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ABSTRACT

In real-world applications, a reinforcement learning (RL) agent should consider
multiple objectives and adhere to safety guidelines. To address these considera-
tions, we propose a constrained multi-objective RL algorithm named Constrained
Multi-Objective Gradient Aggregator (CoMOGA). In the field of multi-objective
optimization, managing conflicts between the gradients of the multiple objectives
is crucial to prevent policies from converging to local optima. It is also essential
to efficiently handle safety constraints for stable training and constraint satisfac-
tion. We address these challenges straightforwardly by treating the maximization
of multiple objectives as a constrained optimization problem (COP), where the
constraints are defined to improve the original objectives. Existing safety con-
straints are then integrated into the COP, and the policy is updated by solving the
COP, which ensures the avoidance of gradient conflicts. Despite its simplicity,
CoMOGA guarantees convergence to global optima in a tabular setting. Through
various experiments, we have confirmed that preventing gradient conflicts is criti-
cal, and the proposed method achieves constraint satisfaction across all tasks.

1 INTRODUCTION

Real-world reinforcement learning (RL) applications involve multiple objectives and have to con-
sider safety simultaneously. For instance, legged robot locomotion tasks focus on maximizing the
success rate of reaching goals and energy efficiency while avoiding collisions, as illustrated in Fig-
ure 1. To effectively tackle these considerations, constrained multi-objective RL (CMORL) has been
introduced (Huang et al., 2022). CMORL aims to find a set of constrained-Pareto (CP) optimal poli-
cies (Hayes et al., 2022), which are not dominated by any others while satisfying safety constraints,
rather than finding a single optimal policy. This allows users to choose and utilize their preferred
policy from the set without additional training. In order to express a set of CP optimal policies, it is
common to use a concept called preference (Cai et al., 2023; Kyriakis & Deshmukh, 2022), which
encodes the relative importance of the objectives. Then, a set of policies can be represented by a
preference-conditioned policy, a mapping function from a preference space to a policy space.

In most multi-objective RL (MORL) algorithms (Désidéri, 2012; Yang et al., 2019; He et al., 2024),
the preference-conditioned policy is trained by maximizing a scalarized reward, computed as the
dot product of a given preference and rewards of the multiple objectives. These approaches, called
linear scalarization (LS), offer the benefits of straightforward implementation and ensure Pareto-
optimal convergence in tabular settings (Lu et al., 2023). However, when applied to deep RL with
function approximators, LS tends to converge to local optima due to the nonlinearity of the objective
functions, as shown in a toy example in Figure 2. In the field of multi-task learning (MTL) (Yu
et al., 2020; Liu et al., 2021; Navon et al., 2022), this issue has been addressed by avoiding conflicts
between the gradients of multiple objective functions. Building on these advancements, we extend
these gradient-conflict avoiding techniques to CMORL, anticipating analogous benefits.

It is also crucial to handle constraints as well as multiple objectives in CMORL. A straightforward
approach is treating the constraints as other objectives and concurrently adjusting the preferences
corresponding to those objectives to maintain them below thresholds, as done in (Huang et al.,
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Figure 1: Example of CMORL. The
robot aims to maximize energy efficiency
and velocity while maintaining its balance
to remain within the feasible space. In or-
der to consider such safety and multiple
objectives, CMORL finds a set of feasi-
ble policies that are not dominated by other
policies and satisfy constraints, which are
indicated by the dashed line.

Figure 2: Comparison between linear scalarization (LS) and
the proposed method (CoMOGA). Optimization trajectories
are shown in orange, with initial points marked by black circles
and ’x’ markers for the reached points. Contours and shaded ar-
eas represent average values of the two objective functions and
regions where constraints are violated, respectively. The grey
line indicates the CP optimal set. Unlike LS, CoMOGA con-
sistently reaches the optimal set from any starting position. For
more details, see Appendix A.

2022). This approach exactly aligns with the Lagrangian method, which solves the Lagrange dual
problem by updating policy and multipliers alternatively. However, the Lagrangian method can
make training unstable due to the concurrent update of policy and multipliers (Stooke et al., 2020;
Kim & Oh, 2022). As the updates of the policy and multipliers influence each other, any misstep
in either can make the training process diverge. Thus, it is critical to manage constraints without
introducing additional optimization variables.

In order to avoid gradient conflicts and efficiently handle safety constraints, we introduce a novel but
straightforward algorithm named Constrained Multi-Objective Gradient Aggregator (CoMOGA).
CoMOGA treats a multi-objective maximization problem as a constrained optimization problem
(COP), where constraints are designed to enhance the original objective functions in proportion to
their respective preference values. Existing safety constraints are then incorporated into the con-
straint set of the COP. By explicitly preventing the given objectives from decreasing, CoMOGA
successfully avoids gradient conflicts. The policy gradient is then computed by solving this refor-
mulated problem within a local region, as in TRPO (Schulman et al., 2015), thereby eliminating the
need for extra variables to handle safety constraints. While the proposed method is intuitive and
straightforward, we have also shown that it converges to a CP optimal policy in a tabular setting.

The proposed method has been evaluated across diverse environments, including multi-objective
tasks with and without constraints. The experimental results confirmed that avoiding gradient con-
flicts is effective in preventing convergence to local optima. This is particularly essential in envi-
ronments with unstable dynamics, such as bipedal and humanoid locomotion tasks, since they are
prone to get stuck in suboptimal behaviors, such as frequent falling. Furthermore, the absence of
additional variables facilitated stable training while ensuring constraint satisfaction across all tasks.

2 RELATED WORK

Multi-Objective RL. MORL aims to find a set of Pareto-optimal policies that are not dominated by
any others. Given that Pareto-optimal policies can be obtained with appropriate reward scalariza-
tion (Hayes et al., 2022), many MORL algorithms utilize scalarization techniques. Based on linear
scalarization, Yang et al. (2019) introduced a new Bellman operator for MORL algorithms, which
estimates a target Q value for a given preference by combining Q values from other preferences.
Basaklar et al. (2023) presented a similar Bellman operator and extended it to an actor-critic frame-
work to enable its application in continuous action spaces. For the continuous action spaces, Lu
et al. (2023) proposed a SAC-based MORL algorithm, theoretically demonstrating that elements
of the Pareto-optimal policy set can be achieved through linear scalarization. Not only the linear
scalarization, Van Moffaert et al. (2013) proposed a nonlinear scalarization method, called Cheby-
shev scalarization, which can cover a non-convex policy set. To further improve performance, the
evolution strategy (ES) can be applied as done in multi-objective optimization criteria (Deb et al.,
2000). Chen et al. (2020) and Xu et al. (2020) proposed methods that repetitively update a policy
for each population using linear scalarization and produce a new generation of policy parameters.
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There is also a different approach from scalarization. Abdolmaleki et al. (2020) have proposed a
heuristic method of applying preference in the action distribution space instead of the reward space.
It is further extended to a CMORL algorithm in (Huang et al., 2022).

Constrained RL. Constrained RL is developed to explicitly consider safety or constraints in RL.
Based on the approach to handling constraints, constrained RL algorithms can be categorized into
two types: primal-dual methods and primal methods. The primal-dual methods, also called La-
grangian methods, are designed to address Lagrange dual problems. Ding et al. (2022) introduced
a natural policy gradient-based primal-dual method and demonstrated its convergence to an opti-
mal policy at a specified convergence rate. Another primal-dual method, proposed by Bai et al.
(2022), ensures that a trained policy results in zero constraint violations during evaluation. While
these methods are straightforward to implement and can be integrated with standard RL algorithms,
the training process can be unstable due to additional optimization variables (Lagrange multipliers)
(Stooke et al., 2020). In contrast to the primal-dual method, the primal method addresses the con-
strained RL problem directly, so no additional optimization variables are required. Achiam et al.
(2017) introduced a trust region-based primal method. This approach linearly approximates a con-
straint within a trust region and updates the policy through a line search. Xu et al. (2021) presented
a natural policy gradient-based algorithm and demonstrated its convergence rate towards an opti-
mal policy. In multi-constrained settings, Kim et al. (2023) proposed a primal method to handle
infeasible starting cases.

3 BACKGROUND

Constrained Multi-Objective MDP. We define a constrained multi-objective Markov decision pro-
cess (CMOMDP) as a tuple represented by ⟨S, A, P , R, C, ρ, γ⟩, where S is a state space, A is an
action space, P : S × A × S 7→ [0, 1] is a transition model, R : S × A × S 7→ RN is a vectorized
reward function, C : S×A×S 7→ RM is a vectorized cost function, ρ is an initial state distribution,
and γ is a discount factor. The reward and cost functions are bounded by Rmax. In the CMOMDP
setting, a policy π(·|s) ∈ Π can be defined as a state-conditional action distribution. The objective
function of the ith reward is defined as:

JRi
(π) := E

[∑∞

t=0
γtRi(st, at, st+1)

]
,

where s0 ∼ ρ, at ∼ π(·|st), and st+1 ∼ P(·|st, at) ∀t. We also define the constraint function
JCk

(π) by replacing the reward with the cost function. A constrained multi-objective RL (CMORL)
problem is defined as:

maximizeπ JRi
(π) ∀i ∈ {1, ..., N} s.t. JCk

(π) ≤ dk ∀k ∈ {1, ...,M}, (1)
where dk is the threshold of the kth constraint. Here, it is ambiguous to determine which policy
is optimal when there are multiple objectives. To address this, we instead define a set of optimal
policies using the following notion, called constrained dominance (Miettinen, 1999):
Definition 3.1 (Constrained Dominance). Given two policies π1, π2 ∈ {π ∈ Π|JCk

(π) ≤ dk ∀k},
π1 is dominated by π2 if JRi

(π1) ≤ JRi
(π2) ∀i ∈ {1, ..., N}.

A policy π which is not dominated by any policy is called a constrained-Pareto (CP) optimal policy,
and the set of all CP optimal policies is called constrained-Pareto (CP) front (Miettinen, 1999).
Additionally, a condition for gradient conflicts is defined as follows:
Definition 3.2 (Gradient Conflict). Let gi be the gradient of the ith objective function, and let g
denote the policy update direction. We say there is a gradient conflict if ∃i such that gTi g < 0.

As studied in MTL (Liu et al., 2021; Yu et al., 2020) and shown in Figure 2, gradient conflicts
can cause convergence to local optima. Thus, we aim to find the CP front while updating policies
without gradient conflicts.

Preference. In order to express a subset of the CP front, prior MORL works (Xu et al., 2020; Alegre
et al., 2023) introduce a preference space, defined as: Ω := {ω ∈ RN | ωi ≥ 0, ||ω||1 = 1}, where
a preference ω ∈ Ω serves to specify the relative significance of each objective. Subsequently, a
specific subset of the Pareto front can be characterized by a function mapping from the preference
space to the policy space. We denote this function as a universal policy π(·|s, ω), characterized by
an action distribution that depends on both the state s and preference ω variables. Ultimately, our
goal is to train the universal policy that covers the CP front as extensively as possible.
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4 PROPOSED METHOD

We propose constructing a sub-problem designed to aggregate gradients without conflicts. Building
sub-problems is a widely used strategy in conflict-averse MTL approaches (Navon et al., 2022;
Yu et al., 2020; Liu et al., 2021), but applying this strategy in the context of CMORL requires
considering preferences of multiple objectives and ensuring the satisfaction of constraints. This
section outlines the proposed method in four distinct parts: 1) building a constrained optimization
problem to handle the multiple objectives with safety constraints, 2) calculating a policy gradient by
aggregating gradients of the objective and constraint functions for a single preference, 3) introducing
a method for training a universal policy covering a spectrum of preferences, and 4) concluding with
an analysis of the convergence properties of the proposed method. Before that, we first parameterize
the policy and define gradients of the objective and constraint functions, as well as a local region in
the parameter space. By representing the policy as πθ with a parameter θ ∈ Θ, the gradients of the
objective and constraint functions in (1) are expressed as:

gi := ∇θJRi(πθ), bk := ∇θJCk
(πθ).

For brevity, we will denote the objectives as JRi
(θ) and the constraints as JCk

(θ). The local region
is then defined using a positive definite matrix H as: ||∆θ||H ≤ ϵ, where ||x||H :=

√
xTHx, and

ϵ is the local region size, a hyperparameter. H can be the identity matrix or the Fisher information
matrix, as in TRPO (Schulman et al., 2015).

4.1 REFORMULATION AS CONSTRAINED OPTIMIZATION

We introduce a process of treating the CMORL problem as a constrained optimization problem
(COP). To provide insight, we first present the process in a simplified problem where only the ith
objective exists and then extend it to the original problem. The problem of maximizing the ith
objective within the local region is expressed as follows:

max∆θ JRi(θold +∆θ) s.t. ||∆θ||H ≤ ϵ. (2)

Assuming that JRi
(θ) is linear with respect to θ within the local region, the above problem has the

same solution as the following problem:

min∆θ ∆θ
TH∆θ s.t. JRi

(θold +∆θ)− JRi
(θold) ≥ ϵ||gi||H−1 =: ei. (3)

It is shown that the solutions to (2) and (3) are identical in Appendix B.1, and this finding confirms
that objectives can be converted into constraints in this way. Consequently, the CMORL problem
can be reformulated as follows:

min∆θ∆θ
TH∆θ s.t. ωiei ≤ JRi(θold +∆θ)− JRi(θold) ∀i, JCk

(θold +∆θ) ≤ dk ∀k, (4)

where ei in (3) is scaled to ωiei to reflect the given preference ω. We will show that the policy
updated using (4) converges to a CP optimal policy of (1) in Section 4.4 under mild assumptions.

4.2 GRADIENT AGGREGATION

Now, we compute a policy gradient by solving (4) within the local region using a linear approxima-
tion, similar to TRPO (Schulman et al., 2015). First, the problem (4) can be linearly approximated
as the following quadratic programming (QP) problem:

ḡagω := argmin∆θ∆θ
TH∆θ s.t. ωiei ≤ gTi ∆θ ∀i, bTk∆θ + JCk

(θold) ≤ dk ∀k, (5)

where the gradients of the objective and constraint functions, gi and bk, are aggregated into ḡagω . The
gradient is then clipped to ensure that the policy is updated within the local region, as follows:

gagω := min(1, ϵ/||ḡagω ||H)ḡagω ,

where the policy will be updated by θold+gagω . Note that the aggregated gradient satisfies 0 ≤ gTi g
ag
ω

∀i due to the reformulated constraints in (5). This ensures that the aggregated gradient does not
conflict with any of the objective functions. However, when both the constraints and objectives
are reflected in the updates, the updated policy can violate the constraints by overly focusing on
objective improvements. To address this issue, we take a recovery step which updates the policy by

4



Published as a conference paper at ICLR 2025

Figure 3: Process of CoMOGA. We visualize the process in the parameter space, and the gray areas represent
constraints. (Linear approximation) CoMOGA linearly approximates the original CMORL problem in (1).
The gradients of the objective and constraint functions are visualized as black and blue arrows, respectively.
(Reformulation) The objectives are converted to constraints as described in (5). The intersection of all con-
straints is shown as the red area. (Scaling) The solution of the transformed problem, ḡag, is scaled to ensure
that the updated policy remains within the local region.

considering only the safety constraints when the current policy violates them, which is motivated by
safe RL algorithms (Kim et al., 2023; Xu et al., 2021; Zhang et al., 2022). We will show that this
step helps the policy converge to global optima in Section 4.4. The recovery step involves solving
the following problem, which solely consists of the safety constraints:

ḡagω := argmin∆θ∆θ
TH∆θ s.t. bTk∆θ + JCk

(θold) ≤ dk ∀k. (6)

As a result, the process for obtaining the policy gradient is depicted in Figure 3 and can be formalized
as follows, which is named constrained multi-objective gradient aggregator (CoMOGA):

ḡagω =

{
argmin∆θ∆θ

TH∆θ s.t. ωiei ≤ gTi ∆θ, b
T
k∆θ + JCk

(θold) ≤ dk if JCk
(θold) ≤ dk ∀k,

argmin∆θ∆θ
TH∆θ s.t. bTk∆θ + JCk

(θold) ≤ dk otherwise,

gagω = min(1, ϵ/||ḡagω ||H)ḡagω .

We also provide a detailed explanation of the differences between CoMOGA and existing conflict-
averse MTL algorithms in Appendix E.

4.3 UPDATE RULE FOR UNIVERSAL POLICY

We have introduced the gradient aggregation method named CoMOGA for updating a policy for a
given single preference. This section presents a method for updating a universal policy that can cover
the entire preference space. If a preference 1ω is given, the policy should be updated to θ + gag1ω .
Similarly, if the preference is 2ω, the policy should be updated to θ + gag2ω . Consequently, the ideal
universal policy is required to satisfy the following conditions:

πθnew
(a|s, ω) = πθold+gagω (a|s, ω) ∀a ∈ A, ∀s ∈ S, and ∀ω ∈ Ω,

where we denote πθold+gagω as an intermediate policy for ω. This can be interpreted as the KL diver-
gence between the universal policy and the intermediate policies being zero. Based on this property,
we introduce a practical method to achieve the universal policy by minimizing the following loss:

minθ E(τ,ω)∼D
[
Es∼τ

[
DKL(πθold+gagω (·|s, ω)||πθ(·|s, ω))

]]
, (7)

where D is a replay buffer, and τ is a trajectory. By minimizing the above loss, we can combine poli-
cies for each preference into a single universal policy. After training is completed, users can utilize
diverse policies by providing personalized preferences to the trained universal policy, eliminating
the need for additional training.

4.4 CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of the proposed method. Specifically, it can be
shown that CoMOGA achieves CP optimal convergence with minor modifications if H is the Fisher
information matrix. To this end, we first introduce the necessary conditions for the policy gradient
method to ensure CP optimal convergence. We then show that the modified CoMOGA satisfies these
necessary conditions. Before that, we first introduce the following assumption:
Assumption 4.1 (Slater’s condition). There exists a feasible policy πf such that JCk

(πf ) ≤ dk − η
∀k, where η > 0 is a positive number.
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The Slater’s condition is a common assumption in safe RL to ensure optimal convergence (Kim
et al., 2023; Bai et al., 2022; Ding et al., 2022). We also assume that the state and action spaces
are finite. Now, we introduce a generalized version of the policy gradient method that guarantees
optimal convergence.
Theorem 4.2. Assume that sequences {νat,i, νbt,i, λat,k, λbt,k}∞t=1 ⊆ [0, λmax] are given for all i and
k, where

∑
k λ

b
t,k = 1, λbt,k(JCk

(θt)− dk) ≥ 0,
∑
i ν

a
t,i = 1, and νat,i converges to a specific point

ν̄ai . Then, if a policy is updated by the following rule, it converges to a CP optimal policy of (1):

θt+1 = θt +

αtF
†(θt)

(∑N
i=1 ν

a
t,igi − αt

∑M
k=1 λ

a
t,kbk

)
if JCk

(θt) ≤ dk ∀k,

αtF
†(θt)

(
αt
∑N
i=1 ν

b
t,igi −

∑M
k=1 λ

b
t,kbk

)
otherwise,

(8)

where gi = ∇JRi
(θt), bk = ∇JCk

(θt), αt is a step size satisfying Robbins-Monro condition (Rob-
bins & Monro, 1951), and F † represents the pseudo-inverse of the Fisher information matrix.

The proof is provided in Appendix B.2. The sequences νat,i, ν
b
t,i, λ

a
t,k, and λbt,k in Theorem 4.2

represent the weights assigned to the gradients of the objective and constraint functions at each
update step, and a new CMORL algorithm can be developed based on how the sequences are set.
Similarly, we will show that CoMOGA can be formulated as (8) by identifying these sequences
with minor modifications. Since the quadratic programming holds strong duality, we can express
the solution of (5) as ḡagω = H−1(

∑N
i=1 ν

∗
i gi −

∑M
k=1 λ

∗
kbk), where ν∗i and λ∗k are the optimal

Lagrange multipliers of the following dual problem:

ν∗, λ∗ = argmax
ν≥0,λ≥0

− 1

2

(∑
i
νigi −

∑
k
λkbk

)T
H−1

(∑
i
νigi −

∑
k
λkbk

)
+
∑

i
νiωiei

+
∑

k
λk(JCk

(θold)− dk).

In case of the dual problem has no solution, we set ν∗i and λ∗k to be ḡagω = 0. For the solution of (6),
the same process is applied to achieve λ∗k. Then, the CoMOGA is modified as follows:

ḡagω = H−1 ·

{∑N
i=1

ν∗
i∑
j ν

∗
j
gi − ϵt

∑M
k=1 min(

λ∗
k

ϵt
∑

j ν
∗
j
, λmax)bk if JCk

(θt) ≤ dk ∀k,
−
∑M
k=1(λ

∗
k/(
∑
j λ

∗
j ))bk otherwise,

gagω = ϵtḡ
ag
ω /min(max(||ḡagω ||H , gmin), gmax),

(9)

where gmin, gmax, λmax ∈ R≥0 are hyperparameters, and ϵt is the local region size satisfying
Robbins-Monro condition. Finally, we can show optimal convergence of the modified CoMOGA.
Theorem 4.3. If H is the Fisher information matrix and a policy πθt is updated as θt+1 = θt+g

ag
ω ,

where gagω is defined in (9), it converges to a CP optimal policy of (1).

Theorem 4.3 can be proved by identifying sequences νat,i, ν
b
t,k, λat,i, λ

b
t,k that satisfy the conditions

mentioned in Theorem 4.2, and details are provided in Appendix B.3.

5 PRACTICAL IMPLEMENTATION

We need to compute the gradient of the objective and constraint functions to perform CoMOGA and
the universal policy update. To do that, we use reward and cost critics V πR,ψR

, V πC,ψC
, where ψR and

ψC are the critic network parameters, to estimate the objective and constraint functions. The critics
are trained by minimizing the following loss functions:

L(ψR) := E
(s,a,s′,ω)∼D

[∑N

i=1
(YRi

− V πRi,ψR
(s, a, ω))2

]
, (10)

where the target YRi can be calculated either asRi(s, a, s′)+γV πRi,ψR
(s′, a′, ω) with a′ ∼ π(·|s′, ω)

or using Retrace(λ) (Munos et al., 2016), and the same process is applied to the cost critics. Given
a preference ω, the objective and constraint functions can be estimated as follows:

JRi
(θ) ≈ E

s∼D,
a∼πθ(·|s,ω)

[
V πRi,ψR

(s, a, ω)
]
, JCk

(θ) ≈ E
s∼D,

a∼πθ(·|s,ω)

[
V πCk,ψC

(s, a, ω)
]
.

(11)

Then, we can compute the policy gradients using the critic networks through the reparameterization
trick, as done in the SAC paper (Haarnoja et al., 2018). For the details of solving COP, please refer
to Appendix C.3.1. Finally, the proposed method is summarized in Algorithm 1.
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Algorithm 1 Policy Update Using CoMOGA
Input: Policy parameter θ, reward critic parameter ψR, cost critic parameter ψC , replay buffer D.
for epochs = 1 to E do

for rollouts = 1 to L do
Sample a preference ω ∼ Ω.
Collect a trajectory τ = {(st, at, rt, ct, st+1)}Tt=1 by using πθ(·|·, ω) and store (τ, ω) in D.

end for
Update reward and cost critic networks using Equation (10).
for p = 1 to P do

Sample (τ, ω) ∼ D, and estimate the objectives and constraints using Equation (11).
Calculate the aggregated gradient gagω using Equation (9), and set θω = θold + gagω .
Store an intermediate policy πθω .

end for
Update the universal policy using Equation (7).

end for

6 EXPERIMENTS

This section evaluates the proposed method and baselines across various tasks with and without
constraints. First, we explain how methods are evaluated on the tasks and then present the CMORL
baselines. Subsequently, each task is described, and the results are analyzed. Finally, we conclude
this section with ablation studies of the proposed method.

6.1 EVALUATION METRICS AND BASELINES

(a) Hypervolume (b) Reference Point (c) Normalized Sparsity

Figure 4: Visualization of metrics. In (a), the hypervolume is represented by the gray area. In (b), the red star
indicates the reference point, determined from the entire Pareto front, whose elements are circled in red. In (c),
the normalized sparsity is calculated by averaging the squared distances between elements in the normalized
space.

Metrics. Once the universal policy is trained, an estimated CP front, denoted as P ⊂ RN , can be
obtained by calculating the objective values (JR1

(π), ..., JRN
(π)) for a range of preferences. Given

that CMORL aims to approximate the ground truth CP front, it is essential to assess how close the
estimated CP front is to the ground truth, and it can be realized by measuring the coverage and
density of the estimated front. To this end, we use the hypervolume (HV) for coverage measurement
and sparsity (SP) for density estimation, which are commonly used in many MORL algorithms (Xu
et al., 2020; Basaklar et al., 2023). The visualization of metrics is shown in Figure 4, and detailed
descriptions are provided in Appendix C.2. Given an estimated CP front P ⊂ RN and a reference
point r ∈ RN , the hypervolume (HV) is defined as follows (Zitzler & Thiele, 1999):

HV(P, r) :=

∫
RN

1Q(P,r)(z)dz, (12)

where Q(P, r) := {z|∃p ∈ P s.t. r ⪯ z ⪯ p}, and the metric represents the volume of the
area surrounding the reference point and the estimated CP front. Sparsity (SP), on the other hand,
measures how uniformly the estimated CP fronts are distributed and is defined as the average of
the squared distances between elements of the CP fronts (Xu et al., 2020). However, the original
definition exhibits a correlation with HV, where a larger HV corresponds to a larger SP. To eliminate
this inherent correlation, we propose to use the following normalized version of SP:

SP(P ) :=
1

|P | − 1

N∑
j=1

|P |−1∑
i=1

(
P̃j [i]− P̃j [i+ 1]

maxkP̃j [k]−minkP̃j [k]

)2

, (13)
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Figure 5: Evaluation results of the legged robot locomotion tasks. The upper row shows results for the bipedal
robot, while the lower row is for the quadrupedal robot. All algorithms are evaluated at every 105 steps.
The bold lines and shaded areas represent the mean and quarter-scaled standard deviation of results from five
random seeds, respectively. The black dotted lines in constraint graphs indicate the thresholds.

where P̃j := Sort({p[j]|∀p ∈ P}), and P̃j [i] is the ith element in P̃j . By normalizing the distance
using the minimum and maximum values of the CP fronts, we can remove the correlation with HV
while preserving the ability to measure sparsity. Additionally, to reduce the influence of the scale of
each objective, we normalize each objective within the CP front using the minimum and maximum
values from the entire dataset.

Baselines. For comparison with the proposed method, we first employ LP3 (Huang et al., 2022),
an existing CMORL algorithm, as a baseline. This method extends the scale-invariant MORL algo-
rithm, MOMPO (Abdolmaleki et al., 2020), to CMORL by handling constraints in a similar way to
the Lagrangian method. To provide more comprehensive baselines, we include MORL algorithms
that are based on policy gradient approaches, which can be adapted to handle constraints using the
Lagrangian method. There are two state-of-the-art policy gradient-based MORL algorithms: PD-
MORL (Basaklar et al., 2023), which is based on TD3 (Fujimoto et al., 2018), and CAPQL (Lu
et al., 2023), which is based on SAC (Haarnoja et al., 2018). Also, we include conflict-averse MTL
algorithms, CAGrad (Liu et al., 2021). We have extended them to CMORL by handling constraints
using the Lagrangian method. For implementation details, please refer to Appendix C.3.2.

6.2 LEGGED ROBOT LOCOMOTION

The legged robot locomotion tasks (Kim et al., 2023) are to control a quadrupedal or bipedal robot
to follow randomly given commands while satisfying three constraints: keeping 1) body balance, 2)
CoM height, and 3) pre-defined foot contact timing. Since the original tasks were designed to have a
single objective, we have modified the tasks to have two objectives: 1) matching the current velocity
with the command and 2) minimizing energy consumption. Please see Appendix C for more details.

The evaluation results are presented in Figure 5, and the estimated CP fronts are visualized in Figure
7. Across all tasks, CoMOGA achieves the highest HV and the lowest SP while satisfying all con-
straints. Notably, CoMOGA surpasses the baselines in the bipedal task. This suggests that prevent-
ing gradient conflicts is particularly effective for dynamically unstable robots, such as bipedal robots,
because these robots require a careful balance of multiple objectives to attain desired behaviors. LP3
shows performance similar to the proposed method in the quadrupedal task but underperforms in the
bipedal task.

6.3 SAFETY GYMNASIUM

We utilize single-agent and multi-agent goal tasks in the Safety Gymnasium (Ji et al., 2023). These
tasks require navigating robots to designated goals while avoiding obstacles. The single-agent goal
tasks have two objectives: 1) reaching goals as many times as possible within a time limit and
2) maximizing energy efficiency, along with a single constraint to avoid collisions with obstacles.
The multi-agent goal tasks have two objectives and two constraints, which are to maximize goal
achievement and avoid collisions for two robots, respectively. In both tasks, point and car robots are
used. For details on the tasks and hyperparameter settings, please refer to Appendix C.

The training curves are presented in Figure 6, and the estimated CP fronts are shown in Figure
7. CoMOGA shows the highest HV in all tasks and the lowest SP in two out of four tasks, while
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(a) Single-agent tasks. The left shows the results for the point robot, and the right is for the car robot.

(b) Multi-agent tasks. The upper row shows the results for the point robot, and the lower is for the car robot.

Figure 6: Evaluation results of the Safety Gymnasium tasks.

(a) Biped (b) Quadruped (c) Single-Point-Goal

(d) Single-Car-Goal (e) Multi-Point-Goal (f) Multi-Car-Goal

Figure 7: Visualization of estimated CP fronts for CMORL tasks.

satisfying all constraints. Additionally, the low volatility in the evaluation graph indicates that the
proposed method can stably handle both constraints and objectives. LP3 and PD-MORL violate
constraints in at least one task, and CAPQL satisfies all constraints but shows weak performance in
the single agent tasks, implying the difficulty of handling constraints and objectives simultaneously.
CAGrad shows a similar HV in the Multi-Car-Goal task, but it has a large sparsity.

6.4 MULTI-OBJECTIVE GYMNASIUM

We conduct experiments in the Multi-Objective (MO) Gymnasium (Alegre et al., 2022), which is a
well-known MORL environment, to examine whether the proposed method also performs well on
unconstrained MORL tasks. We use the MuJoCo tasks with continuous action spaces in the MO
Gymnasium, and there are six tasks available: Hopper, Humanoid, Half-Cheetah, Walker2d, Ant,
and Swimmer. Each task has three, two, two, two, three and two objectives, respectively. Details are
provided in Appendix C.

The training curves are presented in Figure 8, the estimated Pareto fronts are detailed in Appendix
D. The proposed method achieves the highest HV in three tasks and the lowest SP in five out of six
tasks. Especially, CoMOGA exhibits outstanding performance in the hopper and humanoid tasks,
which suggests that the conflict-averse strategy is effective for dynamically unstable robots even in
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Figure 8: Evaluation results of the MO Gymnasium tasks. Each column shows the results of the task corre-
sponding to its title.

Figure 9: Results of the ablation study in the legged robot locomotion tasks.

unconstrained MORL settings. However, all algorithms except LP3 show high HV results in the
walker2d task, which is also dynamically unstable. It can be considered that they have reached the
global optimum due to the well-designed reward functions.

6.5 ABLATION STUDY

This section evaluate the effectiveness of the core components of the proposed method. The core
components include (1) transforming objectives into constraints to avoid gradient conflicts and (2)
handling safety constraints by solving a QP problem, where the constraints are linearly approximated
within the local region. To evaluate the efficiency of these components, we designed two ablation
methods: 1) CoMOGA+LS, which excludes (1) and uses linear scalarization to handle multiple ob-
jectives, and 2) CoMOGA+Lag, which excludes (2) and handles constraints using the Lagrangian
method. The training results on the legged locomotion tasks are presented in Figure 9. The re-
sults indicate that CoMOGA+Lag suffers from instability in handling safety constraints due to the
use of Lagrange multipliers. Meanwhile, CoMOGA+LS ensures stable satisfaction of safety con-
straints but achieves lower HVs compared to CoMOGA, confirming the effectiveness of CoMOGA
in avoiding gradient conflicts. Additionally, we present the training results for the quadruped task
across various hyperparameter values in Appendix D to evaluate sensitivity.

7 CONCLUSIONS AND LIMITATIONS

We have introduced a CMORL algorithm called CoMOGA to maximize multiple objectives while
satisfying safety constraints. The proposed method is based on a novel reformulation process that
converts objectives into constraints, which enables the avoidance of gradient conflicts among mul-
tiple objectives and the handling of constraints without additional optimization variables. We show
that the proposed method converges to a CP optimal policy in tabular settings and demonstrate that it
achieves outstanding performance in HV and SP metrics with constraint satisfaction through various
experiments. Since the proposed method updates the policy in a manner that prevents any objective
functions from decreasing, the set of trained policies may cover a narrow portion of the CP front.
Future research can address this limitation by mitigating the condition of gradient conflicts to bet-
ter balance multiple objectives and expand coverage. Specifically, by satisfying the conditions of
the proposed generalized policy update rule in Theorem 4.2, various CMORL algorithms can be
developed with convergence guarantees, which can accelerate future work.
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and sample complexity of natural policy gradient primal-dual methods for constrained mdps.
arXiv preprint arXiv:2206.02346, 2022.

11

https://github.com/qpsolvers/qpsolvers
https://github.com/qpsolvers/qpsolvers


Published as a conference paper at ICLR 2025

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (MGDA) for multiobjective optimiza-
tion. Comptes Rendus Mathematique, 350(5):313–318, 2012.

Florian Felten, Lucas Nunes Alegre, Ann Nowe, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire
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A TOY EXAMPLE

Figure 10: Landscape of the objective functions of the toy example.

In this section, we describe the details of the toy example, which is initially defined in (Liu et al.,
2021). Objective functions of the toy example are formulated as follows:

L1(x1, x2) := c1(x2)f1(x1, x2) + c2(x2)g1(x1, x2),

L2(x1, x2) := c1(x2)f2(x1, x2) + c2(x2)g2(x1, x2), where
c1(x) := max(tanh(0.5x), 0),

c2(x) := max(tanh(−0.5x), 0),

f1(x1, x2) := log(max(|0.5(−x1 − 7)− tanh(−x2)|, 0.000005)) + 6,

f2(x1, x2) := log(max(|0.5(−x1 + 3) + tanh(−x2 + 2)|, 0.000005)) + 6,

g1(x1, x2) := ((−x1 + 7)2 + 0.1(−x2 − 8)2)/10− 20,

g2(x1, x2) := ((−x1 − 7)2 + 0.1(−x2 − 8)2)/10− 20,

where L1 and L2 are the objective functions. The landscape of the objective functions are presented
in Figure 10. In addition, we define a constraint function, which is defined as follows:

C(x1, x2) := x21 + 0.3(x2 − 10)2 − 10.52.

Finally, the toy example is formulated as follows:

min
x1,x2

L1(x1, x2) and L2(x1, x2) s.t. C(x1, x2) ≤ 0.

We set the preference as (0.5, 0.5) for both algorithms, LS and CoMOGA, and use the following
four initial points: (−10, 0), (−10, 7.5), (0, 7.5), and (10, 10). The optimization trajectories for
each method are shown in Figure 2. For the initial point (−10, 7.5), the gradient of L1 is much
larger than L2. Thus, addressing the toy example with LS can be significantly influenced by L1

and eventually converges to a local optimal point of L1. To resolve this issue, avoiding gradient
conflicts can prevent policy gradients from being dominated by a specific objective, which helps
them converge to an optimal point.
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B PROOFS

B.1 PROOF OF REFORMULATION PROCESS

In this section, we prove that the solutions of (2) and (3) are equivalent. Under the linear assumption,
we can express the ith objective function as gTi ∆θ+JRi

(θold). Then, (2) can be rewritten as follows:
max
∆θ

gTi ∆θ + JRi(θold) s.t. ∆θTH∆θ ≤ ϵ2.

As the strong duality holds, we will find the solution by solving the following Lagrange dual prob-
lem:

max
λ≥0

min
∆θ

−gTi ∆θ + λ(∆θTH∆θ − ϵ2) =: L(∆θ, λ).

Then, ∆θ∗(λ) = argmin∆θL(∆θ, λ) = H−1gi/(2λ). By replacing ∆θ with ∆θ∗(λ) in the dual
problem, we get λ∗ = argmaxλL(∆θ

∗(λ), λ) =
√
gTi H

−1gi/(2ϵ). Finally, we obtain the solution,
∆θ∗ = ∆θ∗(λ∗) = ϵH−1gi/

√
gTi H

−1gi.

Now let us find the solution of (3). Under the linear assumption, we can rewrite (3) as follows:
min
∆θ

∆θTH∆θ s.t. ei ≤ gTi ∆θ. (14)

Similar to the above process, the Lagrange dual problem is derived as follows:
max
λ≥0

min
∆θ

∆θTH∆θ + λ(ei − gTi ∆θ) =: L(∆θ, λ). (15)

Then, the solution of the dual problem is obtained as ∆θ∗(λ) = argmin∆θL(∆θ, λ) = λH−1gi/2.
Using ∆θ∗(λ), we can get the optimal Lagrange multiplier as λ∗ = argmaxλL(∆θ

∗(λ), λ) =

2ei/(giH
−1gi) = 2ϵ/

√
giH−1gi. Then, the solution is ∆θ∗ = ∆θ∗(λ∗) = ϵH−1gi/

√
gTi H

−1gi.
As a result, the solutions of (2) and (3) are the same as ϵH−1gi/

√
gTi H

−1gi.

B.2 PROOF OF THEOREM 4.2

We first define the following notions for a policy π:

dπρ (s) := (1− γ)

∞∑
t=0

γtPr(st = s)
∣∣∣s0 ∼ ρ, at ∼ π(·|st), st+1 ∼ P (·|st, at) ∀t,

V π(s) := E

[ ∞∑
t=0

γtR(st, at, st+1)
∣∣∣s0 = s, at ∼ π(·|st), st+1 ∼ P (·|st, at) ∀t

]
,

Qπ(s, a) := E

[ ∞∑
t=0

γtR(st, at, st+1)
∣∣∣s0 = s, a0 = a, st+1 ∼ P (·|st, at), at+1 ∼ π(·|st+1) ∀t

]
,

Aπ(s, a) := Qπ(s, a)− V π(s).

We also simplify several notations for brevity as follows:
πθt → πt, d

πθt
ρ → dtρ, A

πθt

Ri
(s, a) → AtRi

(s, a), A
πθt

Ck
(s, a) → AtCk

(s, a).

Since it is assumed that the state and action spaces are finite, a policy can be parameterized using a
softmax parameterization as follows (Agarwal et al., 2021):

πθ(a|s) := exp(θ(s, a))
/ ∑
a′∈A

exp(θ(s, a′)),

where θ ∈ RS×A is a trainable parameter, and θ(s, a) denotes the value corresponding to state s and
action a. Through Lemma 4 in (Xu et al., 2021), the following equations are satisfied when a policy
is updated according to (8):

θt+1 = θt(s, a) +
αt

1− γ
·

{
(
∑N
i=1 ν

a
t,iA

t
Ri

− αt
∑M
k=1 λ

a
t,kA

t
Ck

) if JCk
(θt) ≤ dk ∀k,

(αt
∑N
i=1 ν

b
t,iA

t
Ri

−
∑M
k=1 λ

b
t,kA

t
Ck

) otherwise,

πt+1(a|s) = πt(a|s)
exp(θt+1(s, a)− θt(s, a))

Zt(s)
,

where Zt(s) :=
∑
a∈A

πt(a|s) exp(θt+1(s, a)− θt(s, a)).
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Now, we introduce a lemma showing that the LS approach guarantees to converge a CP optimal
policy, followed by the proof of Theorem 4.3.
Lemma B.1. Given a preference ω, let us define an LS optimal policy as follows:

π∗
ω := argmax

π

N∑
i=1

ωiJRi
(π) s.t. JCk

(π) ≤ dk ∀k.

Then, the LS optimal policy is also a CP optimal policy.

Proof. Let us assume that there exists a policy µ that dominates the LS optimal policy π∗
ω . By

definition of the constrained dominance, the following is satisfied:

JRi
(µ) > JRi

(π∗
ω) ∀i and JCk

(µ) ≤ dk ∀k.⇒
N∑
i=1

ωi(JRi
(µ)− JRi

(π∗
ω)) > 0.

However, this equation contradicts the fact that π∗
ω is an LS optimal policy. Consequently, π∗

ω is not
dominated by any others, it is also a CP optimal policy.

Theorem 4.2. Assume that sequences {νat,i, νbt,i, λat,k, λbt,k}∞t=1 ⊆ [0, λmax] are given for all i and
k, where

∑
k λ

b
t,k = 1, λbt,k(JCk

(θt)− dk) ≥ 0,
∑
i ν

a
t,i = 1, and νat,i converges to a specific point

ν̄ai . Then, if a policy is updated by the following rule, it converges to a CP optimal policy of (1):

θt+1 = θt +

αtF
†(θt)

(∑N
i=1 ν

a
t,igi − αt

∑M
k=1 λ

a
t,kbk

)
if JCk

(θt) ≤ dk ∀k,

αtF
†(θt)

(
αt
∑N
i=1 ν

b
t,igi −

∑M
k=1 λ

b
t,kbk

)
otherwise,

(8)

where gi = ∇JRi
(θt), bk = ∇JCk

(θt), αt is a step size satisfying Robbins-Monro condition (Rob-
bins & Monro, 1951), and F † represents the pseudo-inverse of the Fisher information matrix.

Proof. We first consider the case JCk
(θt) ≤ dk ∀k, in which the policy is updated as follows:

θt+1 = θt +
αt

1− γ
(

N∑
i=1

νat,iA
t
Ri

− αt

M∑
k=1

λat,kA
t
Ck

).

Using Lemma 1 in (Schulman et al., 2015), we can derive the following inequality:∑
i

νat,i(JRi(θt+1)− JRi(θt))− αt
∑
k

λat,k(JCk
(θt+1)− JCk

(θt))

=
1

1− γ
Es∼dt+1

ρ

[
Ea∼πt+1(·|s)

[
N∑
i=1

νat,iA
t
Ri
(s, a)− αt

M∑
k=1

λat,kA
t
Ck

(s, a)

]]

=
1

αt
Es∼dt+1

ρ

[
Ea∼πt+1(·|s) [θt+1(s, a)− θt(s, a)]

]
=

1

αt
Es∼dt+1

ρ

[
Ea∼πt+1(·|s)

[
log

πt+1(a|s)Zt(s)
πt(a|s)

]]
=

1

αt
Es∼dt+1

ρ
[DKL(πt+1(·|s)||πt(·|s)) + logZt(s)]

≥ 1

αt
Es∼dt+1

ρ
[logZt(s)]

(i)
≥ 1− γ

αt
Es∼ρ [logZt(s)] ,

(16)

where (i) follows from the fact that dπρ = (1− γ)
∑∞
t=0 γ

tPr(st = s) ≥ (1− γ)ρ(s). By Lemma 5
in (Xu et al., 2021),

|JRi
(θt+1)− JRi

(θt)| ≤
2Rmax

1− γ
||θt+1 − θt||2 ∀i,

|JCk
(θt+1)− JCk

(θt)| ≤
2Rmax

1− γ
||θt+1 − θt||2 ∀k.
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⇒
∣∣∣∑

i

νat,i(JRi
(θt+1)− JRi

(θt))− αt
∑
k

λat,k(JCk
(θt+1)− JCk

(θt))
∣∣∣

≤ 2Rmax

1− γ
(N + αtM)λmax||θt+1 − θt||2

=
2Rmax

1− γ
(N + αtM)λmax

∣∣∣∣∣∣ αt
1− γ

(

N∑
i=1

νat,iA
t
Ri

− αt

M∑
k=1

λat,kA
t
Ck

)
∣∣∣∣∣∣
2

≤ 2αtR
2
max

(1− γ)3
(N + αtM)2λ2max

√
|S||A|.

Then, (16) can be rewritten as follows:

2αtR
2
max

(1− γ)3
(N + αtM)2λ2max

√
|S||A| ≥ 1− γ

αt
Es∼ρ [logZt(s)] , (17)

which is satisfied for any ρ. Finally, we derive the following inequality for a policy µ as follows:∑
i

νat,i(JRi(µ)− JRi(θt))− αt
∑
k

λat,k(JCk
(µ)− JCk

(θt))

=
1

1− γ
Es∼dµρ

[
Ea∼µ(·|s)

[
N∑
i=1

νat,iA
t
Ri
(s, a)− αt

M∑
k=1

λat,kA
t
Ck

(s, a)

]]

=
1

αt
Es∼dµρ

[
Ea∼µ(·|s)

[
log

πt+1(a|s)Zt(s)
πt(a|s)

]]
=

1

αt
Es∼dµρ [DKL(µ(·|s)||πt(·|s))−DKL(µ(·|s)||πt+1(·|s)) + logZt(s)]

(i)
≤ 1

αt
Es∼dµρ [DKL(µ(·|s)||πt(·|s))−DKL(µ(·|s)||πt+1(·|s))]

+
2αtR

2
max

(1− γ)3
(N + αtM)2λ2max

√
|S||A|,

(18)

where (i) is from (17) by replacing ρ with dµρ . For brevity, we denote Es∼dµρ [DKL(µ(·|s)||πt(·|s))]
as DKL(µ||πt). Now, we consider the second case where the constraints are violated. In this case,

θt+1 = θt +
αt

1− γ
(αt

N∑
i=1

νbt,iA
t
Ri

−
M∑
k=1

λbt,kA
t
Ck

),

which is symmetrical to the first case, achieved by replacing νat,i → αtν
b
t,i and αtλat,k → λbt,k. Using

this symmetry property, we can obtain the following inequality from (18):

αt
∑
i

νbt,i(JRi(µ)− JRi(θt))−
∑
k

λbt,k(JCk
(µ)− JCk

(θt))

≤ 1

αt
(DKL(µ||πt)−DKL(µ||πt+1)) +

2αtR
2
max

(1− γ)3
(αtN +M)2λ2max

√
|S||A|.

(19)

Now, we define a set of time steps, N := {t|JCk
(πt) ≤ dk ∀k}. Then, by summing (18) and (19)

over several time steps, the following is satisfied for a policy µ:∑
t∈N

(
αt
∑
i

νat,i(JRi(µ)− JRi(θt))− α2
t

∑
k

λat,k(JCk
(µ)− JCk

(θt))

)

+
∑
t/∈N

(
α2
t

∑
i

νbt,i(JRi
(µ)− JRi

(θt))− αt
∑
k

λbt,k(JCk
(µ)− JCk

(θt))

)

≤ DKL(µ||π0) +
∑
t

α2
t

2R2
max

(1− γ)3
max(α0, 1)

2(N +M)2λ2max

√
|S||A|︸ ︷︷ ︸

=:κ1

.

(20)
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If t /∈ N , λbt,k = 0 for JCk
(θt) ≤ dk, which results in

∑
k λ

b
t,k(JCk

(πf ) − JCk
(θt)) ≤ −η. By

using this fact and replacing µ in (20) with πf ,

∑
t∈N

(
αt
∑
i

νat,i(JRi
(πf )− JRi

(θt))− α2
t

∑
k

λat,k(JCk
(πf )− JCk

(θt))

)

+
∑
t/∈N

(
α2
t

∑
i

νbt,i(JRi(πf )− JRi(θt)) + αtη

)
≤ DKL(πf ||π0) + κ1

∑
t

α2
t .

⇒
∑
t∈N

(
αt
∑
i

νat,i(JRi
(πf )− JRi

(θt))

)
+
∑
t/∈N

αtη

≤ DKL(πf ||π0) + κ1
∑
t

α2
t +

∑
t∈N

α2
t

∑
k

λat,k(JCk
(πf )− JCk

(θt))

−
∑
t/∈N

α2
t

∑
i

νbt,i(JRi
(πf )− JRi

(θt))

≤ DKL(πf ||π0) +
∑
t

α2
t

(
κ1 +

2Rmaxλmax

1− γ
max(N,M)

)
︸ ︷︷ ︸

=:κ2

.

Since
∑
t/∈N αtη =

∑
t αtη −

∑
t∈N αtη,

∑
t∈N

(
αt

(∑
i

νat,i(JRi
(πf )− JRi

(θt))− η

))
+
∑
t

αtη ≤ DKL(πf ||π0) +
∑
t

α2
tκ2.

Due to the Robbins-Monro condition, the right term converges to real number. Since
∑
t αtη = ∞

in the left term, the following must be satisfied:

∑
t∈N

(
αt

(∑
i

νat,i(JRi
(πf )− JRi

(θt))− η

))
= −∞,

which results in
∑
t∈N αt = ∞. Now, let us define a preference ω, where ωi := ν̄ai . By replacing

µ in (20) with π∗
ω ,

∑
t∈N

(
αt
∑
i

νat,i(JRi(π
∗
ω)− JRi(θt))

)
−
∑
t/∈N

(
αt
∑
k

λbt,k(JCk
(π∗
ω)− JCk

(θt))

)
≤ DKL(π

∗
ω||π0) + κ2

∑
t

α2
t .

⇒
∑
t∈N

(
αt
∑
i

νat,i(JRi(π
∗
ω)− JRi(θt))

)
≤ DKL(π

∗
ω||π0) + κ2

∑
t

α2
t .

Since the right term converges to a real number and
∑
t∈N αt = ∞, the following must be satisfied:

lim
t→∞

∑
i

νat,i(JRi
(π∗
ω)− JRi

(θNt
)) = 0,

where Nt is the tth element of N . Consequently,∑
i

ν̄ai JRi
(π∗
ω) =

∑
i

ν̄ai lim
t→∞

JRi
(πNt

),

which means that limt→∞ πNt
is also a LS optimal policy for the preference ω. Due to Lemma B.1,

the policy converges to a CP optimal policy.
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B.3 PROOF OF THEOREM 4.3

Theorem 4.3. If H is the Fisher information matrix and a policy πθt is updated as θt+1 = θt+g
ag
ω ,

where gagω is defined in (9), it converges to a CP optimal policy of (1).

Proof. This theorem can be proved by identifying sequences νat,i, ν
b
t,i, λ

a
t,k, λ

b
t,k that satisfy all con-

ditions mentioned in Theorem 4.2. By examining (9), νat,i, ν
b
t,i, λ

a
t,k, λbt,k, and αt can be deduced as

follows:
νat,i =

ν∗i∑N
j=1 ν

∗
j

, νbt,i = 0, λbt,k =
λ∗k∑M
j=1 λ

∗
j

,

λat,k = min(max(||ḡagω ||, gmin), gmax) ·min

(
λ∗k

ϵt
∑N
i=1 ν

∗
i

, λmax

)
,

αt =
ϵt

min(max(||ḡagω ||, gmin), gmax)
.

Substituting the deduced sequences into (9), we can obtain the same formulation as (8). The deduced
sequences satisfy that

∑
νat,i = 1,

∑
λbt,k = 1, νbt,i ∈ R≥0 is bounded, 0 ≤ λat,k ≤ gmaxλmax is also

bounded, and αt ∈ [ϵt/gmax, ϵt/gmin] follows the Robbins-Monro condition. Additionally, since
λ∗k is an optimal point of the dual problem, it satisfies the KKT condition, which results in λ∗k = 0
if JCk

(θt) < dk. Consequently, λbt,k(JCk
(θt) − dk) ≥ 0. Now, we need to check whether the νat,i

converges to a real number. Given that the learning rate follows the Robbins-Monro condition, the
policy converges to a specific policy. Since (5) becomes invariant at this point of convergence, the
solution of the dual problem is also fixed. Consequently, νat,i converge to a specific value.

B.4 CONVERGENCE RATE

In order to derive the convergence rate, we adopted the approach presented in the CRPO paper (Xu
et al., 2021). To apply this approach, we slightly modified the policy update rule from Theorem 4.2
as follows:

θt+1 = θt +

αF
†(θt)

(∑N
i=1 ν

a
t,igi − α

∑M
k=1 λ

a
t,kbk

)
if JCk

(θt) ≤ dk + η ∀k,

αF †(θt)
(
α
∑N
i=1 ν

b
t,igi −

∑M
k=1 λ

b
t,kbk

)
otherwise,

(21)

where η > 0 is called a slack variable, and the key differences are that the recovery step is only
taken when the constraints are violated by more than the slack variable, and the learning rate α is
fixed over time steps. With these slight modifications, we can derive the following convergence rate.

Theorem B.2. Let us set the learning rate α and the slack variable η as follows:

α = 1/
√
T , η = 2(DKL(π

∗
ω||π0) + κ2)/

√
T ,

where ω = (ν̄a1 , ..., ν̄
a
N ), κ2 := κ1 + 2Rmaxλmax max(N,M)/(1− γ),

κ1 := 2R2
max max(α, 1)2(N +M)2λ2max

√
|S||A|/(1− γ)3.

Then, the followings are satisfied:

Et∼N

[∑
i

νat,i (JRi
(π∗
ω)− JRi

(θt))

]
≤ 2

DKL(π
∗
ω||π0) + κ2√
T

,

Et∼N [JCk
(θt)]− dk ≤ 2

DKL(π
∗
ω||π0) + κ2√
T

∀k.

Proof. By substituting |JRi
(π∗
ω)− JRi

(θt)|, |JCk
(π∗
ω)− JCk

(θt)| ≤ 2Rmax/(1− γ) into (20),∑
t∈N

(
α
∑
i

νat,i(JRi(π
∗
ω)− JRi(θt))− 2α2MλmaxRmax/(1− γ)

)
+
∑
t/∈N

(
−2α2NλmaxRmax/(1− γ) + αη

)
≤ DKL(π

∗
ω||π0) + κ1α

2T.
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⇒α
∑
t∈N

∑
i

νat,i(JRi(π
∗
ω)− JRi(θt)) +

∑
t/∈N

αη ≤ DKL(π
∗
ω||π0) + κ2Tα

2. (22)

By using the definitions of α and η, the following is satisfied:

αηT/2 ≥ DKL(π
∗
ω||π0) + κ2α

2T.

If we assume that N = ∅, from (22), we have:

αηT ≤ DKL(π
∗
ω||π0) + κ2α

2T ≤ αηT/2,

which leads to a contradiction. As a result, N ≠ ∅. Additionally, if we assume that |N | < T/2 and∑
t∈N

∑
i ν

a
t,i(JRi

(π∗
ω)− JRi

(θt)) > 0, we have:

αηT/2 <
∑
t/∈N

αη < α
∑
t∈N

∑
i

νat,i(JRi
(π∗
ω)− JRi

(θt)) +
∑
t/∈N

αη ≤ αηT/2,

which leads to a contradiction. As a result, one of the followings are satisfied: 1) |N | ≥ T/2 or 2)∑
t∈N

∑
i ν

a
t,i(JRi(π

∗
ω)− JRi(θt)) ≤ 0. If |N | ≥ T/2,

Et∼N

[∑
i

νat,i (JRi(π
∗
ω)− JRi(θt))

]
=

∑
t∈N

∑
i ν

a
t,i(JRi

(π∗
ω)− JRi

(θt))

|N |

≤ 2
DKL(π

∗
ω||π0)/α+ κ2Tα

T
= 2

DKL(π
∗
ω||π0) + κ2√
T

.

If
∑
t∈N

∑
i ν

a
t,i(JRi

(π∗
ω)− JRi

(θt)) ≤ 0, the above inequality also holds. As a result, the perfor-
mance gap between the LS optimal policy π∗

ω and the current policy πt is bounded by O(1/
√
T ).

For constraint satisfaction, we derive the following bound:

Et∼N [JCi(θt)]− di ≤ η = 2
DKL(π

∗
ω||π0) + κ2√
T

,

which implies that the constraint violation is also bounded by O(1/
√
T ).

C EXPERIMENTAL DETAILS

In this section, we describe the details of each task, including Safety Gymnasium (Ji et al., 2023),
legged robot locomotion (Kim et al., 2023), and Multi-Objective Gymnasium (Felten et al., 2023).
We then provide a detailed explanation of the performance metrics named hypervolume and spar-
sity. Finally, we present implementation details, such as network architectures and hyperparameter
settings.

C.1 TASK DETAILS

C.1.1 SAFETY GYMNASIUM

(a) Single-Point-Goal (b) Single-Car-Goal (c) Multi-Point-Goal (d) Multi-Car-Goal

Figure 11: Snapshots of the Safety-Gymnasium tasks. There are two types of robots: point and
car. These tasks aim to control the robots to reach goals while avoiding hazardous areas, colored
purple. In the Single-Point-Goal and Single-Car-Goal tasks, a single goal, shown in green, is ran-
domly spawned. Conversely, the Multi-Point-Goal and Multi-Car-Goal tasks have two goals, shown
in blue and red, and if an agent reaches any of them, a reward is given to the agent.

In the Safety Gymnasium (Ji et al., 2023), we utilize the single-agent safe navigation tasks:
SafetyPointGoal1-v0 and SafetyCarGoal1-v0, and the multi-agent safe navigation
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tasks: SafetyPointMultiGoal1-v0 and SafetyCarMultiGoal1-v0. Snapshots of each
task are shown in Figure 11.

In the single-agent tasks, the observation space includes velocity, acceleration, and Lidar of the
goal and hazards, and the dimensions are 60 and 72 for the point and car robots, respectively. The
action space for both robots is two-dimensional. There are eight hazard areas and one goal, and
hazard areas are randomly spawned at the beginning of each episode, while goals are randomly
placed whenever the agent reaches the current goal. These tasks originally had a single objective:
maximizing the number of goals reached. However, in order to have multiple objectives, we have
modified them to include a second objective: minimizing energy consumption. Therefore, the re-
ward is two-dimensional, and we use the original definition for the first reward (please refer to Ji
et al. (2023)). The second reward is defined as follows:

R2(s, a, s
′) := − 1

|A|

|A|∑
i=1

(ai/10)
2. (23)

Also, we use the original definition of the cost function, which gives one if the agent enters hazardous
areas and zero otherwise.

The multi-agent tasks have two agents and two goals, and we need to control both agents to reach
goals as much as possible while avoiding hazardous areas. The original implementation uses a
dictionary type for observations and actions, so we have modified them to be an array type. Addi-
tionally, in the original setup, each goal is pre-assigned to a specific agent, reducing the difficulty of
solving multi-agent tasks. Therefore, we have modified the implementation so that each goal is not
pre-assigned, allowing each agent to compete to achieve goals. The observation space contains the
same information from the single-agent tasks for the two agents, as well as additional information:
Lidar of the first and second goals. The dimensions of observation space are then 152 and 176 for the
point and car robots, respectively. The action space is four-dimensional, which is doubled from the
single-agent tasks to control both agents. These tasks have two objectives: maximizing the number
of goals reached by each agent. Also, there are two constraints: avoiding hazardous areas for each
agent. Since there are no additional objectives or constraints, the original definitions of the reward
and cost functions are used without modification.

C.1.2 LEGGED ROBOT LOCOMOTION

(a) Quadruped (b) Biped

Figure 12: Snapshots of the legged robot locomotion tasks. Robots aim to follow a given com-
mand while ensuring they do not fall over.

The legged robot locomotion tasks (Kim et al., 2023) aim to control bipedal or quadrupedal robots so
that their velocity matches a randomly sampled command. This command specifies the target linear
velocities in the x and y-axis directions and the target angular velocity in the z-axis direction, denoted
by (vcmd

x , vcmd
y , ωcmd

z ). Snapshots of these tasks are shown in Figure 12. The quadrupedal robot has
12 joints and 12 motors, and the bipedal robot has 14 joints and 10 motors. Each robot is operated
by a PD controller that follows the target position of the motors, and the target position is given as
an action. Hence, the number of motors corresponds to the dimension of action space. In order to
provide enough information for stable control, observations include the command, linear and angular
velocities of the robot base, and the position and velocity of each joint. As a result, the dimensions of
the observation space are 160 for the quadruped and 132 for the biped. Originally, these tasks have a
single objective of following a given command and three constraints: 1) maintaining body balance,
2) keeping the height of CoM (center of mass) above a certain level, and 3) adhering to pre-defined
foot contact timing. Therefore, we use the original implementation for the observation, action, and
cost functions but modify the reward function to have multiple objectives. The modified version has
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two objectives: 1) reducing the difference between the current velocity and the command and 2)
minimizing energy consumption. Then, the reward function is defined as follows:

R1(s, a, s
′) := 1− (vbasex − vcmd

x )2 − (vbasey − vcmd
y )2 − (ωbase

z − ωcmd
z )2,

R2(s, a, s
′) := 1− 1

J

J∑
j=1

(
τj

Mrobot

)2

,
(24)

where J is the number of joints, τj is the torque applied to the jth joint, and Mrobot is the mass
of the robot. However, in the simulation of the bipedal robot, obtaining valid torque information
is difficult due to the presence of closed loops in the joint configuration. To address this issue, we
modify the second reward for the bipedal robot to penalize the action instead of the joint torque as
follows:

R2(s, a, s
′) := 1− 1

|A|

|A|∑
i=1

a2i . (25)

C.1.3 MULTI-OBJECTIVE GYMNASIUM

Table 1: Specifications of MO-Gymnasium tasks.

Observation Space Action Space # of Objectives (Entries)

Half-Cheetah ⊆ R17 ⊆ R6 2 (velocity, energy)
Hopper ⊆ R11 ⊆ R3 3 (velocity, height, energy)

Humanoid ⊆ R376 ⊆ R17 2 (velocity, energy)
Ant ⊆ R27 ⊆ R8 3 (x-velocity, y-velocity, energy)

Walker2d ⊆ R17 ⊆ R6 2 (velocity, energy)
Swimmer ⊆ R8 ⊆ R2 2 (velocity, energy)

We utilize the Multi-Objective (MO) Gymnasium (Felten et al., 2023) to evaluate the
proposed method in MORL tasks which have no constraints. Among several tasks,
we use the MuJoCo tasks with continuous action space, and there are six tasks
available: mo-hopper-v4, mo-humanoid-v4, mo-halfcheetah-v4, mo-ant-v4,
mo-walker2d-v4, and mo-swimmer-v4. Description of the observation space, action space,
and the number of objectives for these tasks are summarized in Table 1, and for more details, please
refer to Felten et al. (2023).

C.2 METRIC DETAILS

In this section, we explain in detail the performance metrics used in the main text: hypervolume
(HV) and normalized sparsity (SP). First, we need to prepare an estimated CP front to calcu-
late such metrics. To do this, we pre-sample a fixed number of equally spaced preferences and
roll out the trained universal policy for each pre-sampled preference to estimate objective and con-
straint values. If the constraint values do not exceed the thresholds, we store the objective values,
(JR1

(θ), ..., JRN
(θ)), in a set. Once this process is completed for all preferences, we can construct

an estimated CP front by extracting elements from the collected set that are not dominated by any
others. The objective values are then normalized using the minimum and maximum values from
the entire dataset, effectively minimizing the impact of scale of each objective. Now, we introduce
details on each metric.

HV is the volume of the area surrounding a given reference point, r, and an estimated CP front, P ,
as defined in (12) and is visualized in Figure 4(a). However, as seen in Figure 4(a) or (12), the metric
value varies depending on what reference point is used. Therefore, we do not set the reference point
arbitrarily but use a method of determining the reference point from the results of all algorithms, as
shown in Figure 4(b). For a detailed explanation, suppose that we have a set of estimated CP fronts,
{Pi}Ki=1, where Pi is the estimated front obtained from the ith algorithm. Then, we obtain the union
of {Pi}Ki=1, denoted by P ′, and extract elements that are not dominated by any others in P ′ to find
the Pareto front of the entire set, PF(P ′), whose elements are circled in red in Figure 4(b). Finally,
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we get the reference point whose ith value is min({pi|∀p ∈ PF(P ′)}). Through this process, the
reference point can be automatically set after obtaining results from all algorithms for each task. In
addition, the HV value can be zero for some algorithms whose elements are entirely dominated by
PF(P ′). An example of this is Algorithm 3 in Figure 4(b).

As mentioned in the main text, sparsity (SP) (Xu et al., 2020) has a correlation with HV is defined
as follows:

SP(P ) :=
1

|P | − 1

N∑
j=1

|P |−1∑
i=1

(P̃j [i]− P̃j [i+ 1])2, (26)

where P̃j := Sort({p[j]|∀p ∈ P}). An increase in HV implies that the elements of the CP front are
moving further away from each other, which increases SP. To remove this correlation, we provide a
normalized version as defined in (13), and the calculation process is illustrated in Figure 4(c). Given
an estimated CP front, P , we normalize each estimated objective value so that the minimum value
corresponds to zero and the maximum to one. The normalized objectives are denoted as JRi

(θ).
We then calculate the average of the squares of the distances between elements in this normalized
space. This normalized version still produces a large value when a CP front is densely clustered
in particular areas while being sparsely distributed overall. Therefore, it maintains the ability to
measure sparsity while removing the correlation with HV.

C.3 IMPLEMENTATION DETAILS

In this section, several implementation details including hyperparameter settings and network struc-
tures are provided. Before that, we report information on the computational resources. In all exper-
iments, we used a PC equipped with an Intel Xeon CPU E5-2680 and an NVIDIA TITAN Xp GPU.
The average training time in the single point goal task is presented in Table 2.

Table 2: Training time on the point single goal task.

CAPQL PD-MORL LP3 CoMOGA (ours)

Time 16h 49m 29s 16h 40m 9s 24h 4m 34s 17h 27m 58s

C.3.1 IMPLEMENTATION DETAILS OF CONSTRAINED OPTIMIZATION PROBLEM

CoMOGA aggregates the gradients of the objective and constraint functions by solving the following
quadratic programming (QP) problem:

ḡagω = argmin∆θ∆θ
TH∆θ s.t. ωiei ≤ gTi ∆θ, b

T
k∆θ + JCk

(θold) ≤ dk.

As we mentioned in Section 4.4, the QP problem holds strong duality, so the solution can be ex-
pressed as follows: ḡagω = H−1(

∑N
i=1 ν

∗
i gi −

∑M
k=1 λ

∗
kbk), where ν∗i and λ∗k are the optimal La-

grange multipliers of the following dual problem:

ν∗, λ∗ = argmax
ν≥0,λ≥0

− 1

2

(∑
i
νigi −

∑
k
λkbk

)T
H−1

(∑
i
νigi −

∑
k
λkbk

)
+
∑

i
νiωiei +

∑
k
λk(JCk

(θold)− dk).

(27)

In order to solve this problem (27), we first compute gi and bk, which can be obtained by backpropa-
gation using (11). Next, we need to calculateH−1gi. IfH is an identity matrix, H−1gi simplifies to
gi itself, and no additional computation is required. WhenH is the Fisher Information Matrix (FIM),
this calculation aligns with the policy gradient method used in the TRPO algorithm (Schulman et al.,
2015). Consequently, we employ the conjugate gradient (CG) method, as in TRPO, to approximate
H−1gi. The CG method iteratively approximates H−1gi within a finite number of steps, and in our
implementation, we used 10 iterations. For further details about the implementation, we refer to the
TRPO code in the Stable-Baselines3 repository (Raffin et al., 2021).

For simplicity of notation, let gk+N = −bk for k = 1, ...,M . Once gi and H−1gi are computed,
we construct a (N +M)× (N +M) matrix P = {pij}, where pij = gTi H

−1gj . We also compute
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a (N +M)-dimensional vector q, where qi = −ωiei, if i ≤ N , dk − JCk
(θold), otherwise. Then,

(27) can be rewritten as:

ν∗i = x∗i ∀i, λ∗k = x∗N+k ∀k, where x∗ = argmin
x≥0

1

2
xTPx+ qTx. (28)

Since this problem is formulated in a low-dimensional space with N + M variables, it can be
efficiently solved using a QP solver (Caron et al., 2024) employed in numerical optimization.
After solving the optimal dual variables, the aggregated gradient can be calculated as: ḡagω =∑N
i=1 ν

∗
iH

−1gi −
∑M
k=1 λ

∗
kH

−1bk.

Regarding the complexity of solving the constrained optimization problem (COP), the QP solver
is highly efficient and well-established, allowing it to solve most problems within milliseconds.
Thus, the time required for the QP solver can be assumed to be constant. The dominant factor in
computational complexity is therefore determined by the process of setting up (28). This involves
calculating the inner products between gradients, which are performed (N +M)2 times. Conse-
quently, the complexity is proportional to (N +M)2P where P is the number of policy parameters.
Additionally, the Conjugate Gradient (CG) method involves a finite number of iterations. As such,
its computational cost can be treated as a constant relative to the gradient calculations. In summary,
the overall complexity of solving the COP is O((N +M)2P ).

C.3.2 MORL TO CMORL USING THE LAGRANGIAN METHOD

In order to apply linear scalarization-based MORL methods to CMORL, it is required to solve the
following constrained optimization problem given a preference ω:

maxθ

N∑
i=1

ωiJRi
(θ) s.t. JCk

(θ) ≤ dk ∀k ∈ {1, ..,M}. (29)

As explained in the main text, the constraints of the above problem can be handled by converting it
into a Lagrange dual problem, and the dual problem is written as follows:

maxλ≥0minθ −
N∑
i=1

ωiJRi
(θ) +

M∑
k=1

λk · (JCk
(θ)− dk), (30)

where λk are Lagrange multipliers. The multiplies should be learned separately for each preference,
but preferences have continuous values. Therefore, we instead parameterize the multiplier using
neural networks as λϕ(ω), where ϕ is a parameter. Then, the above problem can be solved by
concurrently updating the policy parameter and the Lagrange multipliers using the following loss
functions:

minθL(θ) := −
N∑
i=1

ωiJRi
(θ) +

M∑
k=1

λkJCk
(θ),

minϕL(ϕ) := −
M∑
k=1

λk,ϕ(ω)(JCk
(θ)− dk) s.t. λk,ϕ(ω) ≥ 0,

(31)

where the multipliers can be forced to non-negative values using some activation functions, such as
softplus and exponential functions. The policy loss in (31) is constructed by adding

∑
λkJCk

(θ)
to the loss from the unconstrained MORL problem. Therefore, the implementation of the existing
MORL algorithms can be easily extended to a CMORL algorithm by adding

∑
λkJCk

(θ) to the
original policy loss.

Additionally, the PD-MORL algorithm (Basaklar et al., 2023) uses a preference alignment tech-
nique. However, for a fair comparison, we did not employ this technique as it necessitates 1)
pre-training to identify the objective direction corresponding to key preferences and 2) additional
evaluation steps during the main training process to adapt the objective direction. Nevertheless, to
enrich our discussion, we provide experimental results of the PD-MORL algorithm with preference
alignment in Appendix D.
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C.3.3 NETWORK ARCHITECTURE

The proposed method and baselines are based on the actor-critic framework, requiring policy and
critic networks. Additionally, since the baselines use the Lagrangian method to handle the con-
straints, they use multiplier networks, as mentioned in Appendix C.3.2. We have implemented these
networks as fully connected networks (FCNs), and their structures are presented in Table 3. In

Table 3: Network structures.

Parameter Value

Policy network Hidden layer (512, 512)
Activation LeakyReLU

Normalization ✘

Critic network Hidden layer (512, 512)
Activation LeakyReLU

Normalization ✘

Quantile distributional Hidden layer (512, 512)
critic network Activation LeakyReLU

Normalization LayerNorm
# of quantiles 25

Multiplier network Hidden layer (512,)
Activation LeakyReLU

Normalization ✘

the unconstrained tasks, MO-Gymnasium, we use standard critic networks that output scalar values
for given observations and preferences. However, the standard critic networks usually estimate the
objective or constraint functions with large biases, making it challenging to satisfy the constraints.
Therefore, we use quantile distributional critics (Dabney et al., 2018) to lower the estimation biases
in the Safety-Gymnasium and legged robot locomotion experiments. The quantile distribution critic
outputs several quantile values of the discounted sum of the reward or cost functions for given obser-
vations and preferences. Then, the objective or constraint functions can be estimated by averaging
the outputted quantiles. For the proposed method and LP3 that have similar frameworks to TRPO
(Schulman et al., 2015), TD(λ) method (Kim et al., 2023) is used to train the distributional critic
networks. For PD-MORL and CAPQL, the distributional critic networks are trained by reducing the
Wasserstein distance between the current quantiles and the truncated one-step TD targets, as in TQC
(Kuznetsov et al., 2020). The policy network, similar to other RL algorithms dealing with continu-
ous action spaces (Schulman et al., 2015; Haarnoja et al., 2018; Fujimoto et al., 2018), outputs the
mean and diagonal variance of a normal distribution. However, in the locomotion tasks, the policy
networks are modified to output only the mean value by fixing the diagonal variance in order to
lower the training difficulty.

C.3.4 HYPERPARAMETER SETTINGS

We report the hyperparameter settings for the CMORL tasks (Safety-Gymnasium, Locomotion) in
Table 4 and the settings for the MORL tasks (MO-Gymnasium) in Table 5.
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Table 4: Hyperparameters for CMORL tasks.

CAPQL PD-MORL LP3 CoMOGA (Ours)
Discount factor 0.99 0.99 0.99 0.99

Length of replay buffer 1000000 1000000 100000 100000
Steps per update 10 10 1000 1000

Batch size 256 256 10000 10000
Optimizer Adam Adam Adam Adam

Policy learning rate 3× 10−4 3× 10−4 - 3× 10−4

Critic learning rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Multiplier learning rate 1× 10−5 1× 10−5 3× 10−4 -
Soft update ratio 0.005 0.005 - -

# of quantiles to truncate 2 2 - -
# of HER samples - 3 - -

Angle loss coefficient - 10 - -
Explore and target action noise scale - (0.1, 0.2) - -

# of action samples - - 20 -
TD(λ) factor - - 0.97 0.97

# of target quantiles - - 50 50
# of preference samples - - 10 10

Local region size - - 0.05 0.05
gmin, gmax - - - (0,∞)
λmax - - - ∞

H matrix - - Fisher information Fisher information

Table 5: Hyperparameters for MORL tasks.

CAPQL PD-MORL LP3 CoMOGA (Ours)
Discount factor 0.99 0.99 0.99 0.99

Length of replay buffer 1000000 1000000 100000 1000000
Steps per update 1 1 1000 10

Batch size 256 256 10000 256
Optimizer Adam Adam Adam Adam

Policy learning rate 3× 10−4 3× 10−4 - 3× 10−4

Critic learning rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Soft update ratio 0.005 0.005 - 0.005
# of HER samples - 3 - -

Angle loss coefficient - 10 - -
Explore and target action noise scale - (0.1, 0.2) - -

# of action samples - - 20 -
TD(λ) factor - - 0.97 -

# of preference samples - - 10 10
Local region size - - 0.14 0.05
gmin, gmax - - - (0,∞)
λmax - - - ∞

H matrix - - Fisher information Identity matrix

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results for CAGrad (Liu et al., 2021) and PD-
MORL with preference alignment (Basaklar et al., 2023), which is mentioned in Appendix C.3.2 and
denoted by PD-MORL-Norm, on the MO Gymnasium tasks. The training curves are shown in Figure
13. Additionally, Figure 14 presents the Hypervolume results without normalization. The estimated
CP fronts for tasks with two objectives are visualized in Figure 15, where the hopper and ant tasks
are excluded as they have three objectives. As mentioned in the appendix C.2, the estimated CP front
can be obtained by rolling out a trained universal policy with different preferences, and for the MO
Gymnasium tasks, 20 equally spaced preferences are used. Figure 15 show that CAGrad performs
similarly to our method, CoMOGA, on the overall tasks. However, as seen in Figure 8, it is evident
that CAGrad is significantly outperformed by our proposed method. This observation confirms that
extending existing conflict-averse MORL algorithms to CMORL is non-trivial. Additionally, PD-
MORL-Norm performs better than PD-MORL in the ant and hopper tasks but worse in the humanoid
and walker tasks.
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Figure 13: Additional evaluation results of the MO Gymnasium tasks. Each column shows the
results of the task corresponding to its title. All algorithms are evaluated at every 105 steps. The
bold lines and shaded areas represent the mean and quarter-scaled standard deviation of results from
five random seeds, respectively.

Figure 14: The same results as Figure 13, but with Hypervolume calculated without normalization.

(a) Humanoid (b) Half-Cheetah

(c) Walker2d (d) Swimmer

Figure 15: Visualization of estimated CP fronts for MO Gymnasium tasks.
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D.1 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

Our method introduces two additional hyperparameters: the local region size ϵ and the number of
preference samples P , as specified in Algorithm 1. To provide insights into the sensitivity of the pro-
posed method to these hyperparameters, we conducted experiments on the quadrupedal locomotion
task using various values. The results are presented in Figure 16.

For the local region size ϵ, experiments were conducted with values of 0.01, 0.02, 0.05, and 0.1. The
results show that increasing the size accelerates the convergence of HV performance. However, as
the size increases, the constraint curves fluctuate, suggesting that handling constraints might become
less stable. Despite this, CoMOGA achieves optimal performance and satisfies the constraints in all
cases, demonstrating robustness to variations in the local region size.

For the number of preference samples, experiments were conducted with values of P = 1, 5, 10,
and 20. The performance was lowest at P = 1, while the results for P = 5, 10, and 20 were con-
sistently satisfactory. However, increasing P does not always lead to better performance. This can
be attributed to the fact that a larger P reduces the trajectory size corresponding to each preference,
potentially limiting effectiveness.

(a) Local region size.

(b) The number of preference samples.

Figure 16: Sensitivity experiments on the quadrupedal locomotion task.

D.2 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we experimentally analyze the GPU memory usage and computational complexity of
solving the constrained optimization problem (COP) in the proposed CoMOGA algorithm. We use
Single-Point-Goal, Multi-Point-Goal, and Quadruped tasks, with respective N +M values of three,
four, and five. The results are summarized in Table 6. The first two rows of the table report the GPU
memory usage dedicated to solving the COP, while the remaining rows present the computation
times. Specifically, solving a COP involves the following steps: 1) calculating the gradients of the
objective and constraint functions, 2) performing gradient operations related to the Hessian matrix,
and 3) solving the COP. We report the time consumed for each of these steps. The results indicate
that COP-related computations contribute minimally to both GPU memory usage and computation
time. However, Hessian-related operations account for approximately 10% of the total computation
time. This suggests that future research could benefit from adopting an approximation approach
similar to PPO (Schulman et al., 2017), which avoids explicit Hessian computations, to achieve
faster training time.

D.3 PREFERENCE SAMPLING STRATEGIES

In this section, we provide a detailed explanation of the implementation of ω ∼ Ω as specified in
Algorithm 1. The most straightforward approach for sampling preferences is to draw them from an
N -dimensional Dirichlet distribution. Another approach is to sample one-hot vectors to represent
strong preferences for a specific objective. In this case, the dimension with a value of 1 can be
selected uniformly at random. Lastly, a hybrid strategy can be employed, where preferences are
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Table 6: Comparison of GPU memory usage and computational time across tasks.

Single-Point-Goal
(N +M = 3)

Multi-Point-Goal
(N +M = 4)

Quadruped
(N +M = 5)

COP GPU Memory (MB) 20 (0.91 %) 40 (1.71 %) 40 (1.32 %)
Total GPU Memory (MB) 2189 (100 %) 2333 (100 %) 3037 (100 %)

Gradient Computation (sec) 0.097 (1.11 %) 0.156 (1.40 %) 0.192 (1.94 %)
Hessian Computation (sec) 1.271 (14.50 %) 1.975 (17.67 %) 1.324 (13.41 %)

QP Solving Time (sec) 0.012 (0.14 %) 0.014 (0.13 %) 0.014 (0.14 %)
Training Time per Update (sec) 8.763 (100 %) 11.174 (100 %) 9.870 (100 %)

Figure 17: Training results of different preference sampling approaches on the locomotion tasks.

sampled from the Dirichlet distribution with a 50% probability and as one-hot vectors with the
remaining 50%.

In our implementation, we adopted the hybrid sampling strategy. To investigate the impact of differ-
ent sampling methods on performance, we compared the results of training legged locomotion tasks
using all three strategies. The results are summarized in Figure 17.

As shown in the figure, sampling preferences from the Dirichlet distribution yields the best perfor-
mance. The hybrid strategy performs almost as well as the Dirichlet sampling, while the one-hot
sampling method suffers from severe performance degradation. These findings suggest that the
Dirichlet distribution, which enables uniform sampling across the preference space, is the most ef-
fective approach.

E COMPARISON WITH CONFLICT-AVERSE MTL ALGORITHMS

To compare CoMOGA with existing conflict-averse multi-task learning (MTL) algorithms, we se-
lected MGDA (Désidéri, 2012), PCGrad (Yu et al., 2020), and CAGrad (Liu et al., 2021). The
aggregation of multiple gradients in each method can be formulated as follows and is illustrated as
in Figure 18:

(MGDA) max
d

min
i
gTi d s.t. ||d|| ≤ 1,

(PCGrad) d =
∑
i

gPC
i , where gPC

i = gi −
gTi gj
||gj ||22

gj ,

(CAGrad) max
d

min
i
gTi d s.t. ||d− g0|| ≤ c||g0||,

(CoMOGA) min
d

||d|| s.t. ωiϵ||gi|| ≤ gTi d,

(32)

where CoMOGA is a special case where no safety constraints are presented, and H is the identity
matrix. Below, we detail the differences between these methods and the proposed CoMOGA.

• MGDA. This method determines a gradient direction that maximizes the improvement of
the objective with the smallest increase. However, MGDA has a limitation in that it does
not allow the incorporation of task preferences.
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Figure 18: Visualization of gradient aggregation process in conflict-averse MTL algorithms.

• PCGrad. This method projects each gradient to remove components in conflict with other
gradients before aggregating the projected gradients. However, like MGDA, PCGrad does
not support the incorporation of task preferences.

• CAGrad. This method can be viewed as an extension of MGDA that enables the inclusion
of task preferences by setting g0 =

∑
i ωigi.

• CoMOGA. Finally, the proposed method, CoMOGA, transforms each objective into con-
straints and solves a quadratic programming (QP) problem to obtain the gradient.

30


	Introduction
	Related Work
	Background
	Proposed Method
	Reformulation as Constrained Optimization
	Gradient Aggregation
	Update Rule for Universal Policy
	Convergence Analysis

	Practical Implementation
	Experiments
	Evaluation Metrics and Baselines
	Legged Robot Locomotion
	Safety Gymnasium
	Multi-Objective Gymnasium
	Ablation Study

	Conclusions and Limitations
	Toy Example
	Proofs
	Proof of Reformulation Process
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Convergence Rate

	Experimental Details
	Task Details
	Safety Gymnasium
	Legged Robot Locomotion
	Multi-Objective Gymnasium

	Metric Details
	Implementation Details
	Implementation Details of Constrained Optimization Problem
	MORL to CMORL using the Lagrangian method
	Network Architecture
	Hyperparameter Settings


	Additional Experimental Results
	Sensitivity Analysis of Hyperparameters
	Computational Complexity Analysis
	Preference Sampling Strategies

	Comparison with Conflict-Averse MTL Algorithms

