTorch implements the derivative of ReLU.
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Other forms of saddle escape cannot take place. This contrasted with other different but similar se-
tups. For example, in Fukumizu et al. (2019); Safran et al. (2020); Pesme and Flammarion (2024),9
the existence of several input weights with the same direction suffices to make a strict saddle, mean-
ing saddle escape can take place without involving small living neurons.

In the rest of this section, we will combine our results with previous works to give a full understand-
ing of the entire saddle-to-saddle dynamics, which is summarized in Figure 4.

The initial phase of training will have the wi’s that are not associated with dead neurons to group at
finitely many attracting directions when all the parameters have negligible amplitudes. Such a phase
is termed the alignment phase (Maennel et al., 2018; Luo et al., 2021; Boursier and Flammarion,
2024; Kumar and Haupt, 2024) and can be observed in Figure 3b. The neurons whose input weights
are grouped closely will be called an effective neuron in the following, as they correspond to one
kink position in the learned function.

Figure 4: A flow chart for the training pro-
cess. We preclude other schemes of saddle
escape, for example, by splitting aligned neu-
rons, which is possible in Fukumizu et al.
(2019); Safran et al. (2020); Pesme and
Flammarion (2024). Also, note that be-
sides the indispensable amplitude increase of
small living neurons, saddle escape might
also be accompanied by amplitude and ori-
entation changes of other neurons.

After the initial alignment phase, the grouped neu-
rons will have their amplitude increased from near-
zero values. Notice that these neurons are small liv-
ing neurons before the amplitude increase. Those
that contribute to one effective neuron would have
their amplitudes increased together (Maennel et al.,
2018; Boursier et al., 2022; Chistikov et al., 2024),10

which exploits the loss decreasing path offered by
escape neurons in the saddle point nearby (Fact 4.7).
To describe such a process, Boursier et al. (2022)
and Chistikov et al. (2024) rigorously characterized
the gradient flow for simplified cases, revealing tra-
jectories consistent with Figure 4. The training pro-
cess terminates in a local minimum after all the small
living neurons are depleted.

Moving forward, it will be meaningful to investigate
the exact dynamics between saddles in the general
setup. Boursier et al. (2022); Chistikov et al. (2024)
already tackled this for the training process with or-
thogonal and correlated training inputs. These sim-
plifications averted the simultaneous norm change
of different groups of neurons during saddle escape,
which often takes place in general. An example is the training process after epoch 152k in Figure 3.

Notably, as the loss landscape is continuous, the insight we draw for vanishing initialization might
be extrapolated to small but non-vanishing initialization. Concretely, in the latter case, we can still
observe that the accelerations of loss decrease also roughly coincide with the amplitude increase of
small living neurons. This means that the acceleration of loss decrease in this regime also exploits
the loss-decreasing path given by the escape neurons in the nearby saddle points, similar to the
vanishing initialization regime. We elucidate such an observation in Appendix J.

4.3 HOW NETWORK EMBEDDING RESHAPES STATIONARY POINTS

Network embedding is the process of instantiating a network using a wider network without chang-
ing the network function, or at least, the output of the network evaluated at all the training input xk’s.
In this section, we demonstrate how network embedding reshapes stationary points, which offers a
perspective on the merit of over-parameterization. In particular, we answer the following question:
Does network embedding preserve stationarity or local minimality? Such questions were partially
addressed by (Fukumizu et al., 2019) for ReLU networks. With a more complete characterization of
stationary points and local minima in Sections 3.2 and 4.1, we are able to extend their results.

9See Appendix P for the setting of Fukumizu et al. (2019). Safran et al. (2020) studied a teacher-student
setup with true loss. Pesme and Flammarion (2024) studied diagonal linear networks.

10The amplitude increase of one group of small living neurons creates one kink in the learned function
(Figure 16).
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Following the naming in (Fukumizu et al., 2019), there are three network embedding strategies for
ReLU(-like) networks: unit replication, inactive units, and inactive propagation. We will showcase
the usability of our theory for unit replication, which is the most technically involved, in the main
text. The proof for unit replication and the full discussion for the other two embedding strategies are
presented in Appendices M to O.

Figure 5: unit replication

The process of unit replication is illustrated in Fig-
ure 5: given a set of parameters P, replace the hid-
den neuron i0 ∈ I associated with wi0 and hji0 ,
with a new set of hidden neurons {il0; l ∈ L} asso-
ciated with weights wil0

= βlwi0 and hjil0
= γlhji0

for all j ∈ J . To preserve the network function, we
specify: βl > 0,

∑
l∈L

βlγl = 1, for all l ∈ L. We can

prove the following for unit replication.

Proposition 4.8. In our setting, unit replication performed on neuron i0 preserves the stationarity of
a stationary point if and only if at least one of the following conditions is satisfied: (1) All tangential
derivatives of wi0 are 0. (2) γl ≥ 0, ∀ l ∈ L.
Moreover, unit replication performed on neuron i0 preserves the type-1 local minimality of a type-1
local minimum if and only if at least one of the following holds: (1) All tangential derivatives of wi0
are 0. (2) γl > 0, ∀ l ∈ L.

Remark 4.9. (Fukumizu et al., 2019) was not able to discuss stationarity preservation for ReLU net-
works as the non-differentiability hindered the invocation of stationarity conditions for differentiable
functions. This problem has been hurdled completely in the current paper. Moreover, (Fukumizu
et al., 2019) was only able to discuss local minimality preservation for a highly restricted type of
unit replication. Our proposition above nevertheless holds for all unit replication types in general,
though the scope is limited to type-1 local minimality preservation.
Remark 4.10. At first sight, the statement about the preservation of type-1 local minima in the above
lemma contradicts Theorem 10 of (Fukumizu et al., 2019), which suggests that embedding a local
minimum should result in a strict saddle. Nonetheless, the assumptions of that theorem does not
apply to our setting. For more details, please refer to Appendix P.

It is noteworthy that unit replication always preserves stationarity for differentiable networks (Zhang
et al., 2021), which no longer holds for the non-differentiable ReLU-like networks.

A closing remark. Our discussion here extends multiple previous results regarding network em-
bedding that did not consider the non-differentiable cases. Particularly, we refine the picture of
the embedding principle of neural networks (Zhang et al., 2021), promote a better understanding
of overparameterization (Şimşek et al., 2021; Fukumizu et al., 2019; Zhang et al., 2021), and pro-
vide theoretical guarantee for training schemes that involves the operations of network embedding
(Wu et al., 2019; Wang et al., 2024). A more detailed discussion on these topics are deferred to
Appendix Q.

5 SUMMARY AND DISCUSSION

In this paper, we identify, classify, and characterize the stationary points for one-hidden-layer neural
networks with ReLU-like activation functions. We also study the saddle escape process in the train-
ing dynamics with vanishing initialization and the effect of network embedding on stationary points.
These can lead to several future directions. First, our approach of studying ODDs and aligning coor-
dinate axes for Taylor expansion can be extrapolated to other architectures, including convolutional
networks, residue networks, transformers, etc. Second, with a better geometric understanding of the
potentially non-differentiable stationary points (such as Corollary 4.4), we are at a better place to
characterize the performance of gradient-based optimization algorithms on such landscapes, which
are neither smooth nor convex. Third, with the stationary points identified, we can study the basins
of attractions of gradient flow. Lastly, the findings of this paper might help formalize the low-rank
bias formed in generic saddle-to-saddle dynamics.
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El Mehdi Achour, Franccois Malgouyres, and Sébastien Gerchinovitz. Global minimizers, strict and
non-strict saddle points, and implicit regularization for deep linear neural networks. 2021.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently. CoRR, abs/1703.00887, 2017. URL http://arxiv.org/abs/
1703.00887.
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A PROOF OF LEMMA 3.4

A.1 DERIVATION OF EQUATION (4)

We compute

∂ŷkj′(P)

∂hji
=

∂

∂hji

∑
i′∈I

hj′i′ρ(wi′ · xk) = 1{j=j′}ρ(wi · xk).

Thus, we have

∂

∂hji
L(P) =

∂

∂hji

(1
2

∑
j′∈J

∑
k∈K

(ŷkj′ − ykj′)
2 )

=
∑
j′∈J

∑
k∈K

ekj′
∂ŷkj′

∂hji
=
∑
k∈K

ekjρ(wi · xk) = wi · dji,

A.2 DERIVATION OF EQUATION (5)

For all x, y ∈ R, define

ρ̃y(x) :=


α+x if y > 0,

ρ(x) if y = 0,

α−x if y < 0.

The map ρ̃·(·) will be convenient to compute the following derivatives.

Let i be such that ∥wi∥ ̸= 0, let ui = wi

∥wi∥ . Recall that the derivatives ∂
∂ri

, ∂
∂si

are defined
below Definition 3.1. Below, we write wi = riui and take the derivative at ri = ∥wi∥. Note that
ρ(riwi · xk) = riρ(wi · xk), that is, along the direction ui, the activation ρ is linear. We thus have
that

∂ŷkj(P)

∂ri
= hji

∂ρ(riui · xk)

∂ri
= hjiρ(ui · xk).

We then get

∂L(P)

∂ri
=
∑
j∈J

∑
k∈K

ekj
∂ŷkj
∂ri

=
∑
j∈J

∑
k∈K

ekjhjiρ(ui · xk)

=
∑
j∈J

∑
k∈K

ekjhjiui · ρ̃ui·xk
(xk)

=
∑
j∈J

hjiui ·

 ∑
k:

wi·xk>0

α+ekjxk +
∑
k:

wi·xk<0

α−ekjxk
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=
∑
j∈J

hjiui · dji,

where dji was defined in Lemma 3.4.

A.3 DERIVATION OF EQUATION (6)

Recall that when taking the derivative ∂
∂si

, a specific direction vi is chosen. One can check that

∂ρ(wi · xk)

∂si
= 1{wi·xk ̸=0}ρ̃wi·xk

(vi · xk) + 1{wi·xk=0}ρ(vi · xk)

= ρ̃wi·xk
(vi · xk)

This gives us
∂ŷkj(P)

∂si
= hji

∂ρ(wi · xk)

∂si
= hjiρ̃wi·xk

(vi · xk)

We thus have that
∂L(P)

∂si
=
∑
j∈J

∑
k∈K

ekj
∂ŷkj(P)

∂si
=
∑
j∈J

∑
k∈K

ekj ρ̃wi·xk
(vi · xk)

=
∑
j∈J

∑
k∈K

ekjvi ·
(
1{wi·xk ̸=0}ρ̃wi·xk

(xk) + 1{wi·xk=0}ρ̃vi·xk
(xk)

)
=

∑
k:

(wi+∆sivi)·xk>0

α+ekjxk +
∑
k:

(wi+∆sivi)·xk<0

α−ekjxk

=
∑
j∈J

hjivi · dvi
ji ,

where ∆si > 0 is sufficiently small and where dvi
ji was defined in Lemma 3.4.

B EXTENDING LEMMA LEMMA 3.4 TO NETWORKS WITH MULTIPLE
HIDDEN LAYERS

In this section, we demonstrate how we can compute the radial and tangential derivatives with re-
spect to weights that are in ReLU-like networks with multiple hidden layers.

The notation of this section inherits from the one-hidden-layer case for the most part. Nonetheless,
we augment the notation for the hidden layer weights with an index to number the layers.

The training inputs are xk’s, and we also denote them by x
(0)
k ∈ R

|I0| (for the sake of notation
simplicity). The training targets are yk ∈ R

|J|. The input weight matrix in hidden layer l ∈
{1, · · · , L} is W (l) ∈ R

|Il−1|×|Il|. Il is the set of hidden neurons in layer l. The hidden neuron
weights corresponding to one row of W (l) is w

(l)
i , where i ∈ Il. The output weight matrix is

H ∈ R|J|×|IL|, each row of which is hj with j ∈ J .

The neural network is defined recursively with the following:

η
(l)
k = W (l)x

(l−1)
k , x

(l)
k = ρ(η

(l)
k ), ∀ l ∈ {1, 2, · · · , L}; ŷk = Hx

(L)
k .

B.1 OUTPUT WEIGHT DERIVATIVES

We first compute the network outputs’ derivatives with respect to the output weights.

∂ŷkj′

∂hj
= 1j=j′x

(L)
k

Then we have:
∂L
∂hj

=
∑
k∈K

∑
j′∈J

ekj′
∂ykj′

∂hj
=
∑
k∈K

ekjx
(L)
k
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B.2 HIDDEN NEURON WEIGHT DERIVATIVES

For a specific layer l0 ∈ {1, 2, · · · , L}, and a specific direction of ∆w
(l0)
i = ∆r

(l0)
i u

(l0)
i +

∆s
(l0)
i v

(l0)
i , where u

(l0)
i and v

(l0)
i are the radial direction and a tangential direction of w(l0)

i , and
i ∈ Il0 , we compute the radial derivative and tangential derivative.

RADIAL DERIVATIVE

∂ŷkj

∂r
(l0)
i

=
∂ŷkj

∂x
(l0)
ki

∂x
(l0)
ki

∂r
(l0)
i

=
∂ŷkj

∂x
(l0)
ki

ρ(u
(l0)
i · x(l0−1)

k )

Thus:
∂L

∂r
(l0)
i

=
∑
j∈J

∑
k∈K

ekj
∂ŷkj

∂r
(l0)
i

=
∑
j∈J

∑
k∈K

ekj
∂ŷkj

∂x
(l0)
ki

ρ(u
(l0)
i · x(l0−1)

k ),

which is reminiscent of the one-hidden-layer case.

TANGENTIAL DERIVATIVE

Again, we start by computing the output’s derivative.

∂ŷkj

∂s
(l0)
i

=
∂ŷkj

∂x
(l0)
ki

∂x
(l0)
ki

∂s
(l0)
i

=
∂ŷkj

∂x
(l0)
ki

ρ̃
w

(l0)
i ·x(l0−1)

k

(v
(l0)
i · x(l0−1)

k )

Thus:
∂L

∂s
(l0)
i

=
∑
j∈J

∑
k∈K

ekj
∂ŷkj

∂s
(l0)
i

=
∑
j∈J

∑
k∈K

ekj
∂ŷkj

∂x
(l0)
ki

ρ̃
w

(l0)
i ·x(l0−1)

k

(v
(l0)
i · x(l0−1)

k )

=
∑
j∈J

∑
k:

(w
(l0)
i +∆sivi)·xk>0

α+ekj
∂ŷkj

∂x
(l0)
ki

v
(l0)
i · x(l0−1)

k

+
∑
j∈J

∑
k:

(w
(l0)
i +∆sivi)·xk<0

α−ekj
∂ŷkj

∂x
(l0)
ki

v
(l0)
i · x(l0−1)

k ,

where ∆si > 0 is arbitrarily small. Again, this is reminiscent of the one-hidden-layer case.

COMPUTING
∂ŷkj

∂x
(l0)
ki

∂ŷkj

∂x
(l0)
ki

shows up in the formula or radial directional derivative and tangential directional derivative.

In this part, we compute the vector containing this value, ∂ŷkj

∂x
(l0)
k

. This derivative can be derived from

the routine of back-propagation, adapted to accommodate the non-differentiability of the activation
function.

We first compute:

∂ŷk

∂x
(L)
k

= H⊺
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Then, for l ∈ {l0, l0 + 1, · · · , L− 1}, we have:

∂ŷk

∂x
(l)
k

=
∂η

(l+1)
k

∂x
(l)
k

∂x
(l+1)
k

∂η
(l+1)
k

∂ŷk

∂x
(l+1)
k

=
(
W

(l)
l

)⊺
diag(α

(l)
k )

∂ŷk

∂x
(l+1)
k

,

where the vector of α(l)
k may be componentwise defined as:

α
(l)
ki =


α+ if η(l)ki +∆η

(l)
ki (∆w

(l0)
i ) > 0

0 if η(l)ki +∆η
(l)
ki (∆w

(l0)
i ) = 0

α− if η(l)ki +∆η
(l)
ki (∆w

(l0)
i ) < 0

Here, ∆η
(l)
ki (∆w

(l0)
i ) is the change of η(l)ki when an arbitrarily small perturbation of ∆w

(l0)
i is ap-

plied to w
(l0)
i . When computing radial derivative, such perturbation can be taken as ∆w

(l0)
i =

∆r
(l0)
i u

(l0)
i . When computing the tangential derivative, such perturbation can be taken as ∆w

(l0)
i =

∆s
(l0)
i v

(l0)
i .

C DISCUSSIONS ON STATIONARITY NOTIONS

C.1 DIRECTIONAL STATIONARITY CAPTURES THE STAGNATING BEHAVIOR OF GD

In this section, we show that the absence of first-order negative slopes at one point on a scalar
function prevents GD from stagnating with high probability.

Proposition C.1. Consider a random function f(x) =
∑N

n=1 αnx
n
1{x<0} +

∑N
n=1 βnx

n
1{x≥0},

where x ∈ R, N ∈ N, and the random coefficients {α,β} ≜ {α1, · · ·αN , β1, · · · , βN} are drawn
independently from a distribution that is absolutely continuous with respect to Lebesgue measure.
Denote left-hand and right-hand derivatives by f

′

−(·) and f
′

+(·). We study the GD process xt+1 =

xt − ηf
′

+(xt), where η > 0 is the step size. Suppose that f
′

+(0) < 0 or f
′

−(0) < 0. Then,
with probability 1, the following holds. There exists an interval containing the origin χ(α,β) ≜
[a(α,β), b(α,β)], where a(α,β) < 0 and b(α,β) > 0, and the time for escaping from this interval
can be upper bounded by ∞ > t̃(η,α,β) > 0, which means if xt ∈ χ, then there exist 0 < t′ ≤ t̃
such that xt+t′ /∈ χ.
Remark C.2. The above proposition studies a random function to simulate that the loss landscape
of neuron networks is usually also (a realization) of a random function, with randomness coming
from the dataset. The above proposition shows that if the left-hand or right-hand derivative at the
origin is negative, then the escape time from the origin t̃ only concerns the realization of the function
(determined by α,β) and the learning rate η, without involving how close GD gets to the origin. By
contrast, saddle points, no matter whether they are differentiable or not, trap GD or gradient flow for
a longer time if the trajectory of GD or gradient flow reaches closer to them (Maennel et al., 2018;
Boursier et al., 2022; Chistikov et al., 2024). More concretely, if the origin x = 0 is a saddle point,
then the upper bound for the escape time should be t̃(η,α,β, d̂), where d̂ ≜ inft′≥0 |xt+t′ | is the
shortest distance from the trajectory following xt to the origin 0, and it must be part of the upper
bound t̃. For example, suppose x = 0 is a conventional smooth saddle point, then, if d̂ ↘ 0, we
have t̃ ↗ ∞; and if d̂ = 0, we have t̃ = ∞ (GD is permanently stuck in this case).

Proof. We prove the proposition in different situations.

Situation 1: f
′

+(0), f
′

−(0) < 0.
Since f

′

+(0) < 0, based on the right continuity of the derivative, we have that there exists
b1(α,β) > 0 such that f ′

+(x) < 0, if x ∈ [0, b1]. Define m+
1 := supx∈[0,b1] f

′
+(x) < 0. Then, we
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have, if xt ∈ [0, b1] and t′1 satisfies that xt+t′1−1 ∈ [0, b1], xt+t′1
− xt ≥ −ηm+

1 t
′
1 > 0. As a result,

there exists a time step that GD would step beyond b1. Namely, there exists a step count t′1 such that
xt+t′1

> b1, and t′1 must be upper-bounded by: t′1 ≤ ⌈ b1(α,β)

−ηm+
1

⌉+ 1 := t̂′1.

Similarly, since f ′
−(0) < 0, we can have an interval [a1(α,β), 0) with a1(α,β) < 0 such that

f ′
−(x) < 0, if x ∈ [a1, 0]. Define m−

1 := supx∈[a1,0) f
′
−(x) < 0. We have, if xt ∈ [a1, 0) and t′′1

satisfies that xt+t′′1 −1 ∈ [a1, 0), xt+t′′1
− xt ≤ ηm−

1 t
′′
1 < 0, where we applied f ′

−(x) = −f ′
+(x),

if x∈[a1, 0), to the GD update rule. As a result, there exists a time step that GD would step beyond
a1. Namely, there exists a step count t′′1 such that xt+t′′1

< a1, and t′′1 must be upper-bounded by:
t′′1 ≤ ⌈a1(α,β)

−ηm−
1

⌉ := t̂′′1 .

Up till now, we have proved that, for situation 1, there exists an interval χ(α,β) =
[a1(α,β), b1(α,β)] such that, if xt ∈ χ, there exits t̃1(α,β, η) := max(t′1, t

′′
1) such that xt+t′ /∈ χ

for some 0 < t′ ≤ t̃1(α,β, η). Notice that this case is a Clarke stationary point (Wang et al.,
2022; Yun et al., 2019). Nonetheless, we prove here that such a point does not slow down GD.

Situation 2: f
′

+(0) < 0, f
′

−(0) > 0.
Since f

′

+(0) < 0, similar to situation 1, we can have the following. There exists an interval
[0, b2(α,β)] where b2(α,β) > 0 such that, if xt ∈ [0, b2(α,β)], then there exists a step count
t′2 such that xt+t′2

> b2, and t′2 must be upper-bounded by: t′2 ≤ ⌈ b2(α,β)

−ηm+
2

⌉+ 1 := t̂′2, where m+
2 is

defined with m+
2 := supx∈[0,b2] f

′
+(x) < 0.

Moreover, since f
′

−(0) > 0, we can have an interval [a2(α,β), 0) with a2(α,β) > 0 and
f ′
−(x) < 0, if x ∈ [a2, 0]. Define m−

2 := infx∈[a2,0) f
′
−(x) > 0. We have, if xt ∈ [a2, 0) and

t′′2 satisfies that xt+t′′2 −1 ∈ [a2, 0), xt+t′′2
− xt ≥ ηm−

2 t
′′
2 > 0, where we applied f ′

−(x) = −f ′
+(x),

if x ∈ [a2, 0), to the GD update rule. As a result, there exists a time step that GD would step beyond
0. Namely, there exists a step count t′′2 such that xt+t′′2

> 0, and t′′2 must be upper-bounded by:
t′′2 ≤ ⌈a2(α,β)

ηm−
2

⌉ := t̂′′2 .

Up till now, we have proved that, for situation 2, there exists an interval χ(α,β) =
[a2(α,β), b2(α,β)] such that, if xt ∈ χ, there exits t̃2(α,β, η) := t̂′1 + t̂′′1 such that xt+t′ /∈ χ for
some 0 < t′ ≤ t̃1(α,β, η).

Situation 3 : f
′

+(0) > 0, f
′

−(0) < 0. We can prove the proposition holds for this situation similar
to what we have done for situation 2.

Other situations account for measure 0 and do not concern the validity of the proposition.

Remark C.3. Note that there could indeed be cases with probability 0 in which directional stationar-
ity fails to capture the GD-stalling behavior of a point. For example, if f(x) = x2

1{x≤0}−x1{x>0},
and we start GD from x0 < 0 with a learning rate η < 1

4 , then the GD will be stuck at x = 0. Never-
theless, this point is not a directional stationary point. There might exist analogous situations for our
setup where directional stationarity fails to capture GD-stalling points. However, Such situations
have probability 0.

C.2 EXAMPLES OF NON-DIFFERENTIABLE STATIONARY POINTS

Here, we give two examples of non-differentiable (directional) stationary points under GD.

C.2.1 A NON-DIFFERENTIABLE LOCAL MINIMUM

In Figure 6, we show a non-differentiable local minimum of the function f(x, y) = |x|+ |y|, which
is the origin and denoted by the red x. It is not hard to see that GD performed on the function will
approach this point and stop there (or bounce in its vicinity, which can be taken as “GD effectively
comes to a halt”, as phrased in Section 3.2).
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Figure 6: A non-differentiable local minimum

C.2.2 A NON-DIFFERENTIABLE SADDLE POINT

In Figure 7a, we illustrate a non-differentiable saddle point and GD’s behavior near it. The function
we investigate in this example is the following:

f(x, y) =


y2 + x if x > 0 and y > 0

−y2 + x if x > 0 and y ≤ 0

y2 − x if x ≤ 0 and y > 0

−y2 − x if x ≤ 0 and y ≤ 0

, (7)

which is showed in Figure 7a. The origin is a non-differentiable saddle point. If we perform GD
starting from (x, y) = (1e−6, 1), the trajectory of GD will be as shown in Figure 7b, and the change
of function value during the GD process will be as shown in Figure 7c. The behavior of GD is
much like that near a differentiable saddle. However, one can show that, in this case, given a step
size smaller than 1

4 , the non-differentiable saddle point is non-escapable by GD, even though it has
second-order decreasing directions. This is in contrast with strict differentiable saddles, which are
almost always escapable by GD (Lee et al., 2017; 2016; Jin et al., 2017; Daneshmand et al., 2018).
Remark C.4. Note, that the subgradient cannot be defined at the saddle point discussed here. We
remind the reader that the subgradient is defined as:
Definition C.5. Let f : Rn → R be a convex function. The subgradient set of f at x0 is defined as:

∂f(x0) =
{
g ∈ Rn : f(x) ≥ f(x0) + gT (x− x0), ∀x ∈ Rn

}
As a matter of fact, the definition of subgradient generally fails at saddle points due to non-convexity.
One can verify that the subgradient cannot be defined for the origin of the loss landscape of our setup
in general. Since the ODDs toward all the directions are zero at the origin (by Lemma 3.4), if the
subgradient g can be defined, it must mean that g = 0. Taking it to Definition C.5, we find that, if
the subgradient at the origin were g = 0, the origin would be a local minimum. However, the origin
normally have loss-decreasing path around it.

C.3 CONNECTION BETWEEN DIRECTIONAL STATIONARITY AND CLARKE STATIONARITY
(WANG ET AL., 2022; DAVIS ET AL., 2020B)

We show that directional stationary points must also be Clarke stationary points. This insight was
also given by Li et al. (2020). We prove it here for convenience, after which we show that directional
stationary points are Clarke stationary points with no negative ODD around it.
Proposition C.6. Given a function f : RN → R whose ODD

f ′(x,v) := lim
h↘0+

f(x+ hv)− f(x)

h
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(a) The saddle point

(b) A GD trajectory

(c) Function value during GD

Figure 7: A non-differentiable saddle point

can be defined for all x ∈ RN and for all v ∈ RN . If x satisfies that f(x,v) ≥ 0, for any v ∈ RN ,
so that it is a directional stationary point, then it must also be a Clarke stationary point (Davis et al.,
2020b; Wang et al., 2022).

Proof. Clarke stationary points are defined to be where

0 ∈ ∂◦f(x) :=
{
ξ ∈ RN : ⟨ξ,v⟩ ≤ f◦(x,v),∀v ∈ RN

}
, (8)

in which f◦(x,v) is the Clarke generalized directional derivative:

f◦(x,v) = lim sup
y→x,h↘0+

f(y + hv)− f(y)

h
. (9)

Since Equation (9) is equivalent to taking a supremum over all the ODDs computed for neighboring
point y, we must have

f◦(x,v) ≥ f ′(x,v) ≥ 0, ∀v ∈ RN , (10)

in which the second inequality comes from the condition in Proposition C.6. Notice, Equation (10)
immediately make Equation (8) hold, which proves the proposition.

Fact C.7. Directional stationary points are Clarke stationary points that do not have negative ODDs
toward any direction around it.

Proof. Following the setup in Proposition C.6. Define O := {x|f ′(x,v) ≥ 0,∀v ∈ R
N}, C :=

{x|0 ∈ f◦(x,v)}, L := {x|f ′(x,v) < 0, for some v ∈ RN}. To prove the above fact, we need
to prove O = C \ L. By definition O = L. Thus, C \ L = C

⋂
L ⊆ O. Also, we have that

O ⊆ C (which is proved in Proposition C.6) and O = L, thus we have O ⊆ O \ L. As a result
O = C \ L.

C.4 DISCUSSION ON THE STATIONARITY PROPOSED BY CHERIDITO ET AL. (2022)

Cheridito et al. (2022) defined stationary points to be where the right-hand derivatives along the
canonical axes are zero. Please refer to their Equation (2.3) and Definition 2.1 for details. Such a
stationarity notion might not suit our purpose as the ODDs on canonical axes might not be informa-
tive enough to characterize the local structure of a function in all directions. We will demonstrate
this with a toy example.
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Consider the origin of the function f(x, y, z) = |x−y|−|x+y|+z2. It has zero right-hand derivative
on all the coordinate axes, and thus qualifies as a stationary point by the criterion proposed by
Cheridito et al. (2022). However, there exist negative slopes around it, for example, in the direction
of (1, 1, 0). For such a function, the stationarity can be verified by:

(1) checking whether the ODDs toward all directions in R3 are non-negative, which is analogous to
Definition 3.5; or

(2) checking whether the directional derivative along the z axis, where the function is continuously
differentiable, is zero; then checking whether the ODDs in all the directions on the (x, y)-plane are
nonnegative; which is analogous to Definition 3.6.

D RARITY OF LOCAL MAXIMA

In theory, local maxima can exist in our setting Zhou and Liang (2018). Nonetheless, the theorem
below suggests that they are extremely rare.
Theorem D.1. If there exists some input weight vector wi in P ∈ R

D satisfying ρ (wi · xk) ̸= 0
for some input xk, then, P cannot be a local maximum.

Proof. We need to show that when the parameters P satisfies the sufficient condition in Theo-
rem D.1, there exist perturbations leading to strict loss increase. Let us focus on one of the hidden
neurons (with the subscript of i) that has ρ (wi · xk) ̸= 0 for some k ∈ K. Let us also specify an
output neuron indexed with j. We will construct a strictly loss-increasing path only by modifying
hji.

Here we could simply use the derivatives that we computed before and show it’s positive:

∂L(P )

∂hji
=
∑
k∈K

ekjρ(wi · xk),

∂2L(P )

∂h2
ji

=
∑
k∈K

ρ(wi · xk)
2.

Hence, we see that either the first derivative is non-zero, in which case there is a loss-increasing
direction since the loss is continuously differentiable in hji, or the first derivative is null and the
second derivative is strictly positive, in which case we also get a loss-increasing path.

Remark D.2. Liu (2021) proved the absence of differentiable local maxima for ∥J∥ = 1, and Botev
et al. (2017) precluded the existence of differentiable strict local maxima for networks with piece-
wise linear activation functions. Here, we provide a more generic conclusion, that if P is a local
maximum, no matter whether differentiable or not, then all input weight vectors are not “activating”
any of the inputs in the dataset, meaning ŷk(P) = 0 for all k ∈ K.

E INTUITION OF DEFINITION 4.1 AND THEOREM 4.2

When the output dimension is one, we can understand why the escape neurons, as defined, can lead
to loss-decreasing path. Let us denote the only output neuron with the subscript of j0. For the
escape neuron, we have that for some tangential direction vi fixed, ∂L(P)

∂si
= hj0id

vi
j0i

· vi = 0 and
dvi
j0i

· vi ̸= 0. This must mean that hj0i = 0. If we slightly perturb hj0i such that it has a different

sign than dvi
j0i

· vi, then the tangential derivative ∂L(P)
∂si

after the perturbation is negative, indicating
a loss-decreasing direction.

F PROOF OF THEOREM 4.2

For brevity, we use (al)l∈L to denote a vector that is composed by stacking together the al’s with
l ∈ L.
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F.1 PROOF OF THE SUFFICIENCY

We start by introducing the ODDs of the loss. Fix a unit vector ∆ ∈ R
D in the parameter space,

along which we investigate the derivative. By doing so, we also fix the vectors ui,vi for all i ∈ I ,
since the decomposition ∆wi

= ∆riui +∆sivi is unique, i.e. there exists a unique unit tangential
vector vi orthogonal with ui = wi

∥wi∥ and unique ri, si ≥ 0. By convention, if wi = 0, we set
ui = 0 and ri = 0. See Figure 8 for a visualization of ui, vi.

The ODD of the loss in direction ∆ is then defined by

∂∆L(P) := lim
ϵ→0+

L(P+ ϵ∆)− L(P)

ϵ
. (11)

Note that the limit always exists, since, as we saw in previous sections, the partial derivatives
L(P)
∂si

, L(P)
∂ri

are always well defined. However, we stress that because of the non-differentiability,
we can have that ∂∆L(P) ̸= −∂−∆L(P).

Consider a stationary point P of L with no escape neuron. Also, consider a direction ∆ such that
∂∆L(P) = 0. Directions with ∂∆L(P) > 0 (which is possible due to the positive tangential slope
at input weights) are guaranteed to increase the loss locally. Our strategy is to show that the ODDs
of higher orders are non-negative. For example, at order 2, this means that

∂2
∆L(P) := lim

ϵ→0+

∂∆L(P+ ϵ∆)− ∂∆L(P)

ϵ
≥ 0. (12)

As a side note, the loss of ReLU-like networks can be understood as numerous patches of linear
network loss pieced together. Thus, moving along a fixed direction ∆ from a given point locally
exploits the loss of a linear network, which is a polynomial with respect to all the parameters. In
other words, the loss landscape is piecewise differentiable (C∞). As a result, ODDs of any orders
along ∆ (whose computations are similar to Equations (11) and (12)) are always definable.

Then, we need to investigate the directions ∆ such that ∂2
∆L(P) = 0, since the loss could increase,

decrease or remain constant in those directions with higher orders. We will see that at order 3, these
directions also yield ∂3

∆L(P) = 0, and at order 4, necessarily, ∂4
∆L(P) ≥ 0, and since all higher

order derivatives are null11, this yields the claim.

These will be achieved by investigating the Taylor expansion of the loss in the direction ∆, which
reads for small ϵ > 0 as

L(P+ ϵ∆) = L(P) + ϵ∂∆L(P) +
1

2!
ϵ2∂2

∆L(P) +
1

3!
ϵ3∂3

∆L(P) +
1

4!
ϵ4∂4

∆L(P).

F.1.1 SECOND-ORDER TERMS

We organize the Hessian matrix at P correspondingly as:

HL =



∂2L(P)

∂hj1i1∂hj2i2

∂2L(P)

∂ri1∂hj2i2

∂2L(P)

∂si1∂hj2i2

∂2L(P)

∂hj1i1∂ri2

∂2L(P)

∂ri1∂ri2

∂2L(P)

∂si1∂ri2

∂2L(P)

∂hj1i1∂si2

∂2L(P)

∂ri1∂si2

∂2L(P)

∂si1∂si2



|Ih| columns︷ ︸︸ ︷ |Ir| columns︷ ︸︸ ︷ |Is| columns︷ ︸︸ ︷ }
|Ih| rows

}
|Ir| rows

}
|Is| rows

(13)

Computing the second order partial derivatives. Recall the first order partial derivatives
∂L(P)

∂hji
=
∑
k∈K

ekjρ(wi · xk),

11All ODDs of the fourth order are constants, as shown in Appendix F.1.3.
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Figure 8: Breakdown of perturbation applied on input weights. Left: Perturbation on wi with
∥wi∥ > 0 can be decomposed into the radial direction ui and the tangential direction vi. Right:
Perturbation applied on a zero input weight can only be decomposed into one direction vi.

∂L(P)

ri
=
∑
j∈J

hji

∑
k∈K

ekjρ(ui · xk),

∂L(P)

∂si
=
∑
j∈J

hji

∑
k∈K

ekj ρ̃wi·xk
(vi · xk).

We now compute the second-order derivatives of the loss. Recall that these derivatives are defined
for fixed radial and tangential directions, that is, the vectors ui,vi, i ∈ I are fixed. We have

∂2L(P)

∂hj1i1∂hj2i2

=
∑
k∈K

∂ekj1
hj2i2

ρ(wi · xk)

=
∑
k∈K

1{j1=j2}ρ(wi1 · xk)ρ(wi2 · xk),

∂2L(P)

∂ri1∂hji2

=
∂

∂hji2

∑
j′∈J

∑
k∈K

ekj′hj′i1ρ(ui1 · xk)

=
∑
k∈K

(
ekjρ(ui1 · xk)1{i1=i2} + hji1ρ(ui1 · xk)ρ(wi2 · xk)

)
,

∂2L(P)

∂si1∂hji2

=
∂

∂hji2

hji1

∑
k∈K

ekj ρ̃wi1
·xk

(vi1 · xk)

=
∑
k∈K

ekj ρ̃wi1
·xk

(vi1 · xk)1{i1=i2} + hji1

∑
k∈K

ρ̃wi1
·xk

(vi1 · xk)ρ(wi2 · xk),

∂2L(P)

∂ri1∂ri2
=

∂

∂r2

∑
j∈J

∑
k∈K

ekjhji1ρ(ui1 · xk)

=
∑
j∈J

∑
k∈K

hji1hji2ρ(ui1 · xk)ρ(ui2 · xk),

∂2L(P)

∂si1∂ri2
=

∂

∂ri2

∑
j∈J

∑
k∈K

ekjhji1 ρ̃wi1
·xk

(vi1 · xk)

=
∑
j∈J

∑
k∈K

hji1hji2 ρ̃wi1 ·xk
(vi1 · xk)ρ(ui2 · xk),

∂2L(P)

∂si1∂si2
=

∂

∂si2

∑
j∈J

∑
k∈K

ekjhji1 ρ̃wi1 ·xk
(vi1 · xk)
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=
∑
j∈J

∑
k∈K

hji1hji2 ρ̃wi1
·xk

(vi1 · xk)ρ̃wi2
·xk

(vi2 · xk)

Second order partial derivatives at the stationary point. When evaluated at the stationary point
P, two of these derivatives simplify. Firstly, we note that, if ∥wi∥ ≠ 0, then

∑
k∈K(ekjρ(ui1 ·

xk)1{i1=i2} = 1
∥wi∥

∂L(P)
∂hji1

= 0 by stationarity. If ∥wi∥ = 0, ∥ui∥ = 0 by convention so the sum is
null as well. In any case, we have that

∂2L(P)

∂ri1∂hji2

= 0 +
∑
k∈K

hji1ρ(ui1 · xk)ρ(wi2 · xk).

Similarly, since we choose the direction ∆ such that ∂∆L(P) = 0, we must have that ∂L(P)
∂si

= 0.
Since there is no escape neuron, necessarily,

∑
k∈K ekj ρ̃wi·xk

(vi ·xk) = dvi
ji ·vi = 0. This implies

that
∂2L(P)

∂si1∂hji2

= 0 + hji1

∑
k∈K

ρ̃wi1
·xk

(vi1 · xk)ρ(wi2 · xk). (14)

The Hessian matrix is positive semidefinite. Define the following three |K|-dimensional vectors:
for i ∈ I, j ∈ J , let

Vhji
:= (ρ(wi · xk))k=1,...,|K| , (15)

Vj
ri := (hjiρ(ui · xk))k=1,...,|K| , (16)

Vj
si := (hjiρ̃wi·xk

(vi · xk))k=1,...,|K| . (17)

Then, we assemble the vectors and for j′ ∈ J , we define the matrix

Vj′ :=

((
1{j=j′}Vhji

)
(j,i)∈Ih

,
(
Vj′

ri

)
i∈Ir

,
(
Vj′

si

)
i∈Is

)
∈ R|K|×D′

,

where 1{j=j′} is multiplied to each component of Vhji . The vectors are disposed such that each is
a column of V j′ . We thus see that the directional Hessian Equation (13) can be written as

HL =
∑
j′∈J

V ⊺
j′Vj′ . (18)

Once again, like the vectors ui,vi for i ∈ I , the Hessian matrix implicitly depends on the direc-
tion ∆. Hence, for every fixed unit vector ∆ ∈ R

D, the Hessian matrix HL is a sum of positive
semidefinite Gram matrices, and as such, is positive semidefinite.

We deduce that for all unit vector ∆ ∈ RD, it holds that

∂2
∆L(P) = ∆⊺HL∆ ≥ 0,

as claimed.

F.1.2 THIRD-ORDER TERMS

In this section, we continue our reasoning and assume that P is a stationary point with no escape
neuron and ∆ ∈ R

D is a fixed unitary vector such that ∂2
∆L(P) = ∆⊺HL∆ = 0. In particular,

since HL =
∑

j∋J V ⊺
j Vj in this case, it holds that Vj∆ ∈ R|K| is a zero vector for all j ∈ J , where

Vj is defined below Equation (15). We show below that this entails ∂3
∆L(P) = 0.

From the formulae for the second-order terms, we can see that there can only be six types of non-
zero third-order derivatives, namely, ∂3L(P)

∂hji1∂ri1∂hji2
, ∂3L(P)

∂hji1∂ri1∂ri2
, ∂3L(P)

∂hji1∂ri1∂si2
, ∂3L(P)

∂hji1∂si1∂hji2
,

∂3L(P)
∂hji1

∂si1∂ri2
, and ∂3L(P)

∂hji1
∂si1∂si2

.

Recall the vectors Vj′

hji
,Vj′

ri ,V
j′

si defined in Equation (15), and defined the following vectors

Vhri = (ρ(ui · xk))k∈{1,2,··· ,K} ,

26



Published as a conference paper at ICLR 2025

Vhsi = (ρ̃wi·xk
(vi · xk))k∈{1,2,··· ,K} ,

The third order partial derivatives can be conveniently expressed using them. For example, we
compute the first one

∂3L(P)

∂hji1∂ri1∂hji2

=
∂

∂hji2

∑
k∈K

(ekjρ(ui1 · xk) + hji1ρ(ui1 · xk)ρ(wi1 · xk))

=
(
1 + 1{i1=i2}

) ∑
k∈K

ρ(ui1 · xk)ρ(wi2 · xk)

=
(
1 + 1{i1=i2}

)
Vhri1

·Vhji2
.

The other derivatives follow similar easy calculations that are left to the reader, yielding the follow-
ing results:

∂3L(P)

∂hji1∂ri1∂ri2
=
(
1 + 1{i1=i2}

)
Vhri1

·Vj
ri2

∂3L(P)

∂hji1∂ri1∂si2
=
(
1 + 1{i1=i2}

)
Vhri1

·Vj
si2

∂3L(P)

∂hji1∂si1∂hji2

=
(
1 + 1{i1=i2}

)
Vhsi1

·Vhji2

∂3L(P)

∂hji1∂si1∂ri2
=
(
1 + 1{i1=i2}

)
Vhsi1

·Vj
ri2

∂3L(P)

∂hji1∂si1∂si2
=
(
1 + 1{i1=i2}

)
Vhsi1

·Vj
si2

.

In the third-order ODD of the loss at P in direction ∆, each of the above derivatives appear. More
specifically, if i1 ̸= i2, then any of them is counted 3! = 6 times (the number of orderings that yield
the same derivative) and if i1 = i2, then it is counted 3 times. We thus see that

∂3
∆L(P) =

∑
j∈J

(
6
∑

i1 ̸=i2∈I

∆hji1
∆ri1

Vhri1

(
∆hji2

Vhji2
+∆ri2

Vri2
+∆si2

Vsi2

)
+ 2× 3

∑
i1∈I

∆hji1
∆ri1

Vhri1

(
∆hji1

Vhji1
+∆ri1

Vri1
+∆si1

Vsi1

))
+
∑
j∈J

(
6
∑

i1 ̸=i2∈I

∆hji1
∆si1

Vhsi1

(
∆hji2

Vhji2
+∆ri2

Vri2
+∆si2

Vsi2

)
+ 2× 3

∑
i1∈I

∆hji1
∆si1

Vhsi1

(
∆hji1

Vhji1
+∆ri1

Vri1
+∆si1

Vsi1

))
= 6

∑
j∈J

∑
i1,i2∈I

∆hji1

(
∆ri1

Vhri1
+∆si1

Vhsi1

)
Vj∆

Recall from the discussion at the start of the subsection that since P is a stationary point with no
escape neuron and since ∂2

∆L(P) = 0, it holds that

Vj∆ = 0. (19)

This shows that ∂3
∆L(P) = 0, as claimed.

F.1.3 FOURTH-ORDER TERMS

This is the last step of our argument, where we show that ∂4
∆L(P) ≥ 0 always holds.

We compute the fourth-order partial derivatives of the loss. Note from the third order partial deriva-
tives that only three of them can be non null, namely ∂4L(P)

∂hji1
∂ri1∂hji2

∂ri2
, ∂4L(P)

∂hji1
∂si1∂hji2

∂si2
and
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∂4L(P)
∂hji1∂ri1∂hji2∂si2

. It is straightforward – but cumbersome therefore left to the reader – to check the
following:

∂4L(P)

∂hji1∂ri1∂hji2∂ri2
= (1 + 1{i1=i2})Vhri1

·Vhri2

∂4L(P)

∂hji1∂si1∂hji2∂si2
= (1 + 1{i1=i2})Vhsi1

·Vhsi2
,

∂4L(P)

∂hji1∂ri1∂hji2∂si2
= (1 + 1{i1=i2})Vhri1

·Vhsi2
.

As for the third order, depending on whether i1 equals i2, the number of occurrences of these deriva-
tives changes between 4! and 4!/2, and the fourth-order ODD reads

∂4
∆L(P) =

∑
j∈J

 ∑
i1 ̸=i2∈I

4!∆hji1
∆ri1

∆hji2
∆ri2

Vhri1
·Vhri2

+
∑
i1∈I

2
4!

2× 2
∆2

hji1
∆2

ri1
Vhri1

·Vhri1


+
∑
j∈J

 ∑
i1 ̸=i2∈I

4!∆hji1
∆si1

∆hji2
∆si2

Vhsi1
·Vhsi2

+
∑
i1∈I

2
4!

2× 2
∆2

hji1
∆2

ri1
Vhsi1

·Vhsi1


+
∑
j∈J

 ∑
i1 ̸=i2∈I

4!∆hji1
∆ri1

∆hji2
∆si2

Vhri1
·Vhsi2

+
∑
i1∈I

2
4!

2
∆2

hji1
∆ri1

∆si1
Vhri1

·Vhsi1


=

4!

2

∑
j∈J

( ∑
i1,i2∈I

∆hji1
∆ri1

∆hji2
∆ri2

Vhri1
·Vhri2

+∆hji1
∆si1

∆hji2
∆si2

Vhsi1
·Vhsi2

+ 2∆hji1
∆ri1

∆hji2
∆si2

Vhri1
·Vhsi2

)

=
4!

2

∑
j∈J

 ∑
i1,i2∈I

(∆hji1
∆ri1

Vhri1
+∆hji1

∆si1
Vhsi1

) · (∆hji2
∆ri2

Vhri2
+∆hji2

∆si2
Vhsi2

)


=

4!

2

∑
j∈J

V
⊺
jVj ,

where we just introduced the vector Vj , defined by(∑
i∈I

∆hji
∆riVhri +∆hji

∆siVhsi

)
j∈J

.

We see from the above that ∂∆L(P) ≥ 0, as claimed, which concludes the proof of the sufficiency
in Theorem 4.2.
Remark F.1 (about Fact 4.7). Note, at a stationary point, if a perturbation direction ∆ does not
perturb the parameters of escape neurons, then the above proof also effectively shows that such a
perturbation can not strictly decrease the loss, which gives rise to Fact 4.7.

F.2 PROOF OF THE NECESSITY IN THEOREM 4.2

The necessity of the condition in Theorem 4.2, which holds in the scalar-output case, will be proved
in the following via contradiction. Namely, if P is a stationary point on the loss landscape with
at least one hidden neuron being an escape neuron, then this stationary point cannot be a local
minimum. Let us select one such hidden neuron i, associated with (hj0i and wi). To construct the
loss-decreasing path, we perturb hj0i and wi with ∆hj0i and ∆wi = ∆sivi, respectively; vi being

one of the tangential directions satisfying and ∂L(P)
∂si

= 0 and dvi
j0i

· vi ̸= 0. We assert that we can
design the following perturbation to strictly decrease the loss: ∆hji = − sgn(dvi

j0i
· vi)a, ∆si = b,

with a, b > 0 sufficiently small and satisfying certain conditions, which is discussed below.
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To study the loss change after perturbing the weights as described, we resort to Taylor expansion
again. In this case, we only need to look into terms of no higher than the second order.

For the first-order terms, we have:

T1(P,∆P′) =
∂L(P)

∂hj0i
∆hj0i +

∂L(P)

∂si
∆si. (20)

Since P is a stationary point, we must have ∂L(P)
∂hj0i

= 0. Moreover, we have ∂L(P)
∂si

= 0, as this is

how we choose the tangential perturbation direction vi. Thus we have T1(P,∆P′) = 0.

Then we calculate the second-order terms. Three types of second-order derivatives are involved,
∂2L(P)
∂hj0i

2 , ∂2L(P)
∂s2i

, and ∂2L(P)
∂hj0i∂si

. Notice that, in Equation (14), we could simplify the last derivative
given that the neuron is not an escape neuron, which we can no longer do here. This causes the
Hessian matrix to be indefinite.

Notice that, we must also have hj0i = 0 to fulfill the requirements of an escape neuron in the scalar
output case. Hence, we have Vj0

si = 0. Thus, the second-order terms can be derived as:

T2(P,∆P′) =
∂2L(P)

∂hj0i
2 (∆hj0i)

2
+

∂2L(P)

∂s2i
(∆si)

2
+ 2

∂2L(P)

∂hj0i∂si
∆hj0i∆si (21a)

= Vhj0i ·Vhj0i (∆hj0i)
2
+Vj0

si ·V
j0
si︸ ︷︷ ︸

(=0)

(∆si)
2
+ 2
(
dv
j0i · vi +Vhj0i · Vj0

si︸︷︷︸
(=0)

)
∆hj0i∆si

(21b)

= ∥Vhj0i
∥2a2 + 2

(
dvi
j0i

· vi

) (
− sgn(dvi

j0i
· vi)

)
ab (21c)

= ∥Vhj0i
∥2a2 − 2|dvi

j0i
· vi|ab (21d)

Note, we have specified that both a and b are positive. Thus, if we choose these two numbers such
that:

b >
∥Vhj0i∥2

2|dvi
j0i

· vi|
a. (22)

Then we have T2(P,∆P′) being strictly negative, indicating a strictly loss-decreasing path, which
completes the proof.
Remark F.2 (about Corollary 4.4). When we perturb the parameters of the escape neurons as above,
we are exploiting second-order loss-decreasing paths, which yields the statement of Corollary 4.4.

F.2.1 WHY CANNOT WE PROVE THE NECESSITY FOR NETWORKS WITH MULTIPLE OUTPUT
NEURONS?

The construction of the loss-decreasing path in this section is based on the observation that the
Hessian matrix is no longer a positive semi-definite matrix when there exist escape neurons for
|J | = 1 case. However, in the case where |J | > 1, we cannot draw a similar conclusion. When
the network has multiple output neurons, there is currently no guarantee that escape neurons will
introduce negative eigenvalues in the Hessian matrix. More specifically, like the |J | = 1 case, some
∂2L(P)
∂si∂hji

term in the Hessian matrix is no longer simply a dot product of two vectors, Vj
si ·Vhji

, but
is added with a non-zero term of dvi

ji · vi. Owing to this, we can no longer write the Hessian matrix
as a sum of Gram matrices as in Equation (18). Nonetheless, this do not necessarily mean that the
Hessian matrix admits negative eigenvalues, which is why the necessity in Theorem 4.2 does not
hold for general cases.

More concretely, the Hessian matrix for a multidimensional output network at a stationary point
with escape neurons can be denoted as:

HL =
∑
j∈J

(
H̃j + V ⊺

j Vj

)︸ ︷︷ ︸
defined to be Hj

L

(23)
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Compared with Equation (18), Equation (23) has an extra term (H̃j) in the summation which con-

tains the terms of dvi
ji · vi ̸= 0 at the positions held by ∂2L(P)

∂hji∂si
or ∂2L(P)

∂si∂hji
in the Hessian matrix. It

is easy to see that Hj
L is not positive semi-definite as long as H̃j is not a zero matrix.

Consequently, if the sufficient condition in Theorem 4.2 is not satisfied, then the Hessian matrix
constructed based on the perturbation becomes a summation of matrices, some of which are indefi-
nite. However, there can be no theoretical guarantee that such a summation cannot lead to a positive
semi-definite matrix in the end. Thus, even if the sufficient condition in Theorem 4.2 is violated,
the Hessian matrix may still be positive semi-definite. However, despite the possibility of this case,
the chance of a summation of indefinite matrices and positive semidefinite matrices resulting in a
positive semidefinite matrix is relatively small. Even if the Hessian matrix is positive semidefinite,
the existence of escape neurons seems to hinder us from claiming anything general regarding the
loss change incurred by the third-order terms.12 This is because our current discussion regarding
the third-order terms (in Appendix F.1.2) relies on the description of the flat directions in the second-
order terms being Equation (19), which is premised on the absence of escape neurons. Hence, we
believe that local minima contradicting the sufficient condition of Theorem 4.2 (the so-called type-2
local minima) should be rare if exist. The rigorous characterization regarding the “rarity” will be
conducted in the future.

G TAYLOR EXPANSION WITH AN ALIGNED COORDINATE SYSTEM

Taylor expansion requires the function to be differentiable. As a result, the non-differentiability of
ReLU-like networks prohibits us from directly invoking Taylor expansion (based on the canonical
coordinate system). We circumvent this problem by choosing a coordinate system whose axes cor-
respond to the radial/tangential directions of the input weights and the output weights. We clarify
this with the following example.

We study a one-hidden-layer ReLU network with 2-dimensional input and scalar output, and there
is only one hidden neuron. The input weight is w1 = (w11, w12), and the output weight is hj01.
There is one training sample, denoted by x1 = (0.9, 0.3)⊺ and y1 = 3. We fix hj01 = 0.5 and plot
the loss as a function of (w11, w12) in both panels of Figure 9. The dotted gray line segments in the
plots indicate a non-differentiable edge on the loss surface. We investigate a specific input weight
(0.15,−0.45), denoted by the black arrows in Figure 9.

In Figure 9a, we study how the movement of the input weight changes the loss with the canonical
axes (the green arrows). Each canonical axis corresponds to an input weight component. More
concretely, if we perform Taylor expansion with these axes, we will compute the partial deriva-
tives of ∂L

∂(±w11)
, ∂L

∂(±w12)
, ∂2L

∂(±w11)∂(±w12)
, etc. The “±” sign here means that we need to com-

pute the ODD along both the positive and negative directions along the axes to account for non-
differentiability. Nonetheless, these partial derivatives do not suffice to describe the function surface
since non-differentiability exists within the orthants between the axes. As a result, the ODDs com-
puted along such canonical axes cannot compose Taylor expansions that accurately characterize the
loss surface within the orthants.

In this paper, we study the axes that are aligned with the non-differentiability on the loss surface,
which is indicated by the red arrows in Figure 9b. Notice that these red arrows are exactly the radial
and tangential directions of the input weight w1. The loss within any orthant bounded by these
aligned axes is always differentiable. Hence, the partial derivatives with respect to these axes suffice
to compose Taylor expansion that accurately describes the function anywhere in any orthant. Such a
method is equivalent to studying differentiable functions but limiting the scope to only one specific
orthant. Specifically, we limit the scope of Taylor expansion to one orthant by taking ∆si ↘ 0+

rather than ∆si → 0 in Equation (3).

Some back-of-the-envelope derivation can reveal that the loss is always continuously differentiable
along the radial direction of input weights, which can also be observed in Figure 9b. Hence, the
partial derivative along the same direction as w1 suffices to describe the radial derivative, which
means we do not need to study the partial derivative along the direction of −w1. However, as the

12Note that the fourth-order terms always lead to non-negative loss changes, as shown in Appendix F.1.3
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(a) canonical axes (b) aligned axes

Figure 9: Comparison between the canonical axes and the aligned axes. The curved surface is the
loss plotted as a function of the input weight w1 = (w11, w12) of the only hidden neuron, which is
non-differentiable. The black arrow (0.15,−0.45) denotes an input weight vector that has the same
direction as the non-differentiable edge (denoted by the gray dotted line segments). The green arrows
in (a) represent the canonical axes, while the red arrows in (b) represent the aligned coordinate axes
(composed of the radial directions and tangential directions of w1).

Figure 10: An occurrence histogram showing the loss changes incurred by the 5000 perturbations.

loss is not differentiable along the tangential directions, we need to study the partial derivative along
both tangential directions of w1.

H VERIFYING LOCAL MINIMALITY IN A REAL CASE

The fact that the last long plateau in Figure 3a corresponds to a local minimum can be verified
with a numerical experiment. The verification can be conducted by perturbing the parameters at the
end of the training with small noises and investigating whether such perturbations yield negative
loss change. In our experiment, we perturb all the parameters by adding noise to all of them. The
noise added to each of the parameters is independently generated from a zero-centered uniform
distribution U(−ζ, ζ), where ζ > 0 is a small value making sure that the network parameters after
perturbation still stays in its neighborhood. Namely, the loss function restricted on the line segment
connecting the parameters before and after the perturbation should be C∞, meaning the line segment
should not stretch across a non-differentiable area in the parameter space. In our case, we chose
ζ ≈ 1.28 × 10−4. We conducted the perturbation for 5000 times and recorded the loss change
incurred by each perturbation, which is illustrated in a frequency histogram in Figure 10. One
can see that all of the perturbations resulted in positive loss change, agreeing with our theoretical
prediction.
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I ADDITIONAL NUMERICAL EXPERIMENTS

I.1 3-DIMENSIONAL INPUT, SCALAR OUTPUT

In this example, we train the network with the following xk’s as inputs:

x1 =

( −0.3
−0.75
−0.5

)
, x2 =

(−0.2
−0.2
0.4

)
, x3 =

(−0.6
1.0
−1.0

)
, x4 =

(−0.4
0.4
0.3

)
,

x5 =

(
0.6
−0.1
−0.7

)
, x6 =

(
0.4
−0.9
0.3

)
, x7 =

(
0.2
0.2
−0.5

)
.

The targets yk are as follows: y1 = −0.5, y2 = 0.1, y3 = −0.6, y4 = 0.3, y5 = 0.8, y6 = −0.3,
y7 = −0.1.

We use a one-hidden-layer ReLU network with 50 hidden neurons whose parameters are initialized
with law N

(
0, (9.51× 10−11)2

)
. The training process is visualized in Figure 11, which is quite

similar to that in Figure 3.

(a) loss curve (b) direction of wi (rad) (c) ∥wi∥ (d) hj0i

Figure 11: Evolution of all parameters during the training process from vanishing initialization.
The network visualized here has 3-dimensional input and scalar output. The direction of wi in (b)
is the direction of its first two components. The training dynamics is similar to that in Figure 3.
addle escape (marked by the vertical dotted lines) is always accompanied by the amplitude growth
of grouped small living neurons.

In short, the existence of small living neurons indicates that the stationary point is a saddle point,
while their absence means that the stationary point is a local minimum. Moreover, saddle escape
is always triggered by the amplitude increase of small living neurons. In this example, the training
trajectory escaped from four saddle points and eventually ended up at the global minimum with zero
loss.

It is worth noting that, in the above example, when escaping from the first saddle, two groups of
small living neurons (group 1 and 2) grew together, which is also consistent with Figure 4.

I.2 2-DIMENSIONAL INPUT AND OUTPUT

In this example, we train the network with the following xk’s as inputs:

x1 =

(
−0.3
0.5

)
, x2 =

(
1.0
1.0

)
, x3 =

(
−0.6
−1.0

)
, x4 =

(
0.4
−0.4

)
.

The targets yk’s are:

y1 =

(
0.6
−0.5

)
, y2 =

(
0.5
−1.0

)
, y3 =

(
−0.4
0.6

)
, y4 =

(
0.8
0.2

)
.

We use a one-hidden-layer ReLU network with 50 hidden neurons whose parameters are initialized
with law N

(
0, (9.51× 10−11)2

)
. The training process is visualized in Figure 12.

This training process escaped from 3 saddles. Notably, the last saddle escape involves the param-
eter variation of neurons that are not small living neurons, which contrasts the scalar-output case,
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(a) loss curve (b) direction of wi (rad) (c) ∥wi∥

(d) h1i (e) h2i

Figure 12: Evolution of all parameters during the training process from vanishing initialization.
The network visualized here has 2-dimensional input and output. In this case, the output weights
associating with one hidden neuron have 2 components, tracked by (d) and (e). The saddle escape
(marked by vertical dotted lines) can be caused by the amplitude increasing of small living neurons
or the splitting of neurons that already have non-negligible amplitudes. The trajectory of one neuron
is thickened in (b)-(e) for discussion.

Figure 13: An occurrence histogram showing the loss changes incurred by the 5000 perturbations
applied to the end of training in the 2D output case.

as escape neurons in the multidimensional output case might have non-zero output weights (Defini-
tion 4.1).

Eventually, the training reached a local minimum. We verify that it is a local minimum by locally
perturbing the network parameter at the end of training with independently drawn noise for 5000
times. The resulting changes in loss are all positive. The occurrence histogram demonstrating the
loss changes incurred by the 5000 perturbations are shown in Figure 13.

As it is a complicated case, we identify the escape neurons in each saddle encountered dur-
ing training. To facilitate the presentation, we first present the evolution of errors at both output
components, ek1 := ŷk1 − yk1 and ek2 := ŷk2 − yk2, which are shown in Figure 14.

The first saddle point is the origin. As all the output weights are zero, we know that the ∂L
∂si

= 0
for any i ∈ I and tangential direction vi (from Equation (6)). We remind the reader that vi is the
tangential direction implied in the tangential derivative ∂L

∂si
. We will show that there exists a specific

tangential direction v̂i such that dv̂i
1i ·v̂i ̸= 0, which makes the origin a saddle point by Definition 4.1

and Theorem 4.2.
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(a) ek1 (b) ek2

Figure 14: Errors at both components of output.

We find v̂i = (0.85, 0.51), which corresponds the angle of 1.03 rad in Figure 12b, where the group
1 neuron gathered at epoch 25k. Knowing that e11 = −0.6 and e21 = −0.5 (which can be roughly
read from Figure 14 at epoch 25k), we have:

dv̂i
1i · v̂i = (e11x1 + e21x2) · (0.85, 0.51) = (−0.32,−0.2) · (0.85, 0.51) = −0.37 ̸= 0.

We thus identified the escape neurons to be the ones that have zero-amplitude parameters at this
saddle. Escaping from the first saddle was triggered by the movement of a group of small living
neurons (group 1 neurons) exploiting the loss-decreasing path offered by such escape neurons.

At the second saddle point, group 1 neurons have non-negligible amplitudes while group 2 neurons
indicate the existence of zero-amplitude neurons in the nearby saddle. In other words, if the param-
eters are placed exactly at the saddle point, the parameters of group 2 neurons should all be zero.
Consequently, at the saddle point, ∂L

∂si
= 0 for any i that denotes a group 2 neuron and any tangen-

tial direction vi (from Equation (6)). In this case, we can find a tangential direction ṽi of group 2
neurons such that dṽi

1i · ṽi ̸= 0. We specify that ṽi = (−0.65,−0.76), corresponding to 3.22 rad
in Figure 12b, which is where group 2 neurons were attracted to before the second saddle point was
escaped. Reading from Figure 14 that e31 = 0.4 and e41 = −0.8, we have:

dṽi
1i · ṽi = (e31x3 + e41x4) · (−0.65,−0.76) = (−0.48, 0.56) · (−0.65,−0.76) = −0.11 ̸= 0.

This tells us that, the neurons with zero parameters are escape neurons at the second saddle. Escap-
ing from the second saddle was then triggered by the movement of a group of small living neurons
(group 2) exploiting the loss-decreasing path offered by such escape neurons.

At the third saddle point, both groups of neurons have non-negligible amplitudes. We will show that
one of the group 2 neurons is approximately an escape neuron. It is not exactly an escape neuron
since the parameter is not exactly at the saddle point but in the vicinity. The parameter trajectory of
this specific neuron is denoted by thickened curves in Figure 12. In this part, i denotes that single
hidden neuron. The input weight of this neuron is (−0.12, 0.63) (which can be computed from the
readings in Figures 12b and 12c), and we pick one of its tangential derivatives v̌i = (0.98, 0.19).
We will show that dṽi

1i · ṽi ̸= 0 and ∂L
∂ši

(the tangential direction along v̌i) equals zero, making this
neuron (approximately) an escape neuron.

We can roughly read from Figures 14a and 14b that e11 = −0.18, e21 = 0.12,e12 = 0.12, e22 =
0.08 at epoch 100k. With this, we can compute that

dv̌i
1i · v̌i = (e11x1 + e21x2) · (0.98, 0.19) = (0.18, 0.03) · (0.98, 0.19) = 0.18 ̸= 0.

dv̌i
2i · v̌i = (e12x1 + e22x2) · (0.98, 0.19) = (0.12, 0.02) · (0.98, 0.19) = 0.12.

We can also read from Figures 12d and 12e to get h1i = 0.37, h2i = −0.53. These leads to

∂L
∂ši

= h1id
v̌i
1i · v̌i + h2id

v̌i
2i · v̌i = 0.00.

With these computations, we show that the neuron we study is (approximately) an escape neuron.
We can apply the same computation to any group 2 neurons at the third saddle point to find that
all of them are (approximately) escape neurons. Eventually, their movement (splitting) caused the
parameter to escape from this saddle.
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With the above, we show that the experiment is consistent with our Fact 4.7. All saddle escapes are
the results of parameter variation of escape neurons in the nearby saddle point.

We can also analyze that the last stationary point at which the training process ended is a local
minimum. At the end of the training, all the input weights of the hidden neurons lie within the angle
range of ( 14π, 1

1
4π), which means that wi ·x4 < 0, and {x4, y4} is the only training sample that has

not been perfectly fitted yet, as shown in Figure 14. Thus, according to Equation (3),

dvi
ji = 0, for all (i, j) ∈ I × J and all tangential directions vi. (24)

This is due to the following: the first summation of Equation (3) is zero because all the error terms
involved are zero. The second summation of Equation (3) is also zero because α− = 0. Moreover,
dvi
ji = 0 disqualifies all the hidden neurons from being escape neurons, according to Definition 4.1.

J APPLICABILITY OF FIGURE 4 TO SMALL BUT NON-VANISHING
INITIALIZATION

Networks are rarely trained in the vanishing initialization regime. For one thing, the alignment of
input weights might excessively reduce the number of kinks in the learned function and prevent the
training from reaching global minima Boursier and Flammarion (2024), as is the case in Figure 3.
In this section, we train the network initialized with law N

(
0, (8.75× 10−4)2

)
(by rescaling the

initialization weights in Section 4.1.1 without changing their direction). The process is visualized in
Figure 15. The larger initialization scale enables the network to reach zero loss. With this example,
we show how our insights derived from vanishing initialization can be applied to small but non-
vanishing initialization.

(a) loss curve (b) direction of wi (rad) (c) ∥wi∥ (d) hj0i

Figure 15: Evolution of all parameters during the training process with small but non-vanishing
initialization scale. There are more groups of neurons formed compared to Figure 3. The loss
experiences repeated accelerations and decelerations, influenced by nearby saddle points. The ac-
celerations of loss decreasing roughly coincide with the amplitude increase of groups of small living
neurons.

The loss curve for this initialization scheme is shown in Figure 15a, where one can observe the de-
crease of loss accelerated and decelerated several times. This indicates that the network parameters
were affected by several nearby saddle points. We mark the beginnings of the accelerations with
dotted vertical lines in Figure 15a. The evolution of all the parameters is summarized in Figures 15b
to 15d. Just as in Figure 3, we color-code the curves in Figures 15b to 15d based on the wi grouping.

We can observe that the accelerations of loss decreasing also roughly coincide with the amplitude
increase of small living neurons. This means that the acceleration of loss decreasing in this regime
also exploits the loss-decreasing path given by the escape neurons in the nearby saddle points,
similar to the vanishing initialization regime.

We also note two differences between small but non-vanishing and vanishing initialization. First,
with the former, the loss curve no longer has extremely flat plateaus, and the small living neurons
no longer appear extremely small in amplitude. This is because the gradient flow from small but
non-vanishing initialization does not get as close to the stationary points as does the trajectory from
vanishing initialization Jacot et al. (2022). Second, the former gives rise to four living neuron groups,
corresponding to four kinks,13 which suffices to reach zero loss; while the latter only creates two

13See Figure 17 for the emergence of the four kinks.
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kinks and gets stuck at a high loss. The vanishing initialization limit induces a low-rank bias on
the weights (Maennel et al., 2018; Jacot et al., 2022; Chistikov et al., 2024), which is alleviated
by larger initialization scales to yield better expressivity with more kinks in the learned function
(See Appendix L). A detailed account of this is in Appendix K. The investigation of the minimal
initialization scale that results in global minima is a meaningful future direction.

K HOW LARGER INITIALIZATION SCALE ALLEVIATES THE LOW-RANK BIAS

The low-rank bias induced by small initialization is due to the distinctive dynamical pattern induced
by such initialization. The rotation speed of a neuron is, loosely speaking, O(1); while the amplitude
increase of a neuron is slower when its amplitude is smaller, as observed by Maennel et al. (2018);
Boursier et al. (2022); Chistikov et al. (2024). Thus, given the initialization is sufficiently small,
the neurons will have enough time to gather close to the attracting angles: The attracting angles are
determined by the network function, which remains almost fixed (approximately as a zero function)
during the early alignment phase when all the neurons have negligible amplitudes. As a result,
the attracting angles are also almost fixed during this phase, and the neurons have enough time to
approach them. This process causes a lower rank in the weight, which is preserved throughout
training. With (slightly) larger initialization, the neurons’ amplitude increase becomes much faster,
and the network function will deviate from the zero function before the neurons rotate to the original
attracting angles. The rapid variation of network function gives birth to new attracting angles and
thus leads to a higher rank in the weight matrix, as shown in Figure 15. There, the group 4 neurons
and group 3 neurons does not manage to merge with group 1 and group 2, respectively, before being
steered away by newly generated attracted angles. However, such merging took place thoroughly
with vanishing initialization (Figure 3).

L THE EVOLUTION OF THE LEARNED FUNCTION

In this section, we demonstrate the evolution of the learned function for both vanishing initialization
and slightly larger initialization. We highlight the output function before and after the amplitude
increase of the grouped living neurons.

The learned functions from vanishing initialization are shown in Figure 16. Remember that, to
simulate vanishing initialization, we initialized all the parameters in the network independently with
law N

(
0, (5× 10−6)2

)
. In Figure 16, we only draw the network function (using the blue line) with

respect to the first component of the input, since the second component is always 1 in the training
data to simulate the bias. Namely, in Figure 16, we draw the following function:

ỹ(x) = ŷ
(
(x, 1)

)
, x ∈ R, (25)

where ŷ(·) is the network function in Equation (1).

(a) epoch 42k (b) epoch 152k (c) epoch 500k

Figure 16: The evolution of the learned function during training with an initialization standard
deviation of 5× 10−6.

The five red stars are (xk, yk)’s, xk’s being the first component of all the training samples, and yk’s
are the scalar target values. The five dots corresponds to (xk, ỹ(xk)).

One can observe that, at epoch 42k, the network function is, approximately, a zero function. After
the amplitude increase of the group 1 neurons, by epoch 152k, the network function has learned
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one kink. The amplitude increase starting from roughly epoch 152k forms the second kink of the
network function. Afterward, the network stops evolving, keeping the two kinks before the end of
training (epoch 500k).

The evolution of the learned function from a slightly larger initialization scale is shown in Figure 17.
In this experiment, the parameters are initialized independently with law N

(
0, (8.75× 10−4

)
. We

can observe that, with the amplitude increase of 4 groups of small living neurons at roughly epochs
14k, 66k, 144k, and 280k; there emerged 4 kinks. Notice, there should be 4 kinks in the learned
function at the end. However, only 3 of them are shown, because the last one is located too far away
from the input range we show in the image.

(a) Epoch 14k (b) Epoch 66k (c) Epoch 144k

(d) Epoch 280k (e) Epoch 580k

Figure 17: Evolution of the learned function during the training starting with a larger initialization
scale.

M PROOF OF PROPOSITION 4.8

M.1 CONDITIONS FOR UNIT REPLICATION TO PRESERVE STATIONARITY

Let us denote the parameters of the stationary point before unit replication by P and the parameters
after by P

′
. Then, Definition 3.6 dictates that P must satisfy:

∂L(P)

∂hji

∣∣∣∣
P=P

= 0, ∀ j ∈ J, i ∈ I; (26a)

∂L(P)

∂ri

∣∣∣∣
P=P

= 0, ∀ i ∈ I; (26b)

∂L(P)

∂si

∣∣∣∣
P=P

≥ 0, ∀ i ∈ I, ∀ tangential direction vi of wi. (26c)

It is easy to check that, after unit replication, the above still holds for the hidden neurons within the
set I\{i0}, which are the hidden neurons untouched by unit replication, since the network function
is not changed by this process. For the rest of the hidden neurons in P

′
, which are indexed by

il0 ∈ L, we can also deduce whether they conform to the conditions for stationarity. We have the
following:

∂L(P)

∂hjil0

∣∣∣∣∣
P=P

′

= wil0
· djil0

= βlwi0 · dji0 = βl
∂L(P)

∂hji0

∣∣∣∣
P=P

= 0. (27)
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If ∥wil0
∥ = βl∥wi0∥ > 0, then the newly generated hidden neurons have radial directions:

∂L(P)

∂ril0

∣∣∣∣∣
P=P

′

=
∑
j∈J

hjil0
djil0

· uil0
= γl

∑
j∈J

hji0dji0 · ui0 = γl
∂L(P)

∂ri0

∣∣∣∣
P=P︸ ︷︷ ︸

(=0)

= 0. (28)

If ∥wil0
∥ = βl∥wi0∥ = 0, then, by convention, the radial derivative ∂L(P)

∂r
il0

∣∣∣∣
P

′
are set to zero without

loss of rigor.

As for the tangential derivatives of the newly generated hidden neurons, we have:

∂L(P)

∂sil0

∣∣∣∣∣
P=P

′

=
∑
j∈J

hjil0
djil0

· vil0
= γl

∑
j∈J

hji0dji0 · vi0 = γl
∂L(P)

∂si0

∣∣∣∣
P=P︸ ︷︷ ︸

(≥0)

, (29)

where we takevil0
= vi0 . Namely, we are implying that any tangential direction of wil0

must also be
a tangential direction of wi0 . This is justified by the fact that βl > 0, ∀ l ∈ L.

With the above, we can infer ∂L(P)
∂s

il0

∣∣∣∣
P=P

′
≥ 0 for all possible tangential direction vil0

’s if and only

if either of the following is true:

1. ∂L(P)
∂si0

= 0, ∀ tangential direction vi0 of wi0 ,

2. γl ≥ 0, ∀ l ∈ L;

which concludes the proof.

M.2 CONDITIONS FOR UNIT REPLICATION TO PRESERVE TYPE-1 LOCAL MINIMALITY

The necessary and sufficient condition to preserve type-1 local minimality after unit replication
is to avoid generating escape neurons and to preserve conditions for stationarity. Thus, we prove
Proposition 4.8 by seeking necessary and sufficient conditions to achieve both these two goals. Let
us denote the parameters of the stationary point before unit replication by P and the parameters after
by P

′
.

M.2.1 AVOID GENERATING ESCAPE NEURONS

First, let us consider two unit replication schemes:

1. Replicate a tangentially flat hidden neuron Choose to replicate a hidden neuron i0 satisfy-
ing ∂L(P)

∂si0

∣∣∣
P=P

= 0, for all tangential direction vi0 ’s.

2. Replicate with active propagation Let γl ̸= 0, ∀ l ∈ L.

Proposition M.1. Unit replication process conforming to either one of the two methods is sufficient
and necessary for avoiding escape neurons.

Proof. x

Sufficiency:

Let us discuss the first way, replicating a tangentially flat hidden neuron. Since we have:

∂L(P)

∂si0

∣∣∣∣
P=P

=
∑
j∈J

hji0d
vi0
ji0

· vi0 = 0, ∀ tangential direction vi0 of wi0 . (30)

Based on the definition of type-1 local minima, we know that:

d
vi0
ji0

· vi0 = 0, ∀j ∈ J , ∀ tangential direction vi0 of wi0 . (31)
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After unit replication, we have: For all l ∈ L, (1) d
v
il0

jil0
= d

vi0
ji0

, ∀ j ∈ J , for all tangential direction
vi0 of wi0 ; (2) wil0

= βlwi0 with βl > 0, which means any tangential direction of wil0
are also a

tangential direction of wi0 . These, combined with Equation (31), leads to:

d
v
il0

jil0
· vil0

= 0, ∀ l ∈ L, ∀ j ∈ J , ∀ tangential direction vil0
of wil0

. (32)

According to Definition 4.1, such il0 cannot be escape neurons.

Next, let us discuss the second way, replicating with active propagation. If the replicated hidden
neuron is a tangentially flat hidden neuron, then the discussion above will already guarantee that
the unit replication process does not introduce escape neurons. Thus, we only need to focus on the
following type of neurons:

∂L(P)

∂si0

∣∣∣∣
P=P

=
∑
j∈J

hji0d
vi0
ji0

· vi0 > 0, for some tangential direction vi0 of wi0 . (33)

In this case, for any direction vi0 with ∂L(P)
∂si0

∣∣∣
P=P

=
∑

j∈J hji0d
vi0
ji0

· vi0 > 0, we have that, after
unit replication, in the same direction (vil0

= vi0 ):

∂L(P)

∂sil0

∣∣∣∣∣
P=P

′

=
∑
j∈J

hjil0
d
v
il0

jil0
· vil0

= γl
∑
j∈J

hji0d
vi0
ji0

· vi0 = γl
∂L(P)

∂si0

∣∣∣∣
P=P

̸= 0, (34)

if γl > 0, ∀ l ∈ L.

For any direction vi0 with ∂L(P)
∂si0

∣∣∣
P=P

=
∑

j∈J hji0d
vi0
ji0

· vi0 = 0, we know that:

d
vi0
ji0

· vi0 = 0, ∀ j ∈ J, (35)

since the parameter before unit replication is a type-1 local minimum. After unit replication, we
have that, in the same direction, in the same direction (vil0

= vi0 ):

∂L(P)

∂sil0

∣∣∣∣∣
P=P

′

=
∑
j∈J

hjil0
d
v
il0

jil0
· vil0

= γl
∑
j∈J

hji0d
vi0
ji0

· vi0 = γl
∂L(P)

∂si0

∣∣∣∣
P=P

= 0, (36)

and we also have:
d
v
il0

jil0
· vil0

= d
vi0
ji0

· vi0 = 0, ∀ j ∈ J, ∀ l ∈ L. (37)

This shows that replicating with active propagation also avoids introducing escape neurons.

Thus, a unit replication strategy conforming to at least one of the two methods mentioned above is
sufficient to avoid generating escape neurons.

■ Necessary:

We conduct this proof by contradiction. If we replicate a hidden neuron i0 that is not tangentially
flat (described by Equation (33)) with γl = 0 for some l ∈ L, we can prove that there must exist
escape neurons in the resulting parameters. For convenience, let us specify that l̂ has γl̂ = 0.

Since Equation (33) holds, we can find a direction, denoted by a unit vector v̂i0 , satisfying v̂i0 ·wi0 =

0 and ∂L(P)
∂ŝi0

∣∣∣
P=P

=
∑

j∈J hji0d
vi0
ji0

· v̂i0 > 0, this must mean that there exists ĵ with:

d
vi0

ĵi0
· v̂i0 ̸= 0. (38)

After unit replication, we have that, for the hidden neuron il̂0, the loss function’s derivative with
respect to its input weight in the direction of v̂

il̂0
= v̂i0 is:

∂L(P)

∂s
il̂0

∣∣∣∣∣
P=P

=
∑
j∈J

h
jil̂0

dv

jil̂0
· v̂

il̂0
= γl̂

∑
j∈J

hji0d
vi0
ji0

· v̂i0 = 0. (39)
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Additionally, we also have:
dv

ĵil̂0
· v̂

il̂0
= d

vi0

ĵi0
· v̂i0 ̸= 0. (40)

Equation (39) and Equation (40) signifies the existence of one escape neuron il̂0 after unit replication.

M.2.2 PRESERVING STATIONARITY CONDITIONS

The first half of Proposition 4.8 is the sufficient and necessary conditions for preserving conditions
for stationarity during unit replication.

M.3 PUTTING THINGS TOGETHER

We want to avoid generating escape neurons while preserving conditions for stationarity at the same
time. The necessary and sufficient condition for the occurrence of these two events should be the
intersection of the necessary and sufficient conditions in Appendix M.2.1 and Proposition 4.8, which
is exactly the necessary and sufficient condition of Proposition 4.8.

N RESULTS REGARDING INACTIVE UNITS

Figure 18: inactive units

There are 2 types of inactive units, depicted in Fig-
ure 18:
(2-1) Orthogonal units14

Add more hidden neurons, which are indexed with
i0 ∈ I0, where hji0 is arbitrary, and wi0 ·xk = 0, for
all k ∈ K.
(2-2) Negative (positive) units.
Suppose α− = 0. Add new hidden neurons i− ∈ I−, where wi− · xk < 0 for all k ∈ K, and hji−

are arbitrary for all j ∈ J . This is what we call negative units. This embedding scheme can likewise
be extrapolated for when α+ = 0, giving positive units.

N.1 RESULTS REGARDING ORTHOGONAL UNITS

This type of network embedding does not generally preserve conditions for stationarity or local
minimality. Nonetheless, based on our definition of stationary points in Section 3.2 and our analysis
of local minima in Section 4.1, one can carry out investigations into them on a case-by-case basis
when analyzing a specific example.

Let us first discuss whether stationarity will be preserved under this network embedding scheme. Let
us denote the parameters after adding orthogonal units by P′. Since the newly added hidden neurons
satisfy wi0 · xk = 0 for all k ∈ K, we know that ∂L(P)

∂hji0

∣∣∣
P=P′

= 0, and ∂L(P)
∂ri0

∣∣∣
P=P′

equals zero.
Thus, whether the tangential derivative preserves the condition in Definition 3.6 determines whether
stationarity is preserved. For the tangential derivative, we have:

∂L(P)

∂si0

∣∣∣∣
P=P′

=
∑
j∈J

hji0d
vi0

ji0 · vi0 . (41)

Stationarity would require the above to be non-negative for all possible tangential direction vi0 ,
which cannot be guaranteed for general cases. Certain trivial cases where definite conclusions can
be established are when the network has reached zero loss (dvi0

i0 = 0 for all possible vi0 ) or hji0 = 0
for all j ∈ J . In those cases, stationarity will be preserved.

We are not able to have general conclusions regarding whether the insertion of orthogonal units
preserves type-1 local minimality as well since orthogonal units do not specify anything regarding
whether they are escape neurons in general.

14Orthogonal units are not discussed in Fukumizu et al. (2019).
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N.2 RESULTS REGARDING NEGATIVE UNITS

Proposition N.1. Suppose that α− = 0. Adding negative units preserves the stationarity of station-
ary points.

Proof. Let us denote the parameters after the insertion of negative units by P
′
. It is easy to check

that the parameters associated with the originally existing hidden neurons i ∈ I still satisfy the
conditions for stationarity after inserting the negative units, since the negative units do not change
the network output yk for all inputs xk. For the negative units i− ∈ I−, we observe the following.

dji− =
∑
k:

w−
i ·xk>0

α+ekjxk = 0, (42)

since this summation will be over an empty set of k. This leads to ∂L(P)
∂hji−

∣∣∣
P=P

′ = 0 and
∂L(P)
∂ri−

∣∣∣
P=P

′ = 0 according to their formulae in Equations (4) and (5).

Moreover, we have d
vi−
ji− = dji− for tangential direction vi−of wi− , since wi− is orthogonal to no

xk’s. This shows that the tangential derivative of the loss function with respect to wi− is also zero,
according to Equation (6).

Remark N.2. We remind the readers that Fukumizu et al. (2019) has already proved that adding
negative units will preserve the local minimality of the network.

O RESULTS REGARDING INACTIVE PROPAGATION

Figure 19: inactive propagation

Inactive propagation can be carried out as shown in
Figure 19: add hidden neurons i× ∈ I×, where wi×

is taken arbitrarily and hji× = 0, ∀ j ∈ J , as shown
in Figure 19.

This type of network embedding also does not pre-
serve stationarity or type-1 local minimality gener-
ally.

We start by discussing the preservation of stationarity.
Let us denote the parameters after adding units with
inactive propagation by P′. In this case, the added
hidden neurons have hji× = 0 for all j ∈ J . As a result, according to Equation (5) and Equation (6),
the radial derivative (which exists only when wi× ̸= 0) and tangential derivatives (towards all
tangential directions) must all be zero. However, the derivative with respect to output weight might
not be zero:

∂L(P)

∂hji×

∣∣∣∣
P=P′

= wi× · dji× . (43)

Thus, the stationarity condition is not guaranteed to hold in general after adding inactive propagation
units.

However, one may also notice that there are certain ways of enforcing stationarity: If we choose
wi× = 0 or wi× = βwi with i ∈ I , β > 0, then we equate Equation (43) to zero and preserves
stationarity. The former also belongs to the case of orthogonal units, and the latter also belongs to
the case of unit replication.

Then, we discuss whether type-1 local minimality is preserved. Preserving type-1 local minimality
entails preserving stationarity and avoiding escape neurons, according to Theorem 4.2. We have
discussed in the above that stationarity is not necessarily preserved in general. Moreover, regard-
ing escape neurons, one can find that since an inactive propagation unit must have their tangential
derivative being zero (since hji× = 0), without further strong restriction on the dji× ’s, the inactive
propagation unit is highly likely an escape neuron.
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P COMPARISON OF THEOREM 10 OF FUKUMIZU ET AL. (2019) AND
PROPOSITION 4.8

Fukumizu et al. (2019) attempted to address the same question of whether local minimality is pre-
served by network embedding for our setup (which is also non-smooth) with its Theorem 10. It
managed to find a specific scheme of unit replication that turns local minima into saddles, poten-
tially contradicting Proposition 4.8. However, one can verify that the assumption in their theorem
does not conform to our setting, which we explicate below.

Theorem 10 of Fukumizu et al. (2019) requires a constructed F matrix not to be a zero matrix to
construct positive and negative eigenvalues for the Hessian matrix at the resulting parameters after
unit replication. In this way, it is shown that the parameters after unit replication constitute a strict
saddle. Please refer to Fukumizu et al. (2019) for more detail.

However, it turns out that, for the empirical squared loss, which is a widely used loss, the F matrix
is zero at a type-1 local minimum, which we prove in the rest of this section. Hence Theorem 10 of
Fukumizu et al. (2019) cannot say anything about such a situation.

Lemma P.1. Suppose a set of parameters P is a stationary point in our setting. If an input wi is
such that xk ·wi ̸= 0, for all k ∈ K (an assumption also taken by Theorem 10 of Fukumizu et al.
(2019)), we must have that dji = 0 for all j ∈ J .

Proof. If wi · xk ̸= 0 for all k ∈ K, then the network is continuously differentiable. Thus we must
have ∂L(P)

∂si
= 0 for all vi’s. Otherwise, it will not be a stationary point.

Moreover, the fact that the stationary point we are investigating is a type-1 local minimum gives:

dji · vi = dvi
ji · vi = 0, for any tangential direction vi of wi. (44)

Moreover, since the parameter before unit replication P is a stationary point, we must have:

∂L(P)

∂hji

∣∣∣∣
P=P

= wi · dji = 0. (45)

Thus, dji0 must lies in the tangential space of wi. If dji0 ̸= 0, then it must be parallel to some unit
vector vi satisfying vi ·wi = 0, which contradicts Equation (44).

Then we investigate the F matrix. It is helpful to recap the setting of Theorem 10 by Fukumizu et al.
(2019). First, they studied the ReLU activation function, meaning α+ = 1, α− = 0. Moreover, they
only discussed replicating a hidden neuron i0 with

wi0 · xk ̸= 0, ∀ k ∈ K, (46)

which we account for in the above helper lemma. From Fukumizu et al. (2019), we know that
F ∈ Rd×|J| has each of its column being:

F:,j =
∑
k∈K

ekj
∂ρ(xk ·wi0)

∂wi0

=
∑
k:

xk·wi0
>0

ekjxk = dji0 . (47)

Notice that the above derivative is not hindered by the non-differentiability in the activation function
thanks to Equation (46).

Remember that we have proved dji0 = 0 for all j ∈ J , rendering F a zero matrix.

Q THE APPLICATIONS OF THE INSIGHT FOR NETWORK EMBEDDING

Our discussion on network embedding in Section 4.3 extends multiple previous results that did not
consider non-differentiable cases.

Wu et al. (2019); Wang et al. (2024) proposed a training scheme where one neuron is split at an
underfitting local minimum to create an escapable saddle point. Such a training scheme can lower
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the cost of training since the training can start from a smaller (pretrained) network. Proposition 4.8
effectively shows how to implement such a scheme for scalar-output networks, where all the local
minima are all of type-1: simply replicate a neuron whose input weight has non-zero tangential
derivative and choose γl ≤ 0. Such an insight might also be instrumental for multidimensional-
output networks since type-2 local minima should be rare, as we discussed in Appendix F.2.1.

Our results regarding stationarity preservation also serve as constructive proof that one can always
embed a stationary point of a narrower network into a wider network. In other words, the stationary
points of wider networks “contain” those of the narrower networks. This is termed the embedding
principle, discussed in Zhang et al. (2021) for smooth networks.

Section 4.3 also provides a perspective of understanding the merit of overparameterization for opti-
mization. Stationary points and spurious local minima might worsen the performance of GD-based
optimization. However, to our rescue, network embedding can cause some stationary points (local
minima, resp.) to lose stationarity (local minimality, resp.). This might explain why wider networks
tend to reach better training loss. It is also easy to check that embedding parameters that are not sta-
tionary points (local minima) will not result in stationary points (local minima). Similar phenomena
are noted in Şimşek et al. (2021); Fukumizu et al. (2019); Zhang et al. (2021) for smooth networks.
A meaningful next step is to quantify how manifolds of saddle points and local minima scale with
network width (Şimşek et al., 2021) for ReLU-like networks.
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