
Under review as a conference paper at ICLR 2024

GRAPH NEURAL PROCESSES AND THEIR APPLICATION
TO MOLECULAR FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural processes (NPs) are models for meta-learning which output uncertainty es-
timates. So far, most studies of NPs have focused on low-dimensional datasets of
highly-correlated tasks. While these homogeneous datasets are useful for bench-
marking, they may not be representative of realistic transfer-learning. In particu-
lar, applications in scientific research may prove especially challenging due to the
potential novelty of meta-testing tasks. Drug discovery is one such research area
that is characterized by sparse datasets of many functions on a shared molecular
space. In this paper, we study the application of graph NPs to drug discovery with
DOCKSTRING, a diverse dataset of docking scores. Graph NPs show competi-
tive performance in few-shot learning tasks relative to supervised learning base-
lines common in chemoinformatics, as well as alternative techniques for transfer
learning and meta-learning. In order to increase meta-generalization to divergent
test functions, we propose fine-tuning strategies that adapt the parameters of NPs.
We find that adaptation can substantially increase NP’s regression performance
while maintaining good calibration of uncertainty estimates. Finally, we present
a Bayesian optimization experiment which showcases the potential advantages of
NPs over Gaussian Processes in molecular applications.

1 INTRODUCTION

A major difficulty in the application of machine learning (ML) to drug discovery is the scarcity of
labeled data. Experimental assays are expensive and time-consuming, and data collection is biased
towards certain bioactivities (e.g. protein targets deemed medically relevant or commercially prof-
itable) or molecules (e.g. those that are easier to acquire or synthesize). As a result, chemoinformatic
datasets are highly sparse and non-overlapping. In a typical pharmaceutical company’s chemical li-
brary, it is estimated that less than 1% of all the compound-assay pairs have been measured (Irwin
et al., 2020). Even more strikingly, the public database ChEMBL (Mendez et al., 2019) is roughly
0.01% complete (ChEMBL).

Meta-learning, or “learning to learn”, is a machine-learning paradigm that attempts to achieve fast
adaptation to novel tasks given a small number of labeled datapoints (Finn et al., 2017). The meta-
learning setting may be appropriate in drug discovery (Nguyen et al., 2020), where there exist a large
amount of bioactivity functions that have been measured historically. Examples are physicochemi-
cal properties, protein binding affinities, phenotypic assays or ADMET endpoints. Typically, each
function comprises too few datapoints to train a large neural model, but collectively a large set of
bioactivities may be useful to learn biases of molecular functions, as well as molecular representa-
tions. However, given the sheer diversity of molecular functions that are available, extra care should
be taken to ensure that the biases learnt during meta-training are adequate for meta-testing. For
example, functions related to physicochemical properties, which are intrinsic to molecules, may be
very different from in vivo cell assays, which depend on the complex interplay between molecules
and a biological system (Bender & Cortes-Ciriano, 2021).

In addition to data efficiency and learning from sparse datasets, another feature that is desirable
in drug discovery applications is the ability to produce uncertainty estimates (Thomas et al., 2022).
This is especially important in settings that involve molecular selection and subsequent experimental
validation, such as Bayesian optimization (BO) or virtual screening (VS). Experimental measure-
ments are expensive and time-consuming, so commiting to the wrong set molecules can be extremely

1

Under review as a conference paper at ICLR 2024

costly to the medicinal chemist (Valerie Jentzsch, 2023). Well-calibrated uncertainty estimates can
help users restrict their selection to molecules with reasonably confident predictions, or balance ex-
ploration and exploitation by selecting some novel but uncertain molecules along with others more
conservative and certain. Neural processes (NPs) (Garnelo et al., 2018a;b) are a family of models
for probabilistic meta-learning that can estimate the uncertainty of each prediction.

The primary contributions of this work are:

1. Benchmarking NPs on fingerprints (FPs) and molecular graphs (MGs) against a variety of
single-task, transfer-learning and meta-learning baselines using DOCKSTRING, a diverse
dataset of docking scores.

2. Proposing a simple yet effective parameter-adaptation strategy during meta-testing that in-
creases meta-generalization to divergent test functions.

3. Showing empirically that the random sampling of contexts and targets while meta-training
NPs contributes to their good calibration of uncertainty estimates.

2 RELATED WORK

Our work builds on a growing body of literature about the application of meta-learning to drug dis-
covery. Nguyen et al. (2020) was an early work that reported the benefits of model-agnostic meta-
learning (MAML) for bioactivity classification. More recently, specific benchmarks and datasets
have been introduced to evaluate meta-learning methods in drug discovery. FS-Mol is a popular
dataset for few-shot learning (FSL) with realistic bioactivity values from ChEMBL (Stanley et al.,
2021). However, it is geared primarily towards classification, whereas NPs are usually used in a
regression setting, and it splits molecules randomly, which may lead to an overestimation of per-
formance (Sheridan, 2013; Martin et al., 2017; Simm et al., 2021). DOCKSTRING is a dataset
of docking scores of 260k ligands against 58 diverse proteins (Garcı́a-Ortegón et al., 2022). It is
complete, allowing flexible sampling of variably-sized subsets, and it splits molecules by scaffold,
which minimizes the risk of data leakage from chemical analogues. ADKF-IFT (Chen et al., 2023)
is a deep Gaussian process (GP) for meta-learning molecular datasets that was evaluated on FS-Mol
using FP representations. Like NPs, deep GPs are neural models that produce uncertainty estimates.
Applying NPs to molecular property prediction has been explored recently for the first time (Lee
et al., 2022; Garcia-Ortegon et al., 2022; Chan et al., 2023), yielding promising results. These works
did not compare FP and MG representations, and it is unclear which is more advantageous in the
meta-learning setting. Chan et al. (2023) addresses function heterogeneity in bioactivity datasets
by clustering similar assays, effectively denoising predictions from across-assay variability. This
strategy could be complementary to ours, which is based on parameter adaptation.

In the drug discovery literature, transfer learning in the low-data setting is often approached from the
perspective of imputation of sparse datasets (Walter et al., 2022; Luukkonen et al., 2023). Alchemite
(Irwin et al., 2020) is a commercial model for imputation of bioactivities. It resembles NPs in that it
obtains information about the test function from a set of context points. A related family of models
is proteochemometric models, which predict affinity values for protein-ligand pairs (Wikberg et al.,
2003; Bongers et al., 2019). However, they rely on explicit protein representations, which makes
them less general.

3 MOLECULAR GRAPH NEURAL PROCESSES (MG-NPS)

3.1 NEURAL PROCESSES (NPS)

Consider a meta-training dataset with observations of real-valued functions f1, . . . , fn,
fi : X → R. In this paper, X represents the space of chemically feasible molecules, and x ∈ X
refers to a single molecule represented either as a fingerprint vector (FP) or as a molecular graph
(MG). Each molecular function fi is observed at a set of Oi input points xio ∈ XOi , with known
labels yio =

(
yio,1, . . . , y

i
o,Oi

)
, where yio,j = fi(x

i
o,j). Additionally, consider a meta-test function f ,

observed at a small set of C context points (xc, yc) = ((xc,1, yc,1) , . . . , (xc,C , yc,C)). Our goal is
to predict the values yt of f at a set of T target locations xt ∈ X T as accurately and efficiently as

2

Under review as a conference paper at ICLR 2024

possible, using the example context points (xc, yc) and the observations from the example functions
fi, . . . , fn.

A neural process (NP) is a parametric model for meta-learning that aims to describe the predictive
distribution p (yt | xc, yc ;xt)1. NPs assume conditional independence between the targets and a
Gaussian predictive distribution:

q (yt | xc, yc ;xt) =
T∏
j=1

N
(
yt,j ; µθ (xt,j) , σ

2
θ (xt,j)

)
.

In this paper we use two flavors of NPs: the conditional NP (CNP) (Garnelo et al., 2018a) and the
latent NP (LNP) (Garnelo et al., 2018b). Their predictive mean µθ(x) and variance σ2

θ(x) for an
input x are generated in three steps. First, contexts (xc,j , yc,j) are mapped by an encoder network
hθ to a local datapoint representation rj . Then, all context encodings rj are combined into a global
function encoding r through a commutative operation, usually the sum or the mean. Commutativity
guarantees invariance to contexts’ permutations. Finally, a decoder network gθ maps the function
encoding r and the input location x to the predictive mean and variance. In the CNP, the decoding
step is deterministic. In the latent LNP, decoding involves sampling a latent random variable z from
the approximate posterior q̃ϕ, which is then fed as an input instead of r to the decoder network gθ.
A summary of the encoding and decoding process is provided in Appendix A.1.

The parameters of the CNP ψ = {θ} are trained by backpropagation from the predictive log-
likelihood Lψ(yt | xc, yc ;xt) = log qθ(yt | xc, yc ;xt). During meta-training, each meta-train
function fi is seen once every epoch, but not all observations

(
xio, y

i
o

)
are used at each iteration.

Rather, the Oi observations are randomly subsampled to create two disjoint sets: a context set(
xic, y

i
c

)
and a target set

(
xit, y

i
t

)
, with sizes Ci and Ti respectively, Ci + Ti ≤ Oi. The predictive

log-likelihood on the current targets is optimized given the current contexts. Therefore, the final
objective is

E
[1
n

n∑
i=1

Lψ
(
yit | xic, yic ;xit

)]
, (1)

where the expectation is with respect to the random sampling procedure. Ci and Ti can themselves
be stochastic: in our experiments, we sample them uniformly from [20, 150) at each iteration. We
find that this randomization is key to uncertainty quantification, making the model robust to varying
context and target sizes at test time. In Section 6.3 we investigate the influence of these hyperpa-
rameters on the generalization of NPs.

The parameters of the LNP ψ = {θ, ϕ} are trained by backpropagation from a function Lψ(yt |
xc, yc ;xt) = log qθ(yt | xc, yc ;xt)+ρ(ϕ, xo, y0), where a regularization term ρ(ϕ, x0, y0) reduces
the sensitivity of the encoder to any given sample (Appendix A.2). This regularization is moti-
vated by a variational Bayesian argument (Garnelo et al., 2018b). Meta-training is performed by
randomising the context and target sets, as outlined previously, yielding an objective of the form (1).

3.2 EFFECTIVE EPOCHS

Since only some observations of a function fi are sampled as contexts or targets every epoch, how
often an individual observation is seen will depend on the sample size relative to the total number
of observations for that function Oi, which for molecular datasets can vary widely (Appendix B).
In order to homogenize training across varying sample sizes and observed sets, we introduce the
concept of effective epochs ee, which we define as the average number of times an observed datapoint
is seen during training. This quantity is calculated as

eie = e
n̄

Oi
,

where e is the number of epochs and n̄ is the average sample size (sample size could itself be
random). In our experiments, the average amount of contexts and targets while training is the same
in every experiment, so effective epochs refer to views of an observation both as context and target.
Homogenizing training across different numbers of observations

1We use semicolon notation to differentiate contexts and targets, e.g. q (yt | xc, yc ;xt) in a predictive
density or L(yt | xc, yc ;xt) in an objective function. This distinction will be helpful in later sections, where
the context points could themselves be predicted, e.g. q (yc | xc, yc ;xc) or L(yc | xc, yc ;xc)

3

Under review as a conference paper at ICLR 2024

3.3 MOLECULAR GRAPH ATTENTIVE ENCODER

In order to apply NPs to molecular graphs (MGs), we expand the encoder module with a graph
neural network (GNN) that processes atom and bond features and implements message passing with
attention. Our architecture is similar to AttentiveFP (Xiong et al., 2020) but we remove recurrent
units (GRUs) (Chung et al., 2014) and change attention to a query-key-value (QKV) mechanism
Vaswani et al. (2023) to speed up computation (Appendix Section C.3.2).

4 THE CHALLENGE OF META-GENERALIZING TO REAL-WORLD FUNCTIONS

The challenge of meta-generalization (or, similarly, meta-overfitting or meta-memorization) has
been suggested previously (Yin et al., 2020). However, many meta-learning benchmarks are limited
to functions of low diversity, which may inflate the perceived robustness of meta-learning methods.
As a toy example of the challenge to meta-generalize to divergent test functions, we consider the
set of 1D sinusoid functions used in the MAML few-shot learning evaluation (Finn et al., 2017).
We perform a simple experiment to show that even a slight function modification such as a small
change in sinusoid frequency is enough to compromise meta-generalization, in both MAML and
CNPs (Figure 1 and Appendix D for details). If a small change in a simple function class over a 1D
input space can disrupt meta-generalization, mismatches between meta-training and meta-testing in
the real world are likely to cause problems too.

4 2 0 2 4
4

3

2

1

0

1

2

3

4

CNP (in distribution)

4 2 0 2 4

CNP (out of distribution)

4 2 0 2 4

MAML (in distribution)

4 2 0 2 4

MAML (out of distribution)

MAML (out of distribution)

ground truth context points prediction MAML pre-update prediction

Figure 1: Meta-generalization experiment on 1D sinusoids. CNPs (left) and MAML (right) meta-
trained on sinusoids with frequency f = 1 generalize to similar test functions. However, changing
the frequency to f = 1.5 leads to catastrophic loss of generalization. Quantitative results are shown
in Table D.1.

Drug discovery could potentially benefit greatly from meta-learning but such mismatches between
meta-training and meta-testing may be unavoidable in scientific applications. First, in a research
context novel functions of interest may not have known relatives available for meta-training. Fur-
thermore, if the overlap of labeled datapoints is limited, it may not be obvious whether two functions
are similar enough for meta-learning. This may occur in sparse bioactivity databases like ChEMBL.
Finally, drug discovery encompasses a large variety of research questions and experimental tech-
niques, which induces extreme function heterogeneity (Chan et al., 2023). While these difficulties
complicate the application of meta-learning to drug discovery, transfering knowledge across very
different, even seemingly unrelated functions is possible through parameter adaptation (Vinod et al.,
2023). In this paper, we explore strategies to adapt the parameters of NPs to novel functions during
meta-testing.

5 PARAMETER ADAPTATION DURING META-TESTING

When a NP is applied to a test function f with contexts (xc, yc), its predictions on the con-
texts themselves may be inaccurate. In particular, if a NP fails to meta-generalize, the predicted
context density q(yc | xc, yc ;xc) =

∏C
j N (yc,j ;µθ(xc,j), σ

2
θ(xc,j)) may be inadequately low,

even though the contexts are given as input. In this situation, the loss on the context predictions
Lψ(yc | xc, yc ;xc) can be exploited to adapt the weights to the test function f , potentially improv-
ing meta-generalization. We studied two strategies for parameter adaptation by backpropagation
during meta-testing: fine-tuning and a single step of gradient descent on a MAML-trained NP.

4

Under review as a conference paper at ICLR 2024

5.1 FINE-TUNING

We fine-tuned NPs by mimicking the meta-training procedure on the test function f . To this end,
at each epoch we split the test function’s contexts (xc, yc) into new contexts and new targets, as if
they were the observations of a meta-train function. Then, we used the new contexts (xc′ , yc′) and
targets (xt′ , yt′) to evaluate the NP’s objective Lψ(yt′ | xc′ , yc′ ;xt′) and backpropagate as usual.
In this way, fine-tuning during meta-testing resembled meta-training, but instead of iterating over
many train functions every epoch, it focused on a single test function. As in meta-training, the new
contexts and targets were disjoint, with sizes C ′ + T ′ ≤ C.

We adapted the weights for 20 effective epochs, sampling C ′ = T ′ = 20 new contexts and targets
every iteration. The number of epochs was adjusted based on the original context size C to achieve
the desired effective epochs. The only exception from this protocol was the few-shot learning ex-
periment with 20 observations, where we used C ′ = T ′ = 5. To minimize the risk of overfitting,
we fine-tuned the last layers and froze the rest. Specifically, we always adapted the last two layers
of the decoder network gθ, and in LNPs we also adapted the last two layers of the encoder gϕ (see
Appendices A.1 and C for architectural notation and details). The latter allowed us to optimize the
regularization term of the LNP objective Lθ,ϕ, which depends on the encoder (Appendix A.2).

5.2 MODEL-AGNOSTIC META-LEARNING (MAML)

Model-agnostic meta-learning (MAML) (Finn et al., 2017) is a meta-training approach to find model
parameters that can be rapidly adapted to test functions in one or more steps of gradient-descent. At
each meta-training iteration t, MAML simulates an adaptation experiment in two stages: the inner
update (the simulated adaptation) and the outer update (the actual update of the model’s parameters).
First, during the inner update, it samples a set of support points from a test function, computes
the loss of their predictions (inner loss), and takes a single step of gradient descent to adapt the
model’s parameters from θt to θ′t. Second, during the outer update, MAML samples another set of
query points from the same function, computes the prediction loss on those points using θ′t (outer
loss), and backpropagates through the inner update to find new parameters θt+1. Since the inner
update involves a step of gradient descent, the outer update involves computing a gradient through a
gradient, i.e. computing the Hessian of the parameters.

Similar to the support and query sets in MAML, meta-training NPs entails sampling two sets of
observations: the contexts and the targets. The support set in MAML informs the prediction of
the query set, analogous to how the context set in NPs informs the prediction of targets. We can
meta-train NPs with MAML by computing the inner loss on the context points and the outer loss
on the target points. At each iteration t, during the inner update a prediction on the contexts of a
train function fi is made, with loss Lψt(y

i
c | xic, yic ;xic). A single step of gradient descent is taken

to adapt the parameters from ψt to ψ′
t. During the outer update, a prediction on the targets is made

using the adapted parameters ψ′
t, with loss Lψ′

t
(yit | xic, yic ;xit). Finally, we backpropagate through

the inner update to find new parameters ψt+1. Later, at meta-testing, we adapt NPs by taking a
single iteration of gradient descent on the loss of the contexts of f , Lψ(yc | xc, yc ;xc).
Computing the Hessian of all MG-NP parameters was memory-prohibitive, so we only applied
MAML to some layers, similar to Raghu et al. (2020). In particular, we applied it to the same
layers adapted in the fine-tuning experiments. During meta-training, these layers underwent the
inner and outer update cycle, while other layers experienced a single update per iteration, as usual.
Later, during meta-testing, the MAML layers were adapted and the rest were frozen. In addition,
backpropagating through gradients can lead to training instability, so we implemented modifications
from Antoniou et al. (2019) to increase robustness.

6 EXPERIMENTS

6.1 FEW-SHOT LEARNING (FSL)

We evaluated few-shot learning (FSL) by MG-NPs on docking scores from the DOCKSTRING
dataset and compared their performance to a variety of baselines, including single-task, transfer
learning and meta-learning models. To recreate a low-data setting, we created a small training set by
sampling a subset of 2.5k molecules from the DOCKSTRING training set, and a test set by sampling

5

Under review as a conference paper at ICLR 2024

the same number from the DOCKSTRING test set (Appendix B). DOCKSTRING splits molecules
by scaffold, which minimizes the risk of data leaking due to analogues (Sheridan, 2013; Martin et al.,
2017; Simm et al., 2021). We trained all models on the 2.5k molecules from the training set. At test
time, we evaluated meta-learning models with context points sampled randomly from the training
set. We inspected a broad range of context points, from 20 to 1000, because the number of observa-
tions per function in bioactivity datasets may fluctuate considerably (Appendix B). Implementation
details for all models are given in Appendix C.

Table 1: FSL of ESR, a protein with medium similarity to the meta-training set.

ESR2 (medium correlation), R2 · 100

Context set size 20 50 100 200 500 1000

Single task

Dummy regressor -5.5 (1.9) -3.5 (1.1) -3.0 (1.1) -3.5 (0.8) -3.3 (0.4) -3.1 (0.3)
FP-RF -5.3 (3.0) 6.6 (2.0) 11.2 (1.4) 15.4 (1.4) 21.0 (0.5) 25.1 (0.2)
FP-GP 2.0 (1.0) 8.3 (1.3) 14.0 (1.3) 19.9 (0.9) 26.7 (0.4) 31.8 (0.4)
GNN -10.7 (4.9) -7.4 (3.6) 1.8 (3.9) 6.4 (3.9) 14.8 (3.5) 19.8 (4.2)

Transfer
learning

GNN (random) 5.7 (3.2) 19.1 (2.1) 10.8 (4.9) 17.8 (2.5) 24.3 (2.0) 29.2 (1.6)
GNN (fine-tuned) 34.9 (1.5) 37.8 (0.8) 35.2 (1.1) 30.3 (1.2) 30.3 (1.0) 34.2 (0.6)

Meta-
learning

GNN (MAML) 11.5 (11.1) 12.7 (11.0) 11.3 (10.5) 10.8 (10.3) 9.8 (10.4) 11.1 (10.6)
FP-CNP 29.0 (0.8) 26.0 (2.0) 27.2 (1.3) 28.8 (0.7) 29.1 (0.6) 29.7 (0.5)
FP-LNP -30.3 (1.2) -30.3 (1.2) -30.3 (1.2) -30.3 (1.2) -30.3 (1.2) -30.3 (1.2)
MG-CNP 43.2 (1.0) 44.9 (0.7) 45.3 (0.6) 45.6 (0.5) 46.3 (0.5) 46.6 (0.6)
MG-LNP 39.9 (1.3) 40.0 (1.3) 40.1 (1.2) 40.3 (1.2) 41.0 (1.0) 41.5 (0.9)

NPs with
parameter
adaptation

FP-CNP (MAML) 25.8 (2.6) 24.5 (2.0) 24.7 (1.4) 26.7 (1.3) 26.8 (1.0) 27.9 (0.7)
FP-CNP (fine-tuned) 30.4 (0.8) 29.5 (1.2) 29.9 (0.9) 31.4 (0.7) 33.3 (0.3) 34.0 (0.4)
FP-LNP (MAML) 6.8 (5.4) 8.0 (4.6) 8.2 (4.2) 6.9 (4.3) 7.4 (4.2) 7.3 (4.2)
FP-LNP (fine-tuned) 29.6 (0.6) 30.6 (0.6) 29.8 (0.5) 29.0 (0.8) 30.4 (0.6) 29.8 (0.7)
MG-CNP (MAML) 44.0 (0.9) 44.9 (0.9) 44.8 (1.2) 45.9 (0.5) 46.7 (0.5) 47.0 (0.4)
MG-CNP (fine-tuned) 45.0 (0.9) 45.3 (0.8) 46.9 (0.8) 49.7 (0.4) 51.3 (0.4) 52.5 (0.4)
MG-LNP (MAML) 38.4 (1.3) 39.5 (0.9) 39.9 (0.9) 39.9 (0.9) 40.5 (0.8) 41.1 (0.7)
MG-LNP (fine-tuned) 43.3 (0.9) 42.8 (0.9) 46.2 (0.6) 47.3 (0.7) 49.5 (0.4) 50.4 (0.6)

ESR2 (medium correlation), NLPD
Single task FP-GP 0.52 (0.01) 0.40 (0.01) 0.35 (0.01) 0.31 (0.00) 0.26 (0.00) 0.22 (0.00)

Meta-
learning

FP-CNP 1.69 (0.06) 1.86 (0.10) 1.76 (0.07) 1.65 (0.04) 1.63 (0.04) 1.60 (0.04)
FP-LNP 1.52 (0.01) 1.52 (0.01) 1.52 (0.01) 1.52 (0.01) 1.52 (0.01) 1.52 (0.01)
MG-CNP 1.04 (0.01) 1.00 (0.01) 0.98 (0.01) 0.98 (0.01) 0.97 (0.01) 0.97 (0.01)
MG-LNP 1.08 (0.01) 1.07 (0.01) 1.07 (0.01) 1.07 (0.01) 1.06 (0.01) 1.05 (0.01)

NPs with
parameter
adaptation

FP-CNP (MAML) 1.69 (0.10) 1.77 (0.13) 1.70 (0.10) 1.60 (0.05) 1.57 (0.03) 1.53 (0.02)
FP-CNP (fine-tuned) 1.18 (0.01) 1.20 (0.02) 1.16 (0.01) 1.16 (0.01) 1.17 (0.01) 1.21 (0.01)
FP-LNP (MAML) 1.32 (0.04) 1.30 (0.03) 1.30 (0.03) 1.31 (0.03) 1.31 (0.03) 1.31 (0.03)
FP-LNP (fine-tuned) 1.21 (0.02) 1.15 (0.00) 1.20 (0.01) 1.22 (0.01) 1.27 (0.01) 1.34 (0.01)
MG-CNP (MAML) 1.03 (0.01) 1.00 (0.01) 0.99 (0.01) 0.98 (0.01) 0.97 (0.01) 0.96 (0.01)
MG-CNP (fine-tuned) 0.98 (0.01) 0.95 (0.01) 0.94 (0.01) 0.91 (0.01) 0.89 (0.01) 0.87 (0.01)
MG-LNP (MAML) 1.05 (0.01) 1.04 (0.01) 1.04 (0.01) 1.04 (0.01) 1.03 (0.00) 1.02 (0.01)
MG-LNP (fine-tuned) 1.04 (0.02) 1.01 (0.01) 0.96 (0.01) 0.95 (0.01) 0.92 (0.01) 0.91 (0.01)

Table 1 shows ESR2, a protein whose docking scores have medium correlation to proteins in the
meta-train set. The lower the similarity of a function to the meta-train set, the more challenging
for meta-learning models, and the greater the potential benefit of parameter adaptation. Other tar-
gets with high correlation (PARP1) and low correlation (PGR) are shown in Appendix E. When the
mismatch between meta-training and meta-testing is low (as for PARP1), all meta-learning methods
outperform every single-task model in the low-data regime, as expected. However, when the mis-
match grows (ESR2 and PGR), the biases learnt during meta-training could become detrimental to
prediction, leading to worse performance by meta-learning methods than even a dummy regressor in
some cases. Parameter adaptation can greatly improve predictions, especially when there is a mis-
match. In general, the best adaptation method appears to be fune-tuning, whereas MAML suffers
from training instability, yielding large error bars, even after implementing modifications to increase
robustness suggested by (Antoniou et al., 2019). In general, CNPs perform better than LNPs, al-

6

Under review as a conference paper at ICLR 2024

though LNPs can achieve better negative log predictive density (NLPD) when the mismatch is low.
Regarding molecular representations, MG-NPs perform significantly better than FP-NPs. The MG-
CNP ranks consistently as the best model in terms of the coefficient of determination R2 by a large
margin. However, the FP-GP shows the best calibration according to the NLPD. We will examine the
MG-CNP in the following sections, and will compare the MG-CNP and FP-GP in a BO experiment
in Section 6.4.

6.2 CALIBRATION OF UNCERTAINTY ESTIMATES

NP predictions consist of a mean and variance value for each target point. Predictive variances can
be viewed as an estimation of the confidence that the NP places on its own predictions. A model is
well calibrated if, on average, lower predictive variances correlate with lower prediction errors.

In Figure 2 we examine the calibration of the MG-CNP and MG-LNP from Section 6.1, using the
same data split as before (Appendix B). We ranked the 2.5k test datapoints by predicted variance
from most confident (lowest predicted variance) to most uncertain (highest predicted variance), and
partitioned them into 100 groups of 25 datapoints, which we call confidence percentiles. Lower
percentiles represent higher confidence. We computed the average mean square error (MSE) and
the average predicted variance within each percentile. Then, we inspected calibration with a single
context set size (scatter plots) or across a range of context set sizes (heatmaps).

10 20 30 40 60 80 100

Confidence percentiles

20

50

100

200

500

1000N
u
m

b
e
r

o
f

co
n
te

x
t

d
a
ta

p
o
in

ts

10 20 30 40 60 80 100

Confidence percentiles

20

50

100

200

500

1000N
u
m

b
e
r

o
f

co
n
te

x
t

d
a
ta

p
o
in

ts

10 20 30 40 60 80 100

Confidence percentiles

20

50

100

200

500

1000N
u
m

b
e
r

o
f

co
n
te

x
t

d
a
ta

p
o
in

ts

10 20 30 40 60 80 100

Confidence percentiles

20

50

100

200

500

1000N
u
m

b
e
r

o
f

co
n
te

x
t

d
a
ta

p
o
in

ts

10 20 30 40 60 80 100

Confidence percentiles

20

50

100

200

500

1000N
u
m

b
e
r

o
f

co
n
te

x
t

d
a
ta

p
o
in

ts

10 20 30 40 60 80 100

Confidence percentiles

20

50

100

200

500

1000N
u
m

b
e
r

o
f

co
n
te

x
t

d
a
ta

p
o
in

ts

3 2 1 0 1 2

Log variance

3

2

1

0

1

2

Lo
g
 M

S
E

= 0.81

= 0.71

3 2 1 0 1 2

Log variance

3

2

1

0

1

2

Lo
g
 M

S
E

= 0.91

= 0.93

3 2 1 0 1 2

Log variance

3

2

1

0

1

2

Lo
g
 M

S
E

= 0.85

= 0.85

3 2 1 0 1 2

Log variance

3

2

1

0

1

2

Lo
g
 M

S
E

= 0.81

= 0.78

3 2 1 0 1 2

Log variance

3

2

1

0

1

2

Lo
g
 M

S
E

= 0.94

= 0.86

3 2 1 0 1 2

Log variance

3

2

1

0

1

2

Lo
g
 M

S
E

= 0.86

= 0.78

0.3 0.2 0.1 0.0 0.1 0.2 0.30.1 0.2 0.4 0.6 0.8 1 1.2

Figure 2: Calibration of uncertainty estimates from MG-CNP and MG-LNP. Scatterplots on the left
show the log mean MSE and log mean predicted variance in each confidence percentile (percentiles
of target datapoints ranked by predicted variance). The right heatmaps depict the absolute MSE of
MG-NPs (black and white scale; black means higher error) and the MSE difference between the
fine-tuned and the unmodified models (blue and red scale; blue indicates that fine-tuned is better).

7

Under review as a conference paper at ICLR 2024

The scatter plots on the left columns of Figure 2 show the log average MSE and predicted variance
of the confidence percentiles of two models: an unmodified NP (i.e. without parameter adaptation)
in red and a fine-tuned NP in blue. Both models use 200 datapoints from the training set as contexts.
The log MSE and log variance correlate highly, with Pearson correlation ρ > 0.7, suggesting good
calibration.

The heatmaps on the right columns of Figure 2 show the MSE of unmodified and fine-tuned models
in the meta-test tasks, using context sets ranging in size from 20 to 1000. The row dimension
indicates context set size and the column dimension shows test datapoints grouped by confidence
percentile (the first column includes the 1st to the 10th percentile, the second the 11th to the 20th,
etc). In each cell, the black and white scale represents the MSE of the unmodified model. As before,
we observe that MG-NPs are well calibrated, with higher errors in the higher percentiles2. The
red and blue scale indicates the difference between the MSE of the fine-tuned and the unmodified
models. Blue cells signify that the fine-tuned model beat the unmodified one in that context size
and confidence pair. In general, most fine-tuning gains came from the most erroneous unmodified
predictions. This is to be expected: regions of the input space where predictions have higher loss
will provide a larger signal for parameter adaptation.

6.3 RANDOMIZATION OF CONTEXT AND TARGET SETS PROTECTS NPS FROM OVERFITTING

The MG-CNP, a model with millions of parameters, exhibited good uncertainty calibration in meta-
test functions despite having been trained with a maximum likelihood objective in as few as 2.5k
molecules. Even though the CNP objective lacks a regularization term like that of the LNP, we
did not find evidence that the model overfits, in the sense of underestimating posterior uncertainty.
We hypothesized that this may be due to the randomization of context and target points during
meta-training. The effect of this process may be two-fold: first, random sampling induces a combi-
natorially large number of unique views of each function, which may resemble an augmentation of
the function set; and second, by using only a subset of all observations at each epoch, the number of
effective epochs is kept low, hence reducing the risk of overfitting to any single datapoint.

Percentage of training points sampled at each iteration during meta-training

0.8 2 4 8 20 60 100

0

2

4

6

8

10

12

N
LP

D

0

500

1000

1500

2000

2500

3000

E
ff

e
ct

iv
e
 t

ra
in

in
g

 e
p

o
ch

s

0.8 2 4 8 20 60 100

0

5

10

15

20

25

30

N
LP

D

0

500

1000

1500

2000

2500

3000

E
ff

e
ct

iv
e
 t

ra
in

in
g

 e
p

o
ch

s

Train datapoints

Test datapoints

Effective training epochs

PARP1 ESR2 PGR F2 KIT

ROCK1 THRB MAOB F10 ACHE

Figure 3: Random sampling of observations during meta-training protects from overfitting. Increas-
ing the percentage of points sampled as contexts or targets leads to less unique function views and to
more effective epochs. This causes overfitting, with memorization of the labels from the train points
of the train functions (left, solid lines) and a degradation of performance on the test points of the
train functions (left, dashed line) and all points of the test functions (right, solid and dashed lines).

In previous experiments, we trained MG-NPs using between 0.8% and 6% of observations as con-
texts and targets at each iteration. To investigate if random subsampling during meta-training pro-
tects NPs from overfitting, we trained a collection of MG-CNPs with the same architecture and on
the same dataset as before, but using increasing fractions of observations as contexts and targets.
As the fraction of points sampled growed, MG-CNPs overfit to the training molecules of the train
functions, both in terms of NLPD (Figure 3) and R2 (Appendix F). This suggests that, in order to
achieve adequate meta-generalization and calibration, it is critical to tune the size of the context and
target sets.

2Increasing the context set size (i.e. moving from top to bottom in the heatmaps of Figure 2) also improved
performance and decreased MSE, as shown in Table 1 of the previous section and in Appendix E. However, the
difference was small compared to the difference across confidence percentiles, so the latter dominates the black
and white color scale.

8

Under review as a conference paper at ICLR 2024

6.4 BAYESIAN OPTIMIZATION (BO)

We evaluated the MG-CNP in sequential learning using two objective functions from DOCK-
STRING optimization benchmark, selective JAK2 and druglike F2. A description of the objectives
is provided in Appendix G. For this experiment, we created a library of 60k molecular candidates by
sampling 30k from the DOCKSTRING train set and 30k from the test set. We selected molecules
from the library in batches of 5 at a time, up to a total budget of 1000, using a lower confidence
bound (LCB) or greedy acquisition function (the latter selects molecules according to the best pre-
dicted mean). For meta-training, we created an augmented dataset of random combinations of dock-
ing scores and QED (quantitative estimate of drug-likeness). To avoid data leakage across functions,
we excluded from the augmentation procedure the proteins that participated in the objectives, i.e.
F2, JAK2 and LCK.

We compared two MG-CNPs, one meta-trained on 2.5k molecules (Figure 4, orange) and another
meta-trained on all 60k molecules from the library (green). The two MG-CNPs displayed similar
BO trajectories, suggesting that NPs could be effective for molecular optimization even in the low-
data setting. In druglike F2, they often reached the best molecule in the library or another with very
similar score (Figure 4, left). In selective JAK2, they always reached the second-best molecule in
the library (Figure 4, right). As baselines, we compared to a GP with a Tanimoto kernel on binary
FPs (blue), and to random selection (red). The GP performs significantly better than random but the
MG-CNP always finds better molecules than the GP. Interestingly, LCB acquisition (solid line) did
not do better than greedy acquisition (dashed line), neither in MG-CNPs or in the GP. While LCB
with a well-calibrated model should perform better on expectation (i.e. given an infinite budget and
choosing from a sufficiently large library of molecules), it may not always be beneficial in every
data regime.

0 200 400 600 800 1000

Number of molecules observed

9.0

8.5

8.0

7.5

7.0

6.5

6.0

D
ru

g
lik

e
 F

2
 s

co
re

0 200 400 600 800 1000

Number of molecules observed

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

JA
K

2
 s

e
le

ct
iv

it
y
 s

co
re

LCB acquisition

Gredy acquisition

FP-GP with Tanimoto kernel

MG-CNP meta-trained on 2.5k mols

MG-CNP meta-trained on 60k mols

Random

Figure 4: Bayesian optimization of druglike F2 (left) and selective JAK2 (right). MG-CNPs per-
formed much better than GPs with a Tanimoto kernel on binary FPs, always reaching either the best
or a near-best molecule. Horizontal dotted lines indicate the best and second-best molecules in the
library of 60k compounds.

7 DISCUSSION

Drug discovery poses a unique challenge to meta-learning algorithms. Our large-scale benchmark
demonstrates that NPs have competitive performance against baselines and enable transfer learning
in realistic tasks. In addition, we propose fine-tuning strategies which address one of the main
shortcomings of NPs — the inflexible way in which training points are used in meta-testing —
showing that they significantly improve meta-generalization.

NPs are particularly attractive because they perform uncertainty quantification. We find that, de-
spite the difference in their objective, CNPs and LNPs both provide well-calibrated uncertainty es-
timates. In addition, we show that randomization of context and target sets, and an adequate tuning
of their size, are critical to calibration. Furthermore, our proposed finetuning in meta-test tasks does
not degrade the quality of uncertainty estimates. Finally, we demonstrate the use of meta-learned
MG-CNPs in a Bayesian Optimization experiment. This experiment illustrates the computational
scalability and statistical efficiency of this class of algorithms.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml, 2019.

Andreas Bender and Isidro Cortes-Ciriano. Artificial intelligence in drug discovery: what is realistic,
what are illusions? Part 2: a discussion of chemical and biological data. Drug Discovery Today,
26(4):1040–1052, April 2021. ISSN 1359-6446. doi: 10.1016/j.drudis.2020.11.037.

Brandon J. Bongers, Adriaan. P. IJzerman, and Gerard J. P. Van Westen. Proteochemometrics: recent
developments in bioactivity and selectivity modeling. Drug Discovery Today: Technologies, 32-
33:89–98, December 2019. ISSN 1740-6749. doi: 10.1016/j.ddtec.2020.08.003.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Van-
derPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Min-
ing and Machine Learning, pp. 108–122, 2013.

Lucian Chan, Marcel Verdonk, and Carl Poelking. Embracing assay heterogeneity with neural
processes for markedly improved bioactivity predictions, 2023.

ChEMBL. ChEMBL Web Services. Accessed on 9th August 2023. https://www.ebi.ac.
uk/chembl/g/#search_results/all.

Wenlin Chen, Austin Tripp, and José Miguel Hernández-Lobato. Meta-learning adaptive deep kernel
gaussian processes for molecular property prediction, 2023.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling, 2014.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adap-
tation of Deep Networks. In International Conference on Machine Learning, pp. 1126–1135.
PMLR, July 2017. URL https://proceedings.mlr.press/v70/finn17a.html.

Miguel Garcia-Ortegon, Andreas Bender, and Sergio Bacallado. Conditional neural processes for
molecules, 2022.

Miguel Garcı́a-Ortegón, Gregor N. C. Simm, Austin J. Tripp, José Miguel Hernández-Lobato, An-
dreas Bender, and Sergio Bacallado. DOCKSTRING: Easy Molecular Docking Yields Better
Benchmarks for Ligand Design. J. Chem. Inf. Model., 62(15):3486–3502, August 2022. ISSN
1549-9596. doi: 10.1021/acs.jcim.1c01334.

Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and Andrew Gordon Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration, 2021.

Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shana-
han, Yee Whye Teh, Danilo J. Rezende, and S. M. Ali Eslami. Conditional Neural Processes.
arXiv, July 2018a. doi: 10.48550/arXiv.1807.01613.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali
Eslami, and Yee Whye Teh. Neural Processes. arXiv, July 2018b. doi: 10.48550/arXiv.1807.
01622.

Benedict W. J. Irwin, Julian R. Levell, Thomas M. Whitehead, Matthew D. Segall, and Gareth J.
Conduit. Practical Applications of Deep Learning To Impute Heterogeneous Drug Discovery
Data. J. Chem. Inf. Model., 60(6):2848–2857, June 2020. ISSN 1549-9596. doi: 10.1021/acs.
jcim.0c00443.

Eunjoo Lee, Jiho Yoo, Huisun Lee, and Seunghoon Hong. MetaDTA: Meta-learning-based drug-
target binding affinity prediction. In ICLR2022 Machine Learning for Drug Discovery, 2022.
URL https://openreview.net/forum?id=yzlif16IASM.

10

https://www.ebi.ac.uk/chembl/g/#search_results/all
https://www.ebi.ac.uk/chembl/g/#search_results/all
https://proceedings.mlr.press/v70/finn17a.html
https://openreview.net/forum?id=yzlif16IASM

Under review as a conference paper at ICLR 2024

Sohvi Luukkonen, Erik Meijer, Giovanni A. Tricarico, Johan Hofmans, Pieter F. W. Stouten, Gerard
J. P. van Westen, and Eelke B. Lenselink. Large-Scale Modeling of Sparse Protein Kinase Activity
Data. J. Chem. Inf. Model., 63(12):3688–3696, June 2023. ISSN 1549-9596. doi: 10.1021/acs.
jcim.3c00132.

Eric J. Martin, Valery R. Polyakov, Li Tian, and Rolando C. Perez. Profile-QSAR 2.0: Kinase
Virtual Screening Accuracy Comparable to Four-Concentration IC50s for Realistically Novel
Compounds. J. Chem. Inf. Model., 57(8):2077–2088, August 2017. ISSN 1549-9596. doi:
10.1021/acs.jcim.7b00166.

David Mendez, Anna Gaulton, A. Patrı́cia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
Marı́a Paula Magariños, Juan F. Mosquera, Prudence Mutowo, Michał Nowotka, Marı́a Gordillo-
Marañón, Fiona Hunter, Laura Junco, Grace Mugumbate, Milagros Rodriguez-Lopez, Francis
Atkinson, Nicolas Bosc, Chris J. Radoux, Aldo Segura-Cabrera, Anne Hersey, and Andrew R.
Leach. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res., 47(D1):D930–
D940, January 2019. ISSN 0305-1048. doi: 10.1093/nar/gky1075.

H. L. Morgan. The Generation of a Unique Machine Description for Chemical Structures-A Tech-
nique Developed at Chemical Abstracts Service. J. Chem. Doc., 5(2):107–113, May 1965. ISSN
0021-9576. doi: 10.1021/c160017a018.

Cuong Q. Nguyen, Constantine Kreatsoulas, and Kim M. Branson. Meta-learning gnn initializations
for low-resource molecular property prediction, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml, 2020.

RDKit. RDKit: Open-source cheminformatics. https://www.rdkit.org.

Robert P. Sheridan. Time-Split Cross-Validation as a Method for Estimating the Goodness of
Prospective Prediction. J. Chem. Inf. Model., 53(4):783–790, April 2013. ISSN 1549-9596.
doi: 10.1021/ci400084k.

Jaak Simm, Lina Humbeck, Adam Zalewski, Noe Sturm, Wouter Heyndrickx, Yves Moreau, Bernd
Beck, and Ansgar Schuffenhauer. Splitting chemical structure data sets for federated privacy-
preserving machine learning. J. Cheminf., 13(1):1–14, December 2021. ISSN 1758-2946. doi:
10.1186/s13321-021-00576-2.

Megan Stanley, John F Bronskill, Krzysztof Maziarz, Hubert Misztela, Jessica Lanini, Marwin
Segler, Nadine Schneider, and Marc Brockschmidt. FS-mol: A few-shot learning dataset
of molecules. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021. URL https://openreview.net/forum?id=
701FtuyLlAd.

Morgan Thomas, Andrew Boardman, Miguel Garcia-Ortegon, Yang Hongbin, Chris de Graaf,
and Andreas Bender. Applications of Artificial Intelligence in Drug Design: Opportunities
and Challenges. Methods Mol. Biol., 2390(1-59.):;, 2022. ISSN 1940-6029. doi: 10.1007/
978-1-0716-1787-8 1.

MSc Valerie Jentzsch. Costs and Causes of Oncology Drug Attrition With the Example of Insulin-
Like Growth Factor-1 Receptor. JAMA Netw. Open, 6(7):e2324977, July 2023. doi: 10.1001/
jamanetworkopen.2023.24977.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Ria Vinod, Pin-Yu Chen, and Payel Das. Reprogramming pretrained language models for protein
sequence representation learning, 2023.

11

https://www.rdkit.org
https://openreview.net/forum?id=701FtuyLlAd
https://openreview.net/forum?id=701FtuyLlAd

Under review as a conference paper at ICLR 2024

Moritz Walter, Luke N. Allen, Antonio de la Vega de León, Samuel J. Webb, and Valerie J.
Gillet. Analysis of the benefits of imputation models over traditional QSAR models for tox-
icity prediction. J. Cheminf., 14(1):1–27, December 2022. ISSN 1758-2946. doi: 10.1186/
s13321-022-00611-w.

David Weininger. SMILES, a chemical language and information system. 1. Introduction to method-
ology and encoding rules. J. Chem. Inf. Comput. Sci., 28(1):31–36, February 1988. ISSN 0095-
2338. doi: 10.1021/ci00057a005.

J. E. S. Wikberg, F. Mutulis, I. Mutule, S. Veiksina, M. Lapinsh, R. Petrovska, and P. Prusis.
Melanocortin Receptors: Ligands and Proteochemometrics Modeling. Ann. N.Y. Acad. Sci., 994
(1):21–26, June 2003. ISSN 0077-8923. doi: 10.1111/j.1749-6632.2003.tb03158.x.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhao-
jun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Pushing the Bound-
aries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism. J.
Med. Chem., 63(16):8749–8760, August 2020. ISSN 0022-2623. doi: 10.1021/acs.jmedchem.
9b00959.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning
without memorization, 2020.

12

Under review as a conference paper at ICLR 2024

A NEURAL PROCESSES (NPS)

A.1 PARAMETERIZATION OF CNP AND LNP

NPs assume conditional independence between the targets and a Gaussian predictive distribution
with mean µθ(x) and variance σ2θ(x):

q (yt | xc, yc ;xt) =
T∏
j=1

N
(
yt,j ; µθ (xt,j) , σ

2
θ (xt,j)

)
.

The conditional NP (CNP) (Garnelo et al., 2018a) and the latent NP (LNP) (Garnelo et al., 2018b)
parameterize the predictive mean and variance of an input x in three steps:

• Datapoint encoder: a neural network hθ maps each context point (xc,j , yc,j) to a local
datapoint representation rj .

rj = hθ (xc,j , yc,j)

• Function encoder: all context encodings rj are combined into a global context encoding r
through a commutative operation ⊕, usually the sum or the mean. Commutativity of the
function encoder guarantees invariance to permutations of the context set.

r = r1 ⊕ · · · ⊕ rC

• Decoder: a neural network gθ maps the function encoding r and the input location x to the
predictive mean and variance. In the CNP, the decoding process is deterministic:(

µθ(x), σ
2
θ(x)

)
= gθ (r, x) .

In the LNP, the decoding process involves sampling a latent variable. Its approximate
posterior qϕ is parameterized as a Gaussian with mean and variance given by a neural
network gϕ.

z ∼ qϕ (z | xc, yc) := N
(
µϕ, σ

2
ϕ

)
,

(
µϕ, σ

2
ϕ

)
= gϕ(r)

The final decoding stage continues like the CNP, but using z instead of r:(
µθ(x), σ

2
θ(x)

)
= gθ (z, x) .

A.2 OBJECTIVE FUNCTIONS OF NEURAL PROCESSES (NPS)

The CNP objective Lθ is the conditional log likelihood of the targets given the contexts (Garnelo
et al., 2018a).

Lθ (yt | xc, yc ;xt) = log qθ (yt | xc, yc ;xt)

The LNP objective Lθ,ϕ consists of a reconstruction and a regularization term (Garnelo et al.,
2018b):

Lθ,ϕ (yt | xc, yc ;xt) = Eqϕ(z|xd,yd)

[
log pθ (yt | z, xt)

]
−DKL

(
qϕ(z | xd, yd) ∥ qϕ(z | xc, yc)

)
,

where xd = (xc, xt), yd = (xc, yt) and DKL is the KL divergence. It is an approximation of an
evidence lower bound (ELBO) to the conditional log marginal likelihood:

log pθ(yt | xd, yc) ≥ Eqϕ(z|xd,yd)

[
log pθ(yt | z, xt)

]
−DKL

(
qϕ(z | xd, yd) ∥ pθ(z | xc, yc)

)
.

The ELBO is intractable due to the posterior pθ(z | xc, yc) in the KL term. The LNP objective
is derived by approximating the posterior with qϕ(z | xc, yc). This way the objective becomes
tractable but Lθ,ϕ is no longer an analytical lower bound.

13

Under review as a conference paper at ICLR 2024

B DATA

B.1 DOCKSTRING SUBSETS USED IN META-LEARNING EXPERIMENTS

DOCKSTRING contains docking scores for 58 targets and approximately 260k molecules. Of these
molecules, roughly 220k belong to the training set and the rest are part of the test set. The train
and test sets are split by chemical scaffolds to minimize the risk of data leakage from chemical
analogues. We respected the original split by sampling 2.5k compounds from the training set and
2.5k from the test set. Those were our training and test molecules in the few-shot learning (FSL)
experiments.

Regarding the function split, we took advantage of the design of the the DOCKSTRING regression
benchmark. This benchmark selects 5 diverse proteins, some of which have scores that are relatively
easy to predict, and some of which are harder. We kept these 5 proteins for meta-testing and used
the other 53 for meta-training.

Our FSL datapoint and function splits are illustrated in Figure B.1. We used it as follows:

• Meta-learning models: we meta-trained on the ftrain, dtrain subset, sampled con-
text points from the ftest, dtrain subset, and reported metrics on all points from the
ftest, dtest subset.

• Transfer-learning models: we pre-trained on the ftrain, dtrain subset and sampled points
for fine-tuning from the ftest, dtrain subset. We reported metrics on all points from
ftest, dtest.

• Single-task models: we sampled points from ftest, dtrain for training and reported met-
rics from ftest, dtest.

Figure B.1: DOCKSTRING subset

In the BO experiment we created an augmented dataset of 869 functions by randomly adding dock-
ing scores from different proteins and the quantitative estimate of druglikeness (QED). This odd
number arose from creating an augmented dataset of 1000 functions and discarding those which
included F2, JAK2 or LCK, since those three proteins were part of the objective functions (Ap-
pendix G).

Regarding the datapoint split, in our BO experiments we selected molecules from a library of 60k
compounds that was created by sampling 30k molecules from the DOCKSTRING training set and
the same amount from the DOCKSTRING test set. We meta-trained our models on the 869 aug-
mented functions. We trained two MG-CNPs on these functions: one on the 2.5k training molecules
from the FSL split, and another on the whole 60k molecules in the BO library.

B.2 TARGET CORRELATIONS

We examined the maximum correlation of the 58 proteins in DOCKSTRING to any other protein
in order to ascertain how challenging it would be to meta-generalize to them. We identified three
proteins from the test set that represented a range of dissimilarity to the meta-train set: PARP1

14

Under review as a conference paper at ICLR 2024

(highly correlated, very similar), ESR2 (medium correlation and similarity) and PGR (low correla-
tion and similarity). We focused on these proteins to illustrate meta-generalization across a range of
correlations.

PG
R AR

M
AO

B
PT

GS
2

NR
3C

1
TH

RB
HS

D1
1B

1
AC

HE
ES

R1
ES

R2
AB

L1
KD

R
CS

F1
R

PT
PN

1
FG

FR
1

HS
P9

0A
A1

PP
AR

A
NO

S1
IG

F1
R

M
AP

K1
4

M
ET

HM
GC

R
DH

FR
PP

AR
D KI
T

AD
AM

17
AD

OR
A2

A
PP

AR
G

CA
2

M
AP

K1
PD

E5
A

M
M

P1
3

F1
0

PT
K2

AK
T2

JA
K2 GB
A

PL
K1

CY
P2

C9
CA

SP
3

EG
FR

DP
P4 F2

DR
D3

DR
D2

BA
CE

1
M

AP
KA

PK
2

CD
K2

M
AP

2K
1

AD
RB

2
AD

RB
1

CY
P3

A4
AK

T1
PA

RP
1

RE
N

RO
CK

1
LC

K
SR

C

0.0

0.2

0.4

0.6

0.8

M
ax

im
um

 c
or

re
la

tio
n

wi
th

 a
no

th
er

 ta
rg

et

Figure B.2: Maximum Pearson correlation of each protein to any other protein in DOCKSTRING.
Correlation is computed from docking scores in the full dataset of 260k molecules. Orange bars
refer to test functions and blue ones to train functions.

B.3 NUMBER OF OBSERVATIONS PER FUNCTION IN BIOACTIVITY DATASETS

FSL experiments in other domains (e.g. image classification) often focus on an extremely low
number of context points, rarely benchmarking more than 100 contexts. In the context of drug
discovery, however, the amount of observations per function in bioactivity datasets can vary widely,
with many functions of interest having more than 100 labels. For example, in Figure B.3 we show
the distribution of observations registered in protein binding affitiny assays in ChEMBL33. Whether
meta-learning can provide benefits in this data regime is an open research question. For this reason,
we decided to investigate a wide range of context points, from 20 to 1000 (Table 1 and Appendix E).

10

to
 2

0
20

to

 5
0

50

to
 1

00
10

0
to

 2
00

20
0

to
 5

00
50

0
to

 1
k

1k

to
 2

k
2k

to

 5
k

5k

to
 1

0k
10

k
to

 2
0k

20
k

to
 5

0k
50

k
to

 6
0k

Number of molecules measured

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f f
un

ct
io

ns 1406

2030

1313
1200 1273

615

419
330

69 20 1 2

Figure B.3: Distribution of observations per function in the protein binding subset of ChEMBL33

15

Under review as a conference paper at ICLR 2024

C REPRODUCIBILITY

C.1 REPEATABILITY

In every experiment we trained every model 10 times with different random initializations. We
report the mean and standard error of these repetitions. The number of contexts in FSL experiments,
as well as the initial points in the BO experiment, were also sampled randomly in each repetition.

C.2 TRAINING DATA

The subset of points used for training each type of model (single task, transfer learning and meta-
learning) is detailed in Appendix B.

C.3 MODEL IMPLEMENTATION

C.3.1 MOLECULAR REPRESENTATIONS

We computed binary Morgan fingerprints (FPs) (Morgan, 1965) of length 1024 and radius 3 using
RDKit (RDKit).

The connectivity of molecular graphs (MGs) was recreated from SMILES strings (Weininger, 1988)
and atom and bond features were extracted using (RDKit). Atom features consisted of one-hot
vectors indicating the atom type, the number neighbouring hydrogens, the number of neighbouring
heavy atoms, the formal charge, the hybridisation type, whether the atom is placed within a ring,
whether the atom is in an aromatic region and whether the atom is chiral. Atom features also
included, as real numbers, the atomic mass, the Van der Waals radius and the covalent radius. Bond
features included one-hot vectors with the bond type (single, double, tripe or aromatic), whether the
bond is conjugated, whether it is part of a ring, and the stereoisometry type, if any.

C.3.2 MOLECULAR GRAPH ATTENTIVE ENCODER (MGAE)

All our models using MG representations rely on the molecular graph attentive encoder (MGAE).
The architecture of MGAE is inspired by that of attentive FP (Xiong et al., 2020), but we perform
pre-processing of the atomic and bond features with a small fully-connected neural network (FNN),
post-processing of the final molecular representation with another small FNN, and speed up compu-
tation by changing the attention mechanism to query-key-value (QKV) (Vaswani et al., 2023) and
by removing the GRU units (Chung et al., 2014). In particular, Atoms and bond features are pro-
cessed with fully-connected network of 2 layers and 50 hidden neurons in order to encode atomic
and bond features into vectors of length 25. The encoding of all bonds connected to an atom are
added and concatenated to the atomic encoding, which now has 50 elements. Then, we update the
atomic encodings with 3 iterations of message passing from direct atomic neighbours, calculating
attention coefficients with a QKV mechanism. The queries and keys are computed with a single-
layer network. After the initial 3 iterations of message passing, a second stage begins where an
imaginary “superatom” connected to all atoms is added to the graph, and another 3 iterations of
message-passing are performed. The molecular representation is that of the superatom, which is
passed through a small FNN to produce the final molecular representation, also of length 50.

C.3.3 NEURAL MODELS

All neural models were implemented in Pytorch (Paszke et al., 2019) and trained with the Adam
optimizer using a learning rate of 10−3, weight decay of 10−5 and a cosine annealing scheduler.

C.3.4 SINGLE-TASK MODELS

Random forest (RF). Random forest regressors were implemented in scikit-learn (Buitinck et al.,
2013) using the default parameters.

Gaussian process (GP). We implemented exact GPs in GPytorch (Gardner et al., 2021), using binary
fingerprints and our own implementation of a Tanimoto kernel. The noise parameter was adjusted

16

Under review as a conference paper at ICLR 2024

automatically in GPytorch by evidence maximization for 2000 epochs. Automatic relevance de-
termination (ARD) to find an optimal lengthscale for each feature was attempted but eventually
rejected, since the large number of fingerprint features led to gross overfitting.

Graph neural networks (GNNs). Our GNN is a 6-layer FNN on top of the the MGAE, with maximum
layer width of 1000 hidden neurons and layer normalization between each layer. We chose 6 layers
to promote a fair comparison to our MG-NP models, which had an encoder and decoder of 3 layers
each. GNNs were trained for 1000 epochs with a batch size of 50.

C.3.5 TRANSFER-LEARNING MODELS

GNN with random initialization (GNN random). This model had the same architecture as the GNN
in the previous section, but instead of training all layers, the GNN was initialized with random
weights and only the last two layers were trained for 1000 epochs, while the rest were kept frozen,
in a way reminiscent of a transfer learning experiment. In this way, the randomly-initalized layers
worked as feature extractors.

GNN pre-trained and fine-tuned (GNN fine-tuned). This model had the same architecture as the
GNN but was pre-trained as a multi-task model on the 53 meta-train proteins. Then, the last layer
was changed (to make it single-task) and the last two layers were trained for 1000 epochs while the
rest were kept frozen.

C.3.6 MODEL-AGNOSTIC META-LEARNING (MAML)

In all experiments involving MAML (whether single-task GNN or NPs), we used a single step of
gradient descent in the inner update with a learning rate of 10−3. We attempted other rates to try
to increase training stability and decrease MAML’s error bars but found this to be the most stable.
In addition, our MAML training regime borrowed tricks from Antoniou et al. (2019) to improve
robustness. In particular, we implement derivative-order annealing such that the first 50 epochs
of training do first-order MAML and the rest do second-order MAML. We also implement cosine
annealing of the outer learning rate. The tricks of multi-step loss optimization and per-step batch
normalization are not applicable to our model since we performed a single gradient descent iteration
in the inner loop. Due to memory constraints, we follow Raghu et al. (2020) and only apply MAML
the last two layers of the encoder or the decoder of NPs, as explained in Section 5. Similarly, we
only train the last two layers of single-task GNNs meta-trained with MAML.

C.3.7 NEURAL PROCESSES

Meta-training. We trained using between 20 and 150 contexts and targets at each iteration. The
amount of contexts and targets was itself sampled uniformly between 20 and 150. The contexts
and targets are always disjoint, with the only exception of the experiment in Section 6.3 where they
are chosen to be overlapping in order to be able to increase the size of both contexts and targets to
100% of the training set, thus increasing the number of effective epochs. In the FSL experiments,
we trained for 3000 epochs on the 53 train proteins with a batch size of 2 functions per batch. In the
BO experiments we trained for 1000 epochs on the augmented train set of combinations of docking
scores with a batch size of 8.

Adaptation during meta-testing. The adaptation procedures with MAML and fine-tuning are de-
scribed in Section 5.

Conditional neural processes (CNPs). The FP-CNP had an encoder and decoder FNN of 3 layers
each, with a maximum layer width of 1000, layer normalization between every layer, and an en-
coding size of 250. Layer normalization was chosen instead of batch normalization because, due
to memory constraints, our batch size was just 2 functions. We choose the mean as commutative
operation. The MG-CNP had the same architecture but built its encoder on top of the MGAE.

Latent neural processes (LNPs). The FP-LNP had the same encoder and decoder as the CNP, and
an additional network to parameterize the mean and variance of the latent variable. This network
was also a FNN of 3 layers with layer normalization. The size of the latent variable is 250. Again
we choose the mean as commutative operation. The MG-LNP had the same architecture but built its
encoder on top of the MGAE.

17

Under review as a conference paper at ICLR 2024

D THE CHALLENGE OF META-GENERALIZATION IN SINUSOIDS

In this experiment, we investigated the ability of meta-learning techniques to meta-generalize to
1D sinusoids that were slightly different from the ones seen during meta-training. We trained two
models, a 6-layer fully-connected NN with MAML, and a fully-connected CNP with 3 encoder
layers and 3 decoder layers (for implementation details, see Appendix C). Sinusoids had functional
form

y = A sin
(
f (x−B)

)
,

where A is the amplitude, f the frequency and B the shift. As meta-training set, we used 104

functions with A ∈ [0.1, 5), f = 1.0 and B ∈ [0, π). All parameters were sampled uniformly
from these ranges. For each function, we sampled points uniformly in x ∈ [−5, 5] as contexts and
targets. The context and target sets’ sizes ranged between 5 and 25 and was also sampled too. The
two models were trained for 10 epochs on the meta-train set. For meta-testing we used two different
sets: in the first one, we created 104 functions with the same parameters as the meta-train functions,
and in the second we created 104 functions with frequency f = 1.5. We sampled 20 points from
each meta-test function in the same x interval as contexts, and 1000 points as targets. We also
evaluated the prediction error on the meta-train set in the same way. The models performed well on
the meta-train set, as expected, and meta-generalized well to the test functions. However, they failed
to meta-generalize to the test functions with the slightly different frequency D.1.

Table D.1: Mean squared error (MSE) of two meta-learning models on sinusoids. Values show mean
and standard deviation.

Train functions (f = 1.0) Test functions (f = 1.0) Test functions (f = 1.5)

MAML 0.39 (0.10) 0.394 (0.10) 3.53 (0.28)

CNP 0.01 (0.00) 0.005 (0.00) 6.69 (0.17)

18

Under review as a conference paper at ICLR 2024

E ADDITIONAL FEW-SHOT LEARNING (FSL) RESULTS

Table E.1: FSL of PARP1 and PGR, proteins with high and low similarity to the meta-training set.

PARP1 (high correlation), R2 · 100

Context set size 20 50 100 200 500 1000

Single task

Dummy regressor -13.6 (3.9) -18.9 (3.0) -19.6 (2.9) -21.4 (1.7) -21.9 (1.1) -21.4 (0.6)
FP-RF 0.4 (2.1) -1.2 (2.3) 3.0 (2.5) 15.1 (1.9) 23.7 (0.8) 30.9 (0.5)
FP-GP 6.4 (0.7) 9.5 (1.7) 15.6 (2.1) 29.6 (1.3) 47.5 (0.7) 58.1 (0.3)
GNN 22.9 (11.9) 21.0 (13.9) 63.9 (4.2) 61.7 (9.0) 73.2 (0.6) 75.4 (0.5)

Transfer
learning

GNN (random) 63.8 (1.4) 69.9 (1.3) 70.7 (2.5) 73.7 (1.3) 76.2 (0.7) 77.6 (1.3)
GNN (fine-tuned) 75.0 (0.9) 77.3 (0.6) 77.9 (0.3) 76.2 (0.4) 75.4 (0.3) 77.1 (0.2)

Meta-
learning

GNN (MAML) 51.6 (8.9) 52.2 (9.0) 52.0 (9.0) 51.0 (9.8) 50.9 (9.8) 51.3 (9.8)
FP-CNP 55.5 (0.7) 55.5 (0.5) 55.4 (0.5) 55.2 (0.4) 55.4 (0.3) 55.3 (0.4)
FP-LNP 35.1 (0.5) 35.1 (0.5) 35.1 (0.5) 35.1 (0.5) 35.1 (0.5) 35.1 (0.5)
MG-CNP 81.6 (0.6) 82.7 (0.3) 83.0 (0.1) 83.1 (0.1) 83.1 (0.1) 83.0 (0.2)
MG-LNP 81.4 (0.3) 81.5 (0.3) 81.6 (0.3) 81.7 (0.3) 82.0 (0.3) 82.3 (0.3)

NPs with
parameter
adaptation

FP-CNP (MAML) 57.8 (0.5) 58.0 (0.6) 58.3 (0.4) 58.2 (0.3) 58.2 (0.3) 58.3 (0.3)
FP-CNP (fine-tuned) 55.3 (0.8) 55.2 (0.7) 55.7 (0.5) 55.7 (0.4) 56.1 (0.3) 56.2 (0.2)
FP-LNP (MAML) 42.1 (0.6) 42.3 (0.8) 42.5 (0.7) 42.4 (0.7) 42.5 (0.8) 42.4 (0.8)
FP-LNP (fine-tuned) 38.8 (1.3) 36.0 (1.4) 37.6 (1.4) 40.3 (1.2) 41.6 (1.2) 41.2 (0.7)
MG-CNP (MAML) 82.1 (0.5) 83.3 (0.3) 83.5 (0.2) 83.7 (0.2) 83.7 (0.2) 83.7 (0.2)
MG-CNP (fine-tuned) 82.1 (0.5) 83.4 (0.2) 83.7 (0.2) 83.9 (0.2) 84.4 (0.2) 84.9 (0.1)
MG-LNP (MAML) 80.8 (0.6) 80.7 (0.6) 80.8 (0.6) 80.9 (0.6) 81.2 (0.5) 81.5 (0.5)
MG-LNP (fine-tuned) 82.5 (0.4) 82.3 (0.5) 83.0 (0.3) 83.5 (0.3) 84.2 (0.2) 84.7 (0.2)

PGR (low correlation), R2 · 100

Single task

Dummy regressor -13.3 (4.6) -5.3 (1.9) -2.7 (0.8) -1.6 (0.4) -1.6 (0.3) -1.5 (0.2)
FP-RF -13.2 (8.7) -4.7 (2.2) -0.3 (1.4) 2.0 (1.3) 8.9 (0.8) 11.9 (0.5)
FP-GP -11.3 (4.9) 1.0 (1.8) 6.2 (0.9) 8.4 (0.7) 8.9 (0.6) 11.2 (0.8)
GNN -56.6 (33.0) -13.0 (6.6) -4.4 (2.6) -1.9 (4.8) 6.7 (1.6) 17.4 (3.0)

Transfer
learning

GNN (random) -21.2 (16.9) 14.5 (2.6) 9.9 (3.8) 13.5 (3.9) 23.3 (1.6) 29.9 (0.7)
GNN (fine-tuned) 21.1 (1.8) 26.4 (1.2) 23.7 (1.4) 16.3 (1.1) 19.4 (1.0) 24.7 (1.0)

Meta-
learning

GNN (MAML) -31.2 (7.7) -26.6 (6.2) -28.4 (6.3) -30.5 (6.4) -32.4 (6.8) -33.0 (6.4)
FP-CNP -36.7 (4.7) -37.5 (4.5) -39.1 (3.8) -39.7 (2.3) -42.4 (2.9) -41.6 (2.5)
FP-LNP -70.4 (1.8) -70.4 (1.8) -70.4 (1.8) -70.4 (1.8) -70.4 (1.8) -70.4 (1.8)
MG-CNP 19.1 (2.5) 23.2 (1.7) 25.6 (1.4) 27.5 (1.5) 27.5 (1.2) 27.2 (1.3)
MG-LNP 2.4 (3.7) 3.0 (3.7) 3.8 (3.7) 5.5 (3.8) 10.6 (3.7) 15.7 (3.4)

NPs with
parameter
adaptation

FP-CNP (MAML) -26.4 (6.0) -19.0 (2.3) -19.0 (1.8) -20.7 (1.6) -20.2 (1.6) -19.9 (1.6)
FP-CNP (fine-tuned) -24.5 (5.2) -13.7 (1.5) -9.2 (1.3) -5.7 (1.5) 1.6 (1.1) 7.7 (0.8)
FP-LNP (MAML) -24.1 (7.9) -21.2 (6.7) -21.0 (6.4) -21.6 (6.5) -21.3 (6.3) -20.9 (6.3)
FP-LNP (fine-tuned) -1.2 (3.4) 3.6 (0.6) 7.7 (0.8) 8.3 (0.6) 7.3 (0.9) 6.2 (0.6)
MG-CNP (MAML) 22.2 (2.2) 29.7 (1.5) 31.3 (1.6) 32.6 (1.4) 33.3 (1.1) 33.4 (1.2)
MG-CNP (fine-tuned) 20.3 (3.9) 31.9 (1.4) 36.6 (1.2) 40.7 (0.8) 43.7 (0.2) 45.1 (0.3)
MG-LNP (MAML) 10.2 (3.1) 11.5 (2.8) 12.2 (2.7) 13.2 (2.7) 16.0 (2.4) 19.7 (1.9)
MG-LNP (fine-tuned) 10.8 (9.3) 7.7 (6.5) 18.3 (3.7) 31.6 (2.0) 40.1 (1.5) 42.2 (1.6)

19

Under review as a conference paper at ICLR 2024

Table E.2: FSL of PARP1 and PGR, proteins with high and low similarity to the meta-training set.

PARP1 (high correlation), NLPD

Context set size 20 50 100 200 500 1000
Single task FP-GP 0.85 (0.01) 0.71 (0.01) 0.64 (0.01) 0.55 (0.01) 0.40 (0.01) 0.28 (0.00)

Meta-
learning

FP-CNP 3.61 (0.11) 3.50 (0.11) 3.52 (0.07) 3.49 (0.06) 3.49 (0.05) 3.50 (0.06)
FP-LNP 1.46 (0.01) 1.46 (0.01) 1.46 (0.01) 1.46 (0.01) 1.46 (0.01) 1.46 (0.01)
MG-CNP 0.83 (0.06) 0.78 (0.02) 0.75 (0.01) 0.74 (0.01) 0.74 (0.01) 0.74 (0.01)
MG-LNP 0.75 (0.01) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01) 0.74 (0.01) 0.74 (0.01)

NPs with
parameter
adaptation

FP-CNP (MAML) 3.42 (0.17) 3.35 (0.12) 3.31 (0.08) 3.27 (0.06) 3.18 (0.05) 3.19 (0.03)
FP-CNP (fine-tuned) 3.76 (0.84) 3.20 (0.25) 3.46 (0.27) 3.49 (0.22) 3.46 (0.10) 3.48 (0.11)
FP-LNP (MAML) 1.44 (0.02) 1.43 (0.02) 1.43 (0.02) 1.43 (0.02) 1.43 (0.02) 1.43 (0.02)
FP-LNP (fine-tuned) 2.14 (0.08) 1.87 (0.02) 2.68 (0.05) 3.24 (0.09) 3.52 (0.09) 3.66 (0.11)
MG-CNP (MAML) 0.80 (0.03) 0.75 (0.02) 0.73 (0.01) 0.72 (0.00) 0.71 (0.00) 0.71 (0.00)
MG-CNP (fine-tuned) 0.95 (0.08) 0.84 (0.05) 0.79 (0.03) 0.76 (0.01) 0.73 (0.01) 0.70 (0.01)
MG-LNP (MAML) 0.78 (0.02) 0.78 (0.02) 0.78 (0.02) 0.78 (0.02) 0.77 (0.02) 0.76 (0.02)
MG-LNP (fine-tuned) 0.91 (0.07) 0.81 (0.03) 0.77 (0.02) 0.74 (0.01) 0.72 (0.01) 0.69 (0.01)

PGR (low correlation), NLPD
Single task FP-GP 0.64 (0.04) 0.49 (0.02) 0.43 (0.01) 0.41 (0.01) 0.40 (0.00) 0.38 (0.00)

Meta-
learning

FP-CNP 7.29 (1.16) 8.03 (1.17) 7.83 (0.79) 7.44 (0.45) 8.16 (0.58) 8.03 (0.44)
FP-LNP 1.72 (0.01) 1.72 (0.01) 1.72 (0.01) 1.72 (0.01) 1.72 (0.01) 1.72 (0.01)
MG-CNP 1.18 (0.02) 1.13 (0.02) 1.09 (0.01) 1.07 (0.01) 1.07 (0.01) 1.08 (0.01)
MG-LNP 1.28 (0.03) 1.27 (0.03) 1.27 (0.03) 1.25 (0.03) 1.21 (0.03) 1.16 (0.03)

NPs with
parameter
adaptation

FP-CNP (MAML) 4.60 (0.52) 5.18 (0.49) 5.13 (0.40) 5.09 (0.29) 5.23 (0.26) 5.31 (0.23)
FP-CNP (fine-tuned) 2.36 (0.28) 2.23 (0.15) 1.69 (0.04) 1.49 (0.01) 1.45 (0.01) 1.44 (0.01)
FP-LNP (MAML) 1.49 (0.04) 1.46 (0.03) 1.46 (0.03) 1.46 (0.03) 1.46 (0.03) 1.46 (0.03)
FP-LNP (fine-tuned) 1.37 (0.02) 1.34 (0.01) 1.32 (0.01) 1.32 (0.00) 1.46 (0.02) 1.62 (0.03)
MG-CNP (MAML) 1.14 (0.02) 1.06 (0.01) 1.04 (0.01) 1.03 (0.01) 1.02 (0.01) 1.02 (0.01)
MG-CNP (fine-tuned) 1.15 (0.02) 1.06 (0.01) 1.03 (0.01) 1.00 (0.01) 0.98 (0.01) 0.96 (0.01)
MG-LNP (MAML) 1.20 (0.02) 1.19 (0.02) 1.19 (0.02) 1.18 (0.02) 1.16 (0.02) 1.14 (0.02)
MG-LNP (fine-tuned) 1.30 (0.11) 1.29 (0.07) 1.22 (0.05) 1.06 (0.01) 1.01 (0.01) 0.98 (0.01)

20

Under review as a conference paper at ICLR 2024

F RANDOM SAMPLING OF OBSERVATIONS PROTECTS NPS FROM
OVERFITTING

Train datapoints

Test datapoints

Effective training epochs

PARP1 ESR2 PGR F2 KIT

ROCK1 THRB MAOB F10 ACHE

Percentage of training points sampled at each iteration during meta-training

0.8 2 4 8 20 60 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
2

0

500

1000

1500

2000

2500

3000

E
ff

e
ct

iv
e
 t

ra
in

in
g
 e

p
o
ch

s

0.8 2 4 8 20 60 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
2

0

500

1000

1500

2000

2500

3000

E
ff

e
ct

iv
e
 t

ra
in

in
g
 e

p
o
ch

s

Figure F.1: Random sampling of observations during meta-training protects from overfitting. In-
creasing the percentage of points sampled as contexts or targets leads to less unique function views
and to more effective epochs. This causes overfitting, with memorization of the labels from the train
points of the train functions (left, solid lines) and a degradation of performance on the test points
of the train functions (left, dashed line) and all points of the test functions (right, solid and dashed
lines).

21

Under review as a conference paper at ICLR 2024

G BAYESIAN OPTIMIZATION OBJECTIVES

Our BO experiments (Section 6.4) used the objective functions druglike F2 and selective JAK2 from
the DOCKSTRING optimization benchmark (Garcı́a-Ortegón et al., 2022).

• Druglike F2 is a comparatively easy task that requires docking well to a single target and
satisfying orally-bioavailable druglike properties according to QED:

fF2(ℓ) = s(ℓ,F2) + 10
(
1− QED(ℓ)

)
,

where ℓ is a ligand molecule, and s(ℓ, p) is the docking score of ligand ℓ against protein p.

• Selective JAK2 is a comparatively difficult taks that requires docking well against JAK2 and
not against LCK. This is a hard task since the docking scores of these two kinases are very
highly correlated. This objective reflects a real interest in the drug discovery community to
design selective kinase inhibitors.

fJAK2(ℓ) = s(ℓ, JAK2)−min
(
s(ℓ,LCK)− 8.1, 0

)
+ 10

(
1− QED(ℓ)

)
(Note that −8.1 is the median of LCK docking scores.)

22

	Introduction
	Related work
	Molecular graph neural processes (MG-NPs)
	Neural processes (NPs)
	Effective epochs
	Molecular graph attentive encoder

	The challenge of meta-generalizing to real-world functions
	Parameter adaptation during meta-testing
	Fine-tuning
	Model-agnostic meta-learning (MAML)

	Experiments
	Few-shot learning (FSL)
	Calibration of uncertainty estimates
	Randomization of context and target sets protects NPs from overfitting
	Bayesian optimization (BO)

	Discussion
	Neural processes (NPs)
	Parameterization of CNP and LNP
	Objective functions of neural processes (NPs)

	Data
	DOCKSTRING subsets used in meta-learning experiments
	Target correlations
	Number of observations per function in bioactivity datasets

	Reproducibility
	Repeatability
	Training data
	Model implementation
	Molecular representations
	Molecular graph attentive encoder (MGAE)
	Neural models
	Single-task models
	Transfer-learning models
	Model-agnostic meta-learning (MAML)
	Neural processes

	The challenge of meta-generalization in sinusoids
	Additional few-shot learning (FSL) results
	Random sampling of observations protects NPs from overfitting
	Bayesian optimization objectives

