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Abstract

Molecular dynamics (MD) provides insights into atomic-scale processes by inte-
grating over time the equations that describe the motion of atoms under the action
of interatomic forces. Machine learning models have substantially accelerated MD
by providing inexpensive predictions of the forces, but they remain constrained
to minuscule time integration steps, which are required by the fast time scale of
atomic motion. In this work, we propose FlashMD, a method to predict the evolu-
tion of positions and momenta over strides that are between one and two orders of
magnitude longer than typical MD time steps. We incorporate considerations on the
mathematical and physical properties of Hamiltonian dynamics in the architecture,
generalize the approach to allow the simulation of any thermodynamic ensemble,
and carefully assess the possible failure modes of such a long-stride MD approach.
We validate FlashMD’s accuracy in reproducing equilibrium and time-dependent
properties, using both system-specific and general-purpose models, extending the
ability of MD simulation to reach the long time scales needed to model microscopic
processes of high scientific and technological relevance.

1 Introduction

Simulations of atomic-scale systems are at the core of computational physics, chemistry, biology, and
materials science [1]. Molecular dynamics (MD) in particular is a powerful tool for investigating the
behavior of microscopic systems, from proteins [2–5] to chemical reactions [6–8] and materials [9–
11]. MD elucidates atomic-scale structure and mechanisms by numerically solving the equations
of atomic motion, driven by forces that can be estimated by quantum ground state electronic-
structure calculations [12]. This has allowed simulating the time-evolution of various systems at the
atomic scale, and probing thermodynamic and kinetic properties that are often difficult to measure
experimentally.

Despite its utility, MD has long been hindered by the trade-off between computational cost and
accuracy of employed methods. Machine learning interatomic potentials [13–19] (MLIPs) have reme-
died this in part by allowing the cheap approximation of otherwise expensive quantum mechanical
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Figure 1: Schematic overview of FlashMD. Atoms of the system at time step τ are taken as inputs,
with atomic numbers Zi and momenta pi(τ) embedded into the node features hi, and relative
coordinates qij(τ) embedded into the edge features eij of a GNN for the system. The node outputs
are used to predict the new configuration pi(τ + ∆τ) and ∆qi(τ + ∆τ) in a multi-head manner.
Center-of-mass constraints are also enforced. Uncertainty quantification can be enabled as shown
in the navy inset. Optional filters for energy conservation enforcement, thermodynamic ensemble
control, and random rotation are provided, as discussed below. Conventional MD would require ∆τ
explicit numerical integrations to reach the final configuration as opposed to 1 pass of FlashMD.

energies and forces. Nonetheless, MLIPs exhibit their own constraints of having to obey the physical
symmetries and requiring expensive gradient computation to obtain the forces for MD propagation.
Furthermore, stable and theoretically meaningful MD simulations require mathematical integration
of the equations of motion with sufficiently small time steps (∼ 1 fs), limiting the simulations to a
regime far removed from experimentally relevant time scales.

Motivated by the latest developments in MLIPs involving symmetry breaking and direct force learn-
ing [20–22], as well as by generative approaches that construct representative atomic configurations
without following the physically motivated equations of motion [23], this work will focus on the
direct prediction of MD trajectories (see Fig. 1). This approach avoids both the explicit calculation of
interatomic forces and the numerical integration of the equations of motion, allowing one to use much
larger strides compared to traditional MD integrators – with a corresponding, dramatic extension of
the time scales accessible via atomistic modeling.

Our novel contributions are summarized as follows: (i) We provide a thorough theoretical analysis
of the problem of directly learning MD trajectories, discussing potential pitfalls. (ii) We introduce
techniques for higher accuracy and larger time steps, e.g. by enforcing exact conservation of energy
at inference time, proving its importance in stabilizing trajectories and reproducing physically correct
behavior. (iii) We generalize the approach to MD in arbitrary, experimentally-relevant thermodynamic
ensembles. (iv) We present universal models for direct, large-stride MD, capable of predicting
trajectories across a wide range of chemical systems with diverse structure and composition.

2 Background and related work

We aim to predict the sequence of position qi(τ) and momentum pi(τ) for each atom i at the discrete
time step τ of a MD trajectory integrated with a small time step ∆t (so the actual simulation time at a
time step τ is t = τ∆t). Conventional MD evolves the dynamics using positions and momenta of all
atoms at time step τ to predict the new positions and momenta at time τ + 1. Our goal here is to be
able to take longer strides ∆τ , skipping all intermediate steps, thereby achieving a corresponding
reduction in computational cost and eventually allowing practitioners to access much longer time
scales in MD.

2.1 Molecular dynamics

In its simplest form, MD is the numerical solution of Hamilton’s equations

dqi

dt
=

∂H

∂pi

,
dpi

dt
= −∂H

∂qi

, (1)
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for an atomistic system with N atoms at positions {qi}Ni=1 and momenta {pi}Ni=1. The Hamilto-
nian function H describing the dynamics, in the absence of external perturbations, takes the form
H({pi, qi}Ni=1) =

∑N
i=1 p

2
i /2mi + V ({qi}Ni=1), where mi are the atomic masses and V ({qi}Ni=1)

is the potential energy of the system. In practice, Eq. 1 is discretized using a time step ∆t. Among the
many algorithms that could be used for numerical integration, the velocity Verlet (VV) algorithm [24]
has become the standard due to its simplicity and the fact it preserves exactly some of the key
properties of the underlying continuous Hamiltonian dynamics (Sec. 2.2). A single VV step reads

pi ← pi −
1

2

∂V

∂qi

∆t, qi ← qi +
pi

mi
∆t, pi ← pi −

1

2

∂V

∂qi

∆t. (2)

If integrated with a sufficiently small ∆t, the VV algorithm approximately conserves the energy of
the system, making it suitable to sample the NVE thermodynamic ensemble (where the number of
particles N , volume V and total energy E are fixed).

The NVE ensemble rarely corresponds to realistic experimental conditions. For this reason, variants
of MD have been developed to target other types of ensembles [25, 26], accelerate their statistical
sampling [27], account for nuclear quantum effects [28], etc. Practically, NVE MD can be modified
via the inclusion of thermostats (e.g., [29, 30]), which allows sampling the constant-temperature
(NV T ) ensemble, as well as the addition of barostats to sample constant-pressure (NpT ) ensemble.
Specialized Monte-Carlo moves are also used to access ensembles with varying number of particles
and constant chemical potential (µV T ). These different variants of MD are discussed further in
Appendix D, and are all built around the NVE integrator, whose accuracy is therefore of central
importance to achieve sampling of configurations with the correct probabilities.

Molecular dynamics with machine learning interatomic potentials The integrator in (2) is
simple and computationally inexpensive, even though it requires a small time step. The bottleneck is
typically the evaluation of the force F i = −∂V/∂qi at every step, which is traditionally done using
affordable but inaccurate empirical potentials, or accurate but very demanding quantum mechanical
calculations. Over the last two decades, most efforts of applying machine learning (ML) to accelerate
MD have revolved around MLIPs that approximate the potential energy surface V ({qi}Ni=1) from
quantum mechanical calculations at a much reduced cost. Though MLIPs were traditionally focused
on describing a specific chemical system, the last few years have seen the development of “universal”
MLIPs [31–40], which aim to provide good accuracy across the whole periodic table, in principle
allowing users to simply deploy the model for the desired system without further, dedicated training.

2.2 Physical and mathematical considerations

Symmetries of the potential energy function The potential V ({qi}Ni=1) obeys two fundamental
physical symmetries: (i) SN -invariance: V ({qi}Ni=1) is invariant with respect to permutations of
atom indices; (ii) E(3)-invariance: V ({qi}Ni=1) is invariant with respect to translations, rotations and
inversions of the atomic structure. Although traditional MLIPs incorporate all these symmetries
through symmetry-constrained architectures, some recent models do not directly enforce rotational
(and inversion) symmetry and use instead data augmentation strategies to encourage the model
to approximately capture it at training-time [18, 22]. This allows the models to avoid expensive
equivariant operations and make inference more computationally efficient, without significantly
affecting the physical observables in MD [20]. It should also be noted that preserving the two
remaining symmetries (those with respect to translations and permutations), which are much harder
to augment, naturally leads to the choice of graph neural networks (GNNs) for learning interatomic
potentials, explaining their widespread adoption in last-generation MLIPs.

Conservative and non-conservative forces Using forces that are the derivatives of V in the
propagation of Hamiltonian dynamics conserves the total energy H . Even though this is a requirement
to sample the NVE ensemble, some recent models have implemented the direct prediction of F i

as an arbitrary vector field, leading to non-conservative dynamics [22, 32, 41]. These “direct-force”
models do not even apply data augmentation to encourage energy conservation, as doing so involves
computing the Jacobian of the forces, which is computationally impractical. Nevertheless, high
model accuracy and the use of hybrid integration strategies [21, 42] allow non-conservative forces to
be used in MD without generating noticeable unphysical artifacts, and with the efficiency benefits
given by skipping the differentiation step.
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Symmetries in molecular dynamics The possibility of performing stable MD with direct force
predictions, and therefore without an underlying potential energy surface, suggests that an explicit
potential energy function might not be necessary to predict the system evolution over time. It is
therefore natural to consider the underlying symmetries in MD, and understand whether they can be
incorporated efficiently into a potential-free model, or encouraged at training-time.

The VV algorithm, as presented in Eq. 2, displays two fundamental symmetries, both of which are
properties of the underlying continuous solution of Hamilton’s equations: (i) MD is symplectic. That
is, if {pi}Ni=1, {qi}Ni=1 are the momenta and positions a time step τ1 and {p′

i}Ni=1, {q′
i}Ni=1 are those

at a different time step τ2, then
∂p′i,α
∂pi,α

∂q′i,α
∂qi,α

−
∂p′i,α
∂qi,α

∂q′i,α
∂pi,α

= 1, (3)

for all i = 1, ..., N and α = x, y, z. This crucially implies conservation of volume in phase space [43].
(ii) MD is time-reversible. This means that, considering positions and momenta evolved from τ1 to
τ2 > τ1, then evolving {−p′

i}Ni=1, {q′
i}Ni=1 for τ2 − τ1 time steps will result in the state {−pi}Ni=1,

{qi}Ni=1. Furthermore, (iii) MD is (approximately) energy-conserving. While energy conservation
is exact for the solution of Eq. 1, its discretization in the form of Eq. 2 is only approximately
energy-conserving due to the finite integration step ∆t. Since smaller ∆t values afford better energy
conservation, the latter is an important metric of integrator quality and sampling accuracy, which is
why conventional MD is limited to short time steps and therefore simulation times.

MD as a time series The sequence of configurations generated by a MD trajectory obeys a few
additional mathematical properties. (i) MD is Markovian. It is trivial to see that Eq. 2 defines a
Markovian process, i.e. that the present time step τ contains all the necessary information to predict
any future time step τ +∆τ . (ii) MD is deterministic. Even though it is possible to describe MD in a
probabilistic framework (see e.g. Appendix D), barring effects due to numerical error and parallel
programming, the initial conditions determine unequivocally the trajectory, both for infinitesimal
and finite time steps. (iii) MD is chaotic. Very often, even moderately complex systems simulated
with MD exhibit a positive Lyapunov exponent [44] (i.e., the speed at which trajectories diverge),
meaning that the phase-space distance of two very close initial states increases exponentially fast
as the simulation time progresses. Since MD is executed in finite-precision arithmetic, this implies
that the targets of the learning exercise will become excessively noisy (and therefore difficult or
impossible to learn) for large strides ∆τ . Furthermore, the Lyapunov exponent is highly dependent
on the physical system under consideration.

2.3 ML modeling of molecular dynamics trajectories

A few previous works have applied ML techniques to model MD trajectories or their target distribu-
tions. In the following, we provide a non-exhaustive set of related works broadly categorized by their
conceptual approach. We focus on methods that aim to avoid VV integration entirely, rather than on
methods based on multiple time-stepping [42] that reduce the computational cost by combining the
evaluation of cheap-but-inaccurate ML models and more expensive physics [45, 46] or ML-based
approximations of V along the trajectory [47]. We also discuss how the nature and the practical
implementation of previous approaches compare with the fundamental properties of MD.

Thermodynamic ensemble generators Generative ML techniques have been applied to directly
sample the thermodynamically accessible system configurations [48–51], which is especially useful
for biomolecular systems with slow conformational transitions. Such models allow cheap predic-
tion of the thermodynamic properties that conventionally require long MD simulations, but they
disregard the time-dependent behavior of the systems and hence are unsuitable for investigating the
physicochemical phenomena that can only be explained via the system’s dynamics. More recently,
the implicit transfer operator (ITO) has been proposed to extend Boltzmann generators to also re-
cover, with stochastic trajectory, a measure of long-time dynamical processes [52]. Another relevant
approach is Timewarp [53], which employs a normalizing flow as a proposal distribution within a
Markov chain Monte Carlo scheme targeting the Boltzmann distribution, achieving effective time
steps on the order of 105–106 fs for molecular systems.

Time-series approaches Several works [54–57] have interpreted the MD trajectory as a time
series and adopted recurrent neural network (RNN)-type architectures, particularly the long short-
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term memory [58] (LSTM), for the learning task. These models take a time series of past system
configurations as inputs to make predictions of the future trajectory. Some have taken a stochastic
approach to predict a probable distribution of system states at a future time, and this has been
successfully demonstrated in both all-atomic [54] and coarse-grained [56] contexts. However, in light
of the Markovian nature of MD, sequence models such as LSTM use redundant information and are
not necessary to learn MD trajectories. Furthermore, the deterministic nature of MD as presented in
Eq. 2 makes it superfluous to use probabilistic models (VAEs [59], normalizing flows [60], diffusion
models [61], etc.).

Direct MD propagators This is the class of methods that most closely resembles our approach. It
is distinct from the former two approaches in that no generative approaches or multiple time step
information is used. In this case, the ML models take only the positions and momenta of atoms of the
system at time step τ as inputs and deterministically predict their changes at τ +∆τ , hence “directly
propagating” the dynamics. In MDnet by Zheng et al. [62], the chemical system is described as a
graph, with the edge features incorporating both the relative positions and momenta between the
atoms. The model then predicts the changes in the positions and momenta for a fixed large time step
∆t. Very recently, Thiemann et al. have demonstrated TrajCast [63], an autoregressive equivariant
network for direct MD prediction. Their framework has been shown to achieve good accuracy in
reproducing NV T trajectories for individual molecular or bulk systems at a specific thermodynamic
state point. It is also worth mentioning GICnet [64] and its transferable, transformer-based variant
MDtrajNet-1 [65], which learns a function that takes as inputs the initial positions, velocity, and ∆t
to return the positions at time t+∆t, the Equivariant Graph Neural Operator [66] (EGNO) approach,
which predicts the evolution of the system at multiple times using equivariant temporal convolution in
Fourier space, and the Graph Network-based Simulators [67, 68] (GNS), which have been developed
for arbitrary particle-based systems without the chemical context.

3 The FlashMD framework

In this section, we explain the design choices made for “FlashMD”, our proposed approach for the
direct learning and prediction of MD trajectories.

3.1 Learning molecular dynamics trajectories with graph neural networks

Given that MD shares with interatomic potentials the properties of E(3)-equivariance and the use
of atomic geometries as inputs, we propose that FlashMD should be built on top of similar GNN
architectures to those that have successfully been used to model machine-learning interatomic
potentials (MLIPs). In this work, we choose the Point-Edge Transformer [18] (PET), although
any GNN architecture could be used. Compared to the original architecture in Ref. [18], we make
two physically motivated modifications to adapt it to the prediction of trajectories: (i) Each node
state is also initialized using the particle momentum pi, encoded via a multi-layer perceptron, in
addition to the chemical species of the atom under consideration. The initialization of the edge states
remains unchanged, and it includes the interatomic vectors qj − qi. (ii) The outputs pi(τ +∆τ) and
qi(τ +∆τ) are node properties and are therefore predicted via two distinct multi-layer perceptron
heads starting from the node representation of PET.

It should be noted that the “raw” FlashMD predictions are chosen to be mass-scaled, i.e. p′
i/
√
mi

and (q′
i − qi)

√
mi. This ensures a treatment of displacements and momenta on equal footing for

atoms of different mass, although a data-driven approach is also possible (App. A). Further details on
the architecture and the training procedure are available in Appendices A and B, respectively.

3.2 Addressing the many pitfalls of direct molecular dynamics predictions

Despite the fact that we have identified and justified graph neural networks as a highly-suitable model
to predict MD trajectories, there still exist many problematic aspects of this exercise which, if ignored,
could make the resulting models practically useless. We note that these, as well as many of the
theoretical considerations above, have been almost entirely ignored in previous related works.

Out-of-distribution predictions Robust epistemic uncertainty schemes, capable of predicting
errors associated with limited data sampling, are generally highly recommended when sampling
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configurations using MLIPs [69]. They become essential for models that predict MD trajectories
directly, that are less physically grounded and more susceptible to exhibiting pathological and
unphysical behavior when queried outside of the domain of their training data.

Chaoticity The chaoticity of MD limits the time scale that can be reached with deterministic
predictions. It also introduces an aleatoric component to the model error, which varies in intensity
depending on the system (see Sec. 2.2) and should be accounted for when building an uncertainty
quantification scheme.

Time-reversibility Time-reversibility, one consequence of the symmetries of MD, can easily be
incorporated by data augmentation [62]. This follows trivially from the discussion in Sec. 2.2.

Conservation of energy Conservation of energy is another consequence of the fundamental
symmetries of MD, namely the translational symmetry of time. Given the radical importance of
translational symmetries in 3D space, which make GNNs so effective for MLIPs, it is clear that
conservation of energy should be considered a centerpiece of MD trajectory modeling, as it encodes
the symmetry in the time dimension. Previous works have not carefully monitored conservation of
energy in their predicted MD trajectories. In FlashMD, we implement two approaches to improve
energy conservation: (i) we utilize errors in energy conservation during training, in addition to the
terms corresponding to the position and momenta (see App. B), (ii) we enforce energy conservation
at inference time by rescaling momenta after each FlashMD step (see App. C). The latter adjustment
makes it possible to run long trajectories targeting the NVE ensemble, as these would otherwise be
affected by a large energy drift (see App. F).

Symplecticity Symplectic behavior is – together with energy conservation – a necessary and
sufficient condition for correct thermodynamic sampling. Unfortunately, penalizing non-symplecticity
in the loss function is impractical, as evaluating Eq. (3) involves the computation of the full 3N × 3N
Jacobian – similar to energy conservation in direct force prediction [21]. We will discuss some
numerical results on the violation of (3) by FlashMD, but mainly focus on the empirical measures of
the accuracy of dynamics and sampling, through comparison with conventional MD simulations.

Symmetry breaking Although equivariant GNNs include strict rotational symmetries in the model,
many GNN architectures do not enforce rotational equivariance explicitly [18, 36, 38]. Given
that directly learning MD trajectories is a fundamentally more challenging problem than learning
a potential energy surface, symmetry breaking might affect models for MD more than MLIPs.
Therefore, if using rotationally unrestricted GNNs, we recommend correcting for rotational (and
inversion) symmetry breaking at inference time, using similar techniques as those proposed for
MLIPs [20]. Given that the PET architecture [18] also does not enforce rotational equivariance, we
use rotational and inversion augmentation at training time, and optionally perform random rotation(s)
of the system at each step of FlashMD simulations (see App. A).

3.3 Generalization to arbitrary thermodynamic ensembles

FlashMD is trained to reproduce, with a longer stride, NVE trajectories obtained with a VV integrator.
However, nearly all other MD variants can be discretized (and are often implemented) using a split-
operator formalism where VV is one of the components of the algorithm for a single time-step. This
construction, which is further discussed in App. D, allows using FlashMD to accelerate the majority
of MD variants and ensembles.

4 Results

To demonstrate the capabilities of FlashMD, we trained two types of models: water-specific models
trained on a dataset of MD trajectories for liquid water, and general-purpose, universal models trained
on MD trajectories of structures sampled from the MAD dataset (see Ref. [39]). All reference MD
simulations were performed with the PET-MAD universal MLIP [39]. For both the water-specific and
universal cases, we trained separate models targeting different time strides. Full training details are
available in App. B. The following subsections will focus on the testing of such models in predicting
meaningful physical observables for the corresponding systems. Ablation studies are discussed in
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App. F, and timings are provided in App. G. Test set accuracy benchmarks against MDNet [62] and
TrajCast [63] are reported in App. H and App. I, respectively.

4.1 Liquid water

Liquid water is central to many physical, chemical, biological and environmental processes, in
great part thanks to its microscopic hydrogen-bonding network and resulting physical and chemical
properties. The study of liquid water at the microscopic level with MD is therefore a very active
area of research [70–73], and we use it here as an example of how FlashMD models can accurately
predict physical observables at the molecular level. For consistency with the universal model, we
train the water-specific model on trajectories obtained with PET-MAD, even though its reference
electronic-structure method (PBEsol [74]) is known to grossly overestimate the melting point of
water. For this reason, we perform simulations with a target temperature of 450 K, above the melting
temperature of this model. Results for the q-TIP4P/f model [75] at room temperature are discussed in
Appendix J.

We focus on the evaluation of static observables, i.e. the equilibrium, time-independent properties
of a physical system which can be estimated as averages over MD trajectories. As easy-to-compute
diagnostics, we investigate the mean kinetic energy and atomic radial distribution functions in NV T
simulations, as well as the equilibrium density predicted by NpT simulations. The mean kinetic
energies (expressed as effective temperatures) are shown in Table 1. It can be seen that, while the
models without energy conservation can show pathological deviations from the target temperatures,
the energy conservation enforcement approach described in App. C always recovers the correct
temperatures for the overall simulation. However, significant deviations can still be observed for
the global stochastic velocity rescaling [30] (SVR) thermostat in the kinetic energies resolved by
atom type. This is a spurious effect (classically, each degree of freedom should have a mean kinetic
energy equal to kBT/2) which is also observed in non-conservative force models [21]. The link to
direct force prediction (that can be seen as the ∆t → 0 of trajectory prediction) is also suggested
by the fact that lack of equipartition is observed also for short-time FlashMD models, that have
excellent validation accuracy. As a consequence, one needs to employ local thermostats, such as
those based on Langevin dynamics, similar to what was done in Bigi et al. [21]. With a judicious
choice, one can achieve accurate sampling of equilibrium properties, without reducing substantially
sampling efficiency. However, local thermostats disrupt dynamical properties, to an extent that
depends on the strength of the thermostat coupling, and a thorough quantitative analysis of dynamical
properties require disentangling the effect of the long-stride sampling and that of the thermostats
needed to obtain accurate equilibrium sampling (see App. J). For these reasons, we primarily focus
our quantitative analysis on time-independent equilibrium properties, and discuss examples where
FlashMD qualitatively captures time-dependent behavior.

The atomic radial distribution functions (for the oxygen and hydrogen atoms, respectively), are shown
in the left and center panels of Fig. 2. Here, it can be seen that FlashMD is able to correctly reproduce
the distribution functions from the reference MD simulations, for both water-specific and universal
models. To demonstrate the behavior when simulating the constant-pressure NpT ensemble, we also
compute densities at ambient pressure (Fig. 2, right panel). The water-specific FlashMD models are

Table 1: Difference between effective and target temperatures in NV T simulations of liquid water
using FlashMD, using different models and thermostats, and comparing results with and without
enforcement of energy conservation. Characteristic times of 100 fs and 10 fs were used for the
Langevin and SVR thermostats, respectively. The “all”, “O”, “H” labels refer to the subset of atoms
under consideration. Subscripts on the results refer to statistical sampling errors. All units are in
Kelvin; numbers close to zero are better.

Model
Without energy conservation With energy conservation

Langevin SVR Langevin SVR
∆Tall ∆TO ∆TH ∆Tall ∆TO ∆TH ∆Tall ∆TO ∆TH ∆Tall ∆TO ∆TH

Water, 1 fs -1.3(0.9) -1.1(1.3) -1.4(0.9) -0.4(0.3) 13.8(7.0) -7.4(2.3) -0.3(0.8) -1.6(1.4) 0.3(0.9) -0.3(0.3) -5.4(4.3) 2.2(2.2)
Water, 4 fs 1.4(0.9) -1.4(1.2) 2.8(1.2) 0.1(0.3) -21.4(2.9) 10.8(1.4) -0.4(0.9) -3.6(1.3) 1.2(1.1) -0.1(0.3) -20.4(2.7) 10.0(1.1)

Water, 16 fs -0.2(0.8) -1.1(1.2) 0.2(0.8) -0.1(0.4) -16.0(2.9) 7.8(1.3) 1.3(0.9) 1.2(1.0) 1.4(1.1) 0.1(0.4) -10.7(2.1) 5.4(1.2)

Universal, 1 fs 33.8(1.0) 36.2(1.9) 32.8(1.1) 8.0(0.4) -57.5(5.5) 40.4(1.9) 0.2(0.8) -1.4(1.1) 0.9(1.0) -0.5(0.4) -58.6(2.8) 28.2(1.6)
Universal, 4 fs 10.7(1.0) 7.3(1.3) 12.5(1.3) 9.2(1.4) 79.2(3.1) -25.3(2.2) -0.7(0.8) -1.9(1.4) -0.1(1.0) 0.4(0.4) -31.2(4.6) 16.0(2.0)
Universal, 16 fs -22.5(0.7) -20.9(1.1) -23.5(0.9) -4.0(0.4) 7.6(2.3) -9.8(1.4) 0.4(0.9) 2.9(1.3) 0.8(1.0) 0.1(0.4) 8.6(3.0) -4.1(1.4)
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able to reproduce densities similar (although not statistically equivalent) to the reference MD. The
universal models show significant deviations from the reference calculation, although smaller than
the typical discrepancy expected when varying the details of the electronic structure calculation.

4.2 Universal long-stride sampling

Having compared and validated both system-specific and universal FlashMD models on the liquid
water system, we now proceed to demonstrate the accuracy of the universal FlashMD models for
more complex and chemically-diverse systems. We consider three archetypal examples that showcase
the relevance for different classes of chemical and materials science problems: (i) We estimate the
distribution of Ramachandran angles for alanine dipeptide, a system that exhibits the basic features
of protein dynamics and that is often used to benchmark sampling methodologies in biomolecular
simulations; (ii) We model the finite-temperature dynamics of the Al(110) surface, a deceptively
simple system that exhibits spontaneous formation of defects and surface pre-melting [76]; (iii) We
compute the temperature-dependent diffusion coefficient of Li atoms in lithium thiophosphate (LiPS)
a material that is being investigated as an electrolyte for solid-state batteries [77, 78], and that allows
us to demonstrate the accuracy in capturing time-dependent properties.

Solvated alanine dipeptide We extend upon the previous liquid water simulations, generating
constant-pressure trajectories of a single alanine dipetide molecule in solution, following closely the
setup described in Morrone et al. [79]. The energy landscape is probed in three different simulations:
MD using the PET-MAD potential with 0.5 fs stride, and universal FlashMD with 8 fs and 16
fs strides. Note that for this system 0.5 fs is a limit above which MD simulations exhibit severe
instabilities. The Ramachandran plots (Figure 3a) show the characteristic distribution of molecular
conformers in terms of the backbone dihedral angles. This is a model for the backbone flexibility of
proteins and demonstrates the ability of FlashMD to recover major features of the Ramachandran
plot (particularly the low-energy basins in the −π ≤ ϕ ≤ 0 range) with strides up to 32 times larger.

Metal surface As discussed in a previous work [76], the premelting behavior in Al(110) is charac-
terized by two soft vibrational modes of the surface atoms: the top layer atoms show softening in
the [001], or x component, and the second layer atoms show softening in the [110], or z component.
Figure 3b shows that the universal Flash MD models correctly describe this trend, with the mean
square displacement (MSD) larger for the corresponding surface atoms and their associated softer
vibrational modes at 500 K. The dynamical consequences of premelting is presented in the trajectory
traces of 3b, which is generated from the FlashMD simulation with 64 fs strides at 600 K. The
trajectory traces provide a visual representation of the anisotropic softening of vibration for first
and second layer atoms, as well as the dynamic adatom formation pathways involving cooperative
migration of both the surface and second layer atoms and effective adatom diffusion via exchange
with nearby surface atoms. This demonstrates the ability of FlashMD to not only capture material
specific trends, but also describe meaningful dynamical behavior, despite the much larger strides.

gOO
gHH

Figure 2: Comparison of physical observables obtained from MD (black) and FlashMD (other colors).
Left and Center: radial distribution functions for oxygen and hydrogen atoms, respectively, from
simulations in the NV T ensemble using the Langevin thermostat. Right: densities from simulations
in the NpT ensemble.
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Figure 3: Results of case studies conducted for the universal FlashMD models. (a) Ramachandran
plots of the main backbone dihedrals for a simulation of solvated alanine dipeptide at 450 K. (b)
Mean square displacement (MSD) of the Al (110) surface atoms at 500 K, at different layers from the
surface (B indicates the limiting value for the bulk). The premelting and defect formation phenomena
are also visualized as traces of atomic positions from a FlashMD simulation at 600 K, run with ∆τ =
64 fs. The ideal atomic positions are also shown for reference. (c) Li conductivities of γ−Li3PS4 at
varying T , along with the initial system configuration overlaid with traces of the Li atom positions
from the FlashMD trajectory at 700 K. In both (b) and (c), traces are obtained with a moving average
in time to remove thermal fluctuations and visualize more clearly the diffusive behavior.

Solid-state electrolyte At high temperatures, the γ phase of lithium thiophosphate undergoes
a phase transition to a superionic state that exhibits much higher conductivity. We reproduce
simulations analogous to those in Ref. [80], computing the Nernst-Einstein conductivity of a LiPS
cell as a function of temperature. Results in Figure 3c show that the universal FlashMD model
successfully describes the superionic transition of γ Li3PS4 and predicts for it to take place at 675
K, within the established transition temperature range determined in previous simulations using
PET-MAD [39]. Li conductivities are reasonably matched with the reference MD simulations, albeit
with systematic over- and under-estimations in the low and high T regimes, respectively.

5 Discussion

Machine learning has been quietly revolutionizing the atomistic modeling of matter, accelerating
the most time-consuming parts of physics-based calculations while striving to retain as much as
possible of the underlying physical symmetries and constraints. As datasets and models grow in
scale, there is increasing interest in more radical approaches that trade the physical grounding of
established practices for computational efficiency. Our work demonstrates that there is enormous
potential in constructing GNN models that predict directly the evolution of atomic coordinates and
momenta, allowing MD simulations to propagate with long strides, each replacing tens of costly force
evaluations with miniscule time steps. Contrary to the very few previous works in this direction, which
were restricted to reproducing MD trajectories for a specific system in prescribed thermodynamic
conditions, we show that our FlashMD architecture allows one to obtain a universal direct MD model
that can be applicable to different thermodynamic conditions and ensembles, and to wildly diverse
atomic structures and compositions.

This is not to say that circumventing Hamiltonian dynamics is without problems. We highlight several
ways an architecture similar to FlashMD could fail, by breaking some of the fundamental symmetries
and conservation laws that are obeyed (at least approximately) by conventional integrators. We show
how these shortcomings can be mitigated, e.g., by performing energy rescaling at inference time,
or by including thermostats to control systematic drifts in the constant-energy trajectories. While
the design choices of FlashMD deviate from Hamiltonian dynamics, an alternative framework that
preserves symplecticity (and therefore Hamiltonian dynamics) in the direct learning of trajectories is
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proposed elsewhere [81]. Many of the shortcomings of non-symplectic FlashMD are shared by non-
conservative force models, which have also become fashionable as a tool to accelerate MD. We argue
that the transformative speed-up afforded by FlashMD makes direct MD trajectory prediction a more
promising approach, at least when performing exploratory studies that require simulating long time
scales. As shown concretely by challenging examples that simulate with semi-quantitative accuracy
three archetypal systems for biochemistry, surface science and energy technologies, FlashMD can
already be applied to realistic simulation problems, capturing the essential equilibrium and dynamical
processes while accelerating sampling significantly in all cases (App. G).

In considering potential directions for further development, one should keep in mind that, contrary
to the case of ML interatomic potentials that have been studied in great detail and brought to scale
over the past decade, there is very little existing research on direct MD prediction. We recognize the
possibility of incorporating further constraints in the model architecture, or refinements to the training
details, that can better enforce the conservation laws obeyed by the fine-grained VV integrator. One
could also investigate scaling up the FlashMD universal model to more parameters and a larger
trajectory datasets, or implement a modified architecture that targets multiple time strides with a
single model. Given that training relies on short MD trajectories built from a universal MLIP, it is
relatively affordable to increase the dataset size by at least one order of magnitude. Moving forward,
we envisage a future in which every MLIP would come with its own FlashMD-style long-stride MD
companion models, increasing even further the time scales within reach of ML-driven atomic-scale
simulations.

Software and data

The FlashMD models presented in this work were trained with the metatrain package [82], and
they support inference in multiple simulation engines (including ASE [83], i-PI [84], LAMMPS [85])
through metatomic [82].

Helper functions to download universal FlashMD models and to prepare simulations are distributed
with the flashmd package available on PyPI. Further information and instructions can be found at
https://flashmd.org, including links to the training datasets and scripts to reproduce the reported
results on HuggingFace and Materials Cloud [86]. An example of the use of FlashMD is also
available at https://atomistic-cookbook.org/examples/flashmd/flashmd-demo.html.

Besides the universal models presented in this work, which were trained to reproduce molecular
dynamics at the PBEsol level of theory (through the PET-MAD universal potential), we also make
available FlashMD models based on the more accurate r2SCAN functional which we recommend for
scientific use.
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A Model details

A.1 Why predict q′
i − qi and p′

i: small- and large-time limits

It should be noted that the models for liquid argon in the early work by Zheng et al. [62] effectively
predict q′

i − qi − pi∆t/mi and p′
i − pi. While the additional terms with respect to FlashMD

(−pi∆t/mi and −pi, respectively) reduce the variance of the targets for small time steps and/or very
smooth potential energy surfaces (such as Lennard-Jones argon in Ref. [62]), they instead increase it
for more complex systems and larger predicted time steps, which are the focus of the present work.
This is a consequence of more complex systems generally having smaller position and momentum
correlation times. As a result, we do not shift the targets by these additional terms in our work.

A.2 Predicting mass-scaled positions and momenta

All models shown in this work are trained on, and therefore predict, mass-scaled displacements and
momenta defined as ∆q̃i = ∆qi

√
mi and p̃i = pi/

√
mi, respectively, where mi is the mass of atom

i. This is aimed at making the scales of the training targets uniform across atoms of potentially very
different mass, and it is of fundamental importance for models trained on the whole periodic table.
This prevents, for example, the displacement of light atoms or the momenta of heavy atoms from
dominating the loss, instead leading to good predictions for all atoms, independent of their mass.
At prediction time, a simple scaling using the masses recovers the conventional displacement and
momenta. We found that a similar, but data-driven, approach can provide the same benefits. This
consists of using different standardization factors for different chemical elements, so that training
displacements and momenta are scaled to unit standard deviation during training, for each chemical
element (i.e., two scaling factors are used for every single chemical element in the dataset: one for
displacements, one for momenta).

A.3 Center-of-mass enforcement

Using Eqs. 2 to evolve a system without external forces naturally leads to conservation of total
momentum of the system, i.e.,

N∑
i=1

p′
i −

N∑
i=1

pi = 0. (4)

Since the total momentum is constant, the center of mass of the system follows a uniform linear
motion, i.e.,

N∑
i=1

miq
′
i −

N∑
i=1

miqi = ∆t

N∑
i=1

pi. (5)

Both conditions are enforced within the model to avoid unphysical drift effects during molecular
dynamics simulations (Fig. 1). We note that removing the center-of-mass motion entirely would not
be correct in the general case, although many MD simulations are performed with this additional
constraint. Although we enforced these contraints within the model in this work, we recommend
applying them at inference time only in order not to break the locality assumption that underpins our
approach.

A.4 Optional inference-time filters

Within FlashMD, we have implemented “filters” (Fig. 1) that can be employed at inference-time
to mitigate the artifacts of direct MD prediction. We refer to the dedicated sections for energy
conservation enforcement (App. C) and thermodynamic ensemble control (App. D). Here we only
provide a discussion of the random rotation filter.

Since equivariance is not exactly preserved and only learned via data augmentation in the case of
unrestricted architectures such as PET [18], simulations performed with the resulting FlashMD model
would be prone to spurious effects. To mitigate this, we adopt the strategy proposed Langer et al.
[20], where random rotations of the simulated system are performed to average out any artifacts of
non-equivariance along the MD trajectory. Implementation details of the random rotation filter is
shown in Fig. 4. We note that in case of GNNs that preserve rotational symmetry, this filter is not
needed – and would actually have no effect if applied.
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Figure 4: Implementation of the random rotation filter. A random rotation matrix R is sampled
and applied on all coordinates and momenta before the rotated inputs are provided to FlashMD.
After model inference, R−1 is applied to rotate the system back to the original coordinate reference.
Random rotation filter is only relevant for rotationally unconstrained GNNs.

B Training details

B.1 Loss function, optimization, normalization

All models are implemented in PyTorch [87] and, unless specified otherwise (see App. E), are trained
using a loss function given by the sum of two mean square error terms, for the mass-scaled momenta
and the positions respectively:

L =

Ntrain∑
s=1

1

3Ns

Ns∑
i=1

(p̃′
i − p̃′

i,ref)
2 + (∆q̃′

i −∆q̃′
i,ref)

2, (6)

where s is an index for structures in the training set and Ns is the number of atoms in structure s.
In order to ensure similar weight in the loss function between position and momentum terms, the
mass-scaled positions and momenta are scaled by their standard deviation across the dataset before
training.

Optimization is carried out using the Adam [88] optimizer with an initial learning rate of 3 · 10−4.
Learning rate decay is applied at a regular intervals of 100 and 50 epochs for the water and universal
models, respectively. Training-time rotational augmentation for vectorial targets is carried out in the
same way as in Pozdnyakov and Ceriotti [18].

B.2 Training-time energy conservation

We found that the degree of energy conservation on structures of the validation set correlates well
with the quality of the models during molecular dynamics runs. As a result, during training, we
choose the best model as the one having the lowest product of three terms, evaluated across the
validation set: (i) RMSE on the predictions of p̃′, (ii) RMSE on the predictions of q̃′, and (iii) RMSE
on the energy of the resulting structure when compared to the energy of the target structure. While
an energy term might also be included in the loss function, we found that it slows down training
significantly (due to evaluations of the energy model and its gradients), without improving the quality
of the FlashMD models in any measurable way.

Indeed, as shown in App. F, models with similar accuracy on positions and momenta can predict MD
states with highly varying degrees of energy conservation. In particular, energy misalignment is often
observed if the error on the energies is ignored. Although we found this approach to improve the
quality of the simulations afforded by our water models (both PET-MAD and q-TIP4P/f), we found
its impact on universal models to be less dramatic.

We also found it useful to compare errors in total energies with familiar metrics such as “chemical
accuracy” or the accuracy of the underlying energy model. For all models tested in this work, such
comparisons correlate extremely well with the quality of the models in the resulting MD simulations.

B.3 Reference MD trajectory generation

All reference MD trajectories were obtained from simulations performed with PET-MAD [39]
(version 1.0), a universal MLIP capable of making reasonably accurate predictions of the potential
energy surface across the entire periodic table of elements. All simulations were performed using the
Atomic Simulation Environment [89] (ASE) software (version 3.24).
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Water-specific models A water structure at experimental density (at 298 K and 1 atm) was
equilibrated with PET-MAD (or q-TIP4P/f for the q-TIP4P/f-based water models discussed in
Appendix J). Subsequently, two more structures were generated by increasing and decreasing the
volume of the cell by 10%, scaling the atomic positions accordingly. For each of the three resulting
structures, NV T equilibration runs were performed at all temperatures between 20 and 1000 K, in
steps of 20 K, with a time step of 0.5 fs and a duration of 5 ps, using a Langevin thermostat with
a characteristic time of 10 fs. Subsequently, each equilibrated structure was used to produce an
NVE MD trajectory of 2 ps with a time step of 0.25 fs. Structures for training were extracted from
these trajectories every 100 fs, and augmented with their time-reversed version, for a total of 5400
structures.

Universal models 10,000 structures from the MAD dataset, used in the training of PET-MAD [39],
baseline MLIP, were randomly selected for reference MD trajectory generation (see Ref. [39] for
further details on the MAD dataset). The initial geometry was first energetically optimized with
the BFGS algorithm until the maximum force component threshold of 0.01 eV/Å was reached. The
energy-optimized system was put through equilibration under the NV T ensemble for 10 ps with
timesteps of 0.5 fs. A characteristic time of 100 fs was used in the Langevin thermostat. The
final configuration from NV T equilibration was then taken for trajectory production under the
NVE ensemble for 2.5 ps with finer timesteps of 0.25 fs. Positions and momenta were recorded
every timestep for FlashMD training. Simulations were repeated 10 times for each structure, with
a randomly selected temperature between 0 and 1500 K. Structures for training were chosen from
these trajectories every 500 fs (5 samples per NVE trajectory to avoid time-correlated samples), and
augmented with their time-reversed version, for a total of 1 million structures.

C Enforcing conservation of energy by momentum rescaling

Especially for NVE simulations, it is important to avoid excessive energy drift. In practice, we found
that enforcing total energy conservation after each step is beneficial (even for thermostatted runs, see
Sec. 4). This is achieved by rescaling the momenta in the following way:

p′
i ← αp′

i, α =

√
1− E′ − E

K ′ , (7)

where E′ is the total energy after the step, E is the total energy before the step, and K ′ is the kinetic
energy after the step.

It should be noted, however, that enforcing energy conservation requires one or two energy evaluations
per step (depending on the ensemble and integration scheme), potentially introducing significant
overhead. Implementation details of the energy conservation enforcement filter in FlashMD is
visualized in Fig. 5.
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Figure 5: Implementation details of the energy conservation enforcement filter in FlashMD. Energy
model can be any model of the interatomic potential (e.g. MLIP, classical force field, etc.) that can be
used to compute V ({qi}).

20



D Arbitrary thermodynamic ensembles with FlashMD

Molecular dynamics trajectories conserve, at least approximately, the classical total energy of the
system, which makes it appropriate for sampling configurations under constant energy, volume
and particle number (NVE) conditions. Several modifications to Hamiltonian dynamics have been
proposed [25, 26] to generate configurations consistent with other thermodynamic conditions, such
as constant temperature (NV T ), constant pressure (NpT ), or constant chemical potential (µV T ).
These ensembles are often more relevant to compare with experimental conditions, that usually do not
involve closed, isolated setups – especially not on the small length scales that are used in simulations.
Here we discuss two approaches that are routinely used to this end in MD, and how they can be can
be combined with FlashMD to extend its constant-energy long-stride integration to sample other
ensembles.

First, given that NVE trajectories conserve not only the total energy, but also the probability measures
associated with most other ensembles, it is possible to alternate segments of NVE trajectories with
discrete Monte Carlo moves changing the particle velocities, the simulation cell size, or the nature
of the atoms, using a Metropolis-Hastings criterion [90] to accept or reject them in a way that is
consistent with the desired ensemble. This approach can be applied straightforwardly to FlashMD,
and its reliability depends on the assumption that segments of FlashMD trajectories are symplectic
and energy-preserving to a high degree of accuracy, which is why we give much emphasis to these
diagnostics in our study.

The second approach is slightly more subtle and requires some additional technical background, and
we discuss and test it in more detail. Integrators for Hamiltonian dynamics can be expressed in a
Liouvillian formalism, in which the trajectory density P (q,p) is evolved in time according to an
operator that combines the time evolution of the different variables, e.g. for Hamiltonian dynamics

iL̂ =
∑
i

∂H

∂pi

· ∂□
∂qi

− ∂H

∂qi

· ∂□
∂pi

= iL̂q + iL̂p (8)

Finite-time propagation of the trajectory density can be formally achieved with an exponential
operator ei(L̂q+L̂p)∆t, and the difficulty in developing an exact propagation algorithm for (q,p) can be
understood as a consequence of the fact that L̂q and L̂p do not commute. The error grows with the time
step ∆t, and can be reduced using symmetric Trotter factorizations such as eiL̂p∆t/2eiL̂q∆teiL̂q∆t/2.
This splitting corresponds, in the trajectory picture, to the VV integrator in Eq. (2). Continuous
equations of motion that describe other thermodynamic ensembles can be derived with an extended
Lagrangian formalism, in which additional structural parameters (e.g. the simulation cell volume V
or shape) are associated with fictitious masses and momenta. Starting from the Lagrangian, one can
derive a Liouvillian that describes their time evolution as an additional term, e.g. L̂V .

Langevin-type thermostats [29] can also be described with an associated Liouvillian L̂ξ and are a
good example to explain the formalism. There are in fact multiple possible ways to factorize the
overall Liouvillian: the so-called OBABO splitting reads eiL̂ξ∆t/2eiL̂p∆t/2eiL̂q∆teiL̂q∆t/2eiL̂ξ∆t/2

and corresponds to bracketing a velocity Verlet integrator (BAB) between two finite-time propagators
for an Ornstein-Uhlenbeck process (O, the Langevin equation for a free particle with inertia)

pi ←e−γ∆t/2pi +
√
mikBT (1− e−γ∆t)ξ1

pi ←pi −
1

2

∂V

∂qi

∆t

qi ←qi +
pi

mi
∆t

pi ←pi −
1

2

∂V

∂qi

∆t

pi ←e−γ∆t/2pi +
√

mikBT (1− e−γ∆t)ξ2

(9)

where ξ1 and ξ2 are vectors of uncorrelated, unit-variance Gaussian random numbers. Note that this
splitting preserves the symmetry of the VV integrator. Many other splittings are possible, such as
BAOAB (with the Ornstein-Uhlenbeck propagator sandwiched between two half-VV integrators),
which has been found to be more accurate for position-dependent observables [91].
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From this extensive overview of the Liouville operator formalism and its connection to the theory of
integrators, one can see how to incorporate FlashMD into the integration schemes that are used for
other thermodynamic ensembles. If the full Liouvillian for a given integrator is L̂′ + L̂q + L̂p, one
can factor an integration over ∆τ∆t as

eiL̂
′∆τ∆t/2(eiL̂p∆t/2eiL̂q∆teiL̂q∆t/2)∆τeiL̂

′∆τ∆t/2. (10)

The central term is precisely the evolution that FlashMD aims to approximate, and can therefore be
readily replaced with one large step on (q,p).

There are a few considerations that should be made when designing one of these extended integrators
for FlashMD. First, if there are multiple splittings available for the base integrator, one has to choose
those that involve a VV core. For instance OBABO can be used, but not BAOAB, and we cannot use
the Bussi-Zykova-Parrinello splitting [92], but a more naive one that does not simultaneously update
atomic positions and cell vectors. Second, if one wants to further split eiL̂

′∆τ∆t/2, it should be done
in a symmetric way, applying the factors in opposite order before and after the FlashMD step. Last,
and most importantly, the integration of eiL̂

′∆τ∆t/2 should be accurate also with a large time step,
and the factorization with the VV core be similarly accurate, or at least preserve the target ensemble.
This implies choosing large effective masses for extended Lagrangian terms (e.g. the cell volume
in a constant-pressure integrator). Long time scales for Langevin-type thermostats should also be
chosen if one wants to preserve time-dependent properties of the original Langevin dynamics – but
this is a lesser concern for sampling accuracy, because usually Langevin-type free-particle integrators
preserve the velocity distribution for any time step. The workflow proposed herein for the integration
of thermostats and barostats with FlashMD is shown in Fig. 6.
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Figure 6: Integration of thermostats and barostats with FlashMD for thermodynamic ensemble control.
Note that the integration is performed for the full stride in FlashMD, and the split operators on both
ends are applied for half strides.

E Uncertainty quantification

ML models are inherently statistical, introducing different types of error at prediction time. In
the context of FlashMD, uncertainty quantification (UQ) becomes an even bigger necessity as the
potential error accumulation along a trajectory makes FlashMD simulations prone to many undesirable
artifacts, leading to the incorrect sampling of the thermodynamic ensemble, which can manifest itself,
for example, as unphysical bond forming/breaking behavior, uncontrolled expansion of the simulated
system, etc. In this section, we identify the design choices that are required for robust UQ for MD
prediction models and provide simple demonstrations.

In general, there largely exist two different sources of uncertainty for the model: aleatoric, irreducible
uncertainty stemming from the “noise” in data, and epistemic, reducible uncertainty from the model’s
lack of knowledge [93]. In the training of MLIPs, it is widely assumed (although not necessarily
true [94–96]) that the reference data is noise-free, and that it is therefore appropriate to only account
for epistemic uncertainty in UQ approaches for MLIPs. In the learning formulation for FlashMD that
directly targets time-evolved positions and momenta, we note the potentially significant presence
of aleatoric uncertainty due to the chaoticity of the underlying physical problem. This aleatoric
contribution to the uncertainty is expected to be strongly heteroscedastic, since different chemical
systems exhibit very different degrees of chaotic behavior in molecular dynamics (in other words, the
Lyapunov exponent can vary significantly based on the system, see Sec. 2.2 ). Last but not least, the
UQ scheme of choice should not result in significant prediction time overhead in the simulation, as
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Figure 7: Uncertainty quantification diagnostics for the water-specific FlashMD model on its test
set. (a) shows the uncertainty plots (predicted variance on the x axis vs squared residual on the y
axis) on mass-scaled positions and momenta (q̃i and p̃i) for two models trained on the water dataset
(with 16 fs and 64 fs strides, respectively). Units are eV for (p̃i) and Å2u for (q̃i). σLLPR is shown
in green, and σMVE is shown in orange. The black lines corresponds to the parity line, as well as
pairs of iso-probability lines of the ideal distribution containing density equivalent to that contained
within 1σ, 2σ, 3σ of a Gaussian distribution. (b) shows the predicted uncertainty, in the same units,
for out-of-distribution predictions using the 16 fs model, as a function of the scaling of the cell and
the atoms within it.

this would undermine the key advantages of FlashMD. For these reasons, we adopt a UQ scheme
that quantifies both types of uncertainties with a near-zero computational overhead. The method is
sketched in the blue inset of Fig. 1.

Taking inspiration from Immer et al. [97], we assume the overall uncertainty to arise from a sum of
an epistemic and an aleatoric term

σ2 = σ2
a + σ2

e , (11)

which are predicted by different types of UQ estimator. For the aleatoric component, the prediction
heads are modified to yield mean-variance estimators (MVEs), in which the model predicts mean and
variance of the target predictions. FlashMD in this mode is trained to the negative log-likelihood loss

L =
1

2

(
lnσ2

a +
(y − yref)

2

σ2
a

)
, (12)

where σ2
a is the variance afforded by the mean-variance estimator, parametrized as described in

Lakshminarayanan et al. [98]. In our case, the overall loss is obtained by summing one of such
terms for mass-scaled positions and one for mass-scaled momenta. A Laplace approximation is
usually considered a good model for the epistemic uncertainty σ2

e , and we implement it as a last-layer
approximation (LLPR) [99–102] on the mean part of the MVE, i.e., on y.

We now demonstrate the UQ capabilities of FlashMD, with a special focus on the need for aleatoric
uncertainty within direct MD prediction models as discussed in Sec. 3. To do so, we slightly deviate
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from Eq. (11) and consider separately the MVE and LLPR uncertainty predictions for liquid water
and analyze their behavior (Fig. 7a). The ∆τ = 64 fs model, which is very difficult to learn for
the liquid water system (due to the fast correlation times of the physical system), displays the
failure of epistemic uncertainty in isolation, exhibiting a narrow spread in values that does not
provide meaningful insights. In contrast, the mean-variance estimator provides good uncertainty
estimates. Perhaps more surprisingly, uncertainties of the 16 fs model are predicted reasonably by
both uncertainty estimators. Since ∆τ = 16 fs is a more learnable regime for water, where epistemic
uncertainty is expected to dominate, this implies that the mean-variance estimator is also capable of
capturing epistemic uncertainties to good accuracy, at least within the training distribution. As an
out-of-domain example, Fig. 7b shows the average LLPR and MVE uncertainties as a function of
the compression (or expansion) factor of a water cell. Even for very compressed or very stretched
cells (up to a change of 50% in the cell length), the mean-variance estimator provides a qualitatively
correct uncertainty profile, suggesting that a MVE alone might be sufficient to quantify uncertainties
in direct MD predictions. We leave a more thorough analysis of combining the two UQ metrics for
future work.

F Ablation studies
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Figure 8: Comparison of validation root mean square errors (RMSEs) in (a) mass-scaled positions,
(b) mass-scaled momenta, (c) energy conservation, and (d) symplecticity as a function of the stride
for different FlashMD models. All errors are calculated on the respective validation sets, except for
the symplecticity errors, which are evaluated using the left-hand side of Eq. 3 for 100 degrees of
freedom of a liquid water structure. Dotted line in (c) is the RMSE of PET-MAD, an indirect metric
of energy accuracy, and in (d) marks perfect symplecticity.

F.1 Effect of the stride length on training

As a result of the chaoticity effects described in Sec. 2, it is desirable to examine the errors in the
training as the predicted time stride increases. Fig. 8 shows the errors on energies and symplecticity,
as well as mass-scaled positions and momenta, for the training runs on the water and universal
datasets for different time steps. As expected, training becomes extremely difficult after a certain
number of steps. From these plots, it would appear that the increase in the machine learning error is
not exponential with the time step, but rather polynomial. While the interpretation of this observation
is not trivial, it is potentially promising as it would make longer time scales accessible by simply
improving the accuracy of the models using more data and/or learnable parameters, without the
presence of hard limits to the accuracy. However, the rapid increase in the non-symplectic behavior
of the predictions is alarming and worth future investigation.

F.2 Enforcing energy conservation

We will now illustrate the effect of the procedure to enforce energy conservation presented in App. C
on a simulation targeting the NVE ensemble. Fig. 9 shows that, while FlashMD exhibits a total
energy drift that would quickly lead to a unstable trajectories and large sampling errors, the proposed
energy conservation enforcement technique allows for exact conservation of the total energy along
the simulation, producing a stable trajectory (even thought it is not guaranteed to sample the NVE
ensemble because it is not exactly symplectic). We further show in Sec. 4 that this technique improves
the temperature control in NV T simulations.
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Figure 10: Parity plots of the predicted energy for two water-specific model checkpoints belonging to
the same training run. The energies of the structure predicted by the model on the left are misaligned.

F.3 Energy criterion for model selection

App. B describes how the error on the energy of the predicted structures is also used during training to
choose good models. Here, to illustrate the utility of such approach, we show models from different
epochs in the same training run (a water-specific model trained to predict over a time stride of 16
fs). Despite the two models having similar position and momentum errors, the energies of the first
model are misaligned (Fig. 10). In a simulation, such an offset in model prediction would induce a
progressive and unphysical cooling of the system.

G Timings

Table 2: Timings, strides, and acceleration factors of FlashMD compared to conventional MD on the
systems investigated in this work. For completeness, we also include the speed-up factors we obtain
without energy conservation enforcement (ECE), which would slightly degrade the quality of the
simulations.

System Liquid water Al(110) slab Solvated alanine dipeptide Li3PS4

(# atoms) (192) (560) (622) (768)

MD timing [stride] 2.0 · 104 [0.25 fs] 3.2 · 104 [1 fs] 2.1 · 105 [0.5 fs] 1.4 · 105 [2 fs]
FlashMD timing [stride] 4.0 · 102 [16 fs] 5.1 · 102 [64 fs] 1.8 · 104 [16 fs] 4.1 · 104 [16 fs]

Acceleration factor 50 48 12* 3.4*

Acceleration factor (no ECE) 195 186 12* 3.4*
*These simulations are run in the NpT ensemble, leading to more energy model evaluations in order to

compute stresses. Re-using these energy evaluation for energy conservation enforcement and printing the energy
to output, as opposed to recomputing them, would reduce the overhead, but it is not exploited in the present

implementation.
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In this appendix, we report the overall timings for the simulations that were performed in this work.
When multiple FlashMD models with different time steps were used, we report the largest-stride
model that affords qualitatively accurate results. The timings obtained in this way are compiled in
Table 2. In comparing these results with the theoretical speed-ups given by ∆τ , one should keep
several issues into considerations: (i) We did not fine tune the time step of the base MD runs, nor
attempt a fine-grained grid of acceleration factors for the FlashMD models. This might skew results
in either directions: for instance, water can be run stably with 0.5 fs MD, and LiPS could have
probably been run stably with a 32 fs FlashMD model. (ii) We did not systematically explore the
Pareto frontier of FlashMD models in its architecture setup. However, in the current version, one
evaluation of FlashMD is faster than a MLIP energy evaluation due to hyperparameter differences.
(iii) Some of the extensions require additional energy evaluations; for instance energy scaling or the
NpT integrator require one or two energy evaluations each. There are obvious optimizations, such
as only rescaling energy every few steps, which we did not consider in order to keep the analysis
clearer for this first demonstration of a universal FlashMD model.

H Liquid argon benchmark (MDNet)

The early work by Zheng et al. [62] presents MDNet, a simple architecture for fitting molecular
dynamics trajectories in the NVE ensemble. Here, we compare FlashMD against MDNet, as well
as Equivariant Graph Neural Networks [103] (EGNN, which was also explored as an alternative in
Zheng et al. [62]). The lack of code and sufficient description makes it difficult to reproduce the
workflow of the authors exactly; nonetheless, we attempt a similar set-up to Zheng et al. [62]:

• All reference simulations are run using LAMMPS, using a system of 256 argon atoms and a
Lennard-Jones potential. The time step for the reference simulations is 1 fs.

• Ten runs are performed (eight for training, one for validation, one for testing), initially
equilibrating in the NpT ensemble for 100 ps, and then performing a production run for 10
ps in the NVE ensemble using the velocity Verlet algorithm.

• From each NVE trajectory, 25 equally spaced configurations are selected to be part of the
training/validation/test set.

• A stride of 128 fs is used for training. Even though smaller strides are also explored in
Zheng et al. [62], we find that this physical system is not particularly challenging due to
its very simple and smooth potential energy surface, and therefore we only test predictions
on the largest stride investigated in the original publication. Time-reversed targets are also
added to the dataset, following Zheng et al. [62].

Using this set-up, we were able to reproduce the large-stride velocity Verlet results in Zheng et al.
[62] exactly. The accuracies of velocity Verlet, EGNN, MDNet and FlashMD are shown in Table 3,
where FlashMD is shown to outperform all methods. Note that our set-up involves less than one
tenth of the training data used in Zheng et al. [62], and that FlashMD’s accuracy is likely to be
underestimated as a result.

Table 3: Accuracies of different methods for molecular dynamics trajectory predictions, on a liquid
argon system with a predictive stride of 128 fs. EGNN and MDNet results are from Zheng et al. [62].
Positions errors are in units of Å, velocity errors are in units of Å/fs.

Method Velocity Verlet EGNN MDNet FlashMD

RMSE (q) 3.9 · 10−2 1.3 · 10−2 2.3 · 10−3 5.4 · 10−4

RMSE (v) 1.8 · 10−3 1.9 · 10−4 5.7 · 10−5 8.4 · 10−6

I SPC/E water benchmark (TrajCast)

26



TrajCast [63] published three datasets for the direct learning of molecular dynamics. Here, we
compare our accuracies with the accuracies reported in Thiemann et al. [63], using the SPC/E water
dataset they provide.

Table 4: Test-set accuracies of FlashMD and TrajCast [63] when trained on a SPC/E water dataset [63].
TrajCast results are reproduced from [63]. All errors are given in percentage MAE.

Architecture TrajCast FlashMD

Displacements 0.17 0.17
Momenta 0.37 0.22

The FlashMD results here make use of a slightly improved architecture compared to the one used
to generate the results shown in this work. The same architecture was used to train the r2SCAN
FlashMD models we currently recommend, and it corresponds to the FlashMD implementation in
metatrain [82]. The architecture used to produce the results in this work, for example, yields a
momentum MAE of 0.52%, indicating that FlashMD and TrajCast have similar accuracies and that
relatively minor tweaks can tip the numbers in favor of one or the other. In general, we always found
our models to show clear signs of underfitting, showing that larger models and/or longer training
times are generally beneficial when training models for the direct prediction of molecular dynamics
trajectories, especially when compared to machine-learned interatomic potentials. The design of
more accurate models will be a crucial challenge to achieve near-quantitative results using direct
models for molecular dynamics in the future.

J Water simulations based on the q-TIP4P/f model

Due to the inaccurate description of water by PBEsol (the DFT functional used in the training
of PET-MAD), we also train models on the q-TIP4P/f empirical water model [75] to investigate
time-dependent properties in liquid water without raising the temperature, which in turns produces
artifacts such as frequent bond dissociations that significantly affect the dynamics.

The dynamical properties we focus on are the mean square displacement (MSD) of oxygen atoms,
as well as the dipole-dipole correlation function, both as a function of time. In order to avoid the
large temperature deviations shown in Sec. 4 for the SVR thermostat, we instead use a fast-forward
Langevin [104] thermostat, which is a modification of the Langevin thermostat aimed at reducing the
effect of Langevin dynamics on dynamical properties, while being applied locally to each atom.

Fig. 11 shows the MSD and dipole-dipole correlation function for MD run with the q-TIP4P/f model,
as well as FlashMD models of various strides. The results, shown in Fig. 11, establish the need
for strong local thermostatting (time constant τL < 100 fs) in order to obtain consistent statistical
sampling between MD and FlashMD. Unfortunately, such thermostatting leads to an underestimation
of the diffusion coefficient of water (which is proportional to the slope of the MSD curve) which
is evident comparing the reference MD results for the τL = 100 fs with the gentler τL = 1000 fs.
The tradeoff between thermostat strength and accuracy in enforcing correct sampling is similar to
what was observed for explicit MD simulations based on non-conservative direct-force models [21].
This suggests that, as in that case, improving model accuracy and refining the thermostatting strategy
might mitigate but not cure the underlying problems, and that one should also investigate methods
to recover some of the conservation laws that are obeyed by MD trajectories, in order to achieve
guaranteed quantitative accuracy in dynamics and sampling.

K Simulation details

All MD simulations in Sec. 4 were performed with i-PI [84], employing the internal implementation
of the thermostats and barostats in the case of reference MD, and using custom, FlashMD-compatible
integrators that adopt the integration schemes explained in Sec. D. In FlashMD simulations, inference
was made with both the energy conservation enforcement filter and the random rotation filter, unless
specified otherwise.
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Figure 11: Dipole-dipole correlation functions (top) and mean-square displacement (bottom) for
simulation of water using fast-forward Langevin thermostats with time constants τL = 100 fs (left)
and τL = 1000 fs (right). The stronger thermostat leads to results from the different models that
approach those of VV trajectories, but introduces its own spurious effects on dynamics.

Water All PET-MAD-based water-specific model runs were performed for 100 ps using a periodic
box of 64 water molecules and starting from a structure equilibrated with PET-MAD in the NV T
ensemble at 450 K, using a volume corresponding to the experimental density of liquid water at
300 K. NpT trajectories were started from the same structure, using a temperature of 450 K and a
pressure of 1 bar. The q-TIP4P/f-based models were equilibrated and run in the NV T ensemble in
the same way, but at 300 K and using the q-TIP4P/f for both equilibration and energy evaluations.

Solvated alanine dipeptide NpT simulations at 450 K and 1 bar were performed with a single
dipeptide solvated by 200 molecules of water in a cubic cell of 20× 20× 20 Å3, as done in Morrone
et al. [79]. The initial configuration of the system was randomly initialized with packmol [105], and
the starting conformations of the dipeptide were taken from Ref. [106]. Simulations were performed
for PET-MAD MLIP at 0.5 fs strides, universal FlashMD with 8 fs strides, and universal FlashMD
with 16 fs strides, for a total duration of 1 ns. Langevin thermostat was coupled to the system with
τ = 100 fs, and an isotropic Bussi-Zykova-Parrinello (BZP) barostat [92] was used with τ = 400
fs, including a Langevin thermostat coupled to the cell parameters with τ = 200 fs. For each MD
engine, 10 simulations were parallelly performed with different starting configurations to optimize
sampling. Despite the difference in time strides, equivalent number of snapshots were sampled across
the simulation setups to ensure a fair comparison of the resulting free energy surfaces.

Al(110) surface Al(110) slab configurations were generated with ASE from a 5× 6× 8 supercell
and 20 Å vacuum in z direction. Following Marzari et al. [76], NV T simulations were performed for
the system for the temperature range between 400 K and 900 K, for 0.5 ns. The system was coupled
to a SVR thermostat [30] with τ =10 fs. PET-MAD MLIP at 1 fs strides, universal FlashMD at 16 fs
strides, and universal FlashMD at 64 fs strides were used for the simulations.

γ−Li3PS4 Simulations details closely follow those of the original work by Gigli et al. [80] and
the starting configuration was also obtained from the reference. 3 ns NpT simulations at 0 bar were
performed for temperatures between 575 and 725 K at 25 K intervals, using PET-MAD MLIP at 2 fs
strides and universal FlashMD at 16 fs strides. SVR thermostat [30] was coupled to the system with
τ = 10 fs, and the BZP barostat [92] was used with τ = 1000 fs, including a Generalized Langevin
Equation [107] (GLE) thermostat coupled to the cell parameters at the same value of τ . From the
resulting MD trajectories, MSD of Li was first computed and used to calculate the Li conductivity
with the Nernst-Einstein equation.
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L Computational resources

The use of computational resources in this work mainly stems from the generation of the universal
dataset of NVE trajectories, which employed 20,000 GPU hours on an Nvidia GH200 cluster. Model
training was performed on Nvidia H100 GPUs, for a total of around 3,000 GPU hours. All other
experiments, mostly molecular dynamics, were run either on H100 or L40S GPUs, and they do not
contribute to the overall total compute in a significant way. Overall, we estimate our total usage of
computational resources as slightly under 25000 H100 GPU hours.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims in the abstract are justified by our analysis and findings. The
time steps generally employed in MD simulations range from 0.5 fs to 2 fs, therefore our
models (which are generally tested in the 16 fs to 64 fs range) provide a longer stride by
a factor between one and two orders of magnitude. Our justification for the architecture,
generalization to arbitrary thermodynamic ensembles and analysis of failure modes can be
found in the Theory section of this work. Our experiments and relative discussion, on which
we base the last sentence of the abstract, are in the Results section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Although we do not provide a standalone Limitations section, we have been
manifest about the potential shortcomings of our models, especially regarding their inter-
action with the global SVR thermostat (Results section) and their occasional failures in
reproducing time-dependent properties (in the Appendix, using q-TIP4P/f water models).
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• The answer NA means that the paper has no limitation while the answer No means that
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
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Justification: The paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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5. Open access to data and code
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Justification: A repository is made available with all the code and instructions to reproduce
all results in the paper. This is included as Supplementary Material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our training details are fully explained in the corresponding Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: All results that are affected by significant statistical error are reported together
with error bounds. These include the average water temperatures and pressures in the Results
section, as well as the mean square displacements and dipole autocorrelation functions
discussed in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This information is reported in the corresponding Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors have reviewed, adhered to, and respected the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: It is difficult to estimate the societal impact of this paper, as its main result is
the acceleration of existing modeling techniques – empowering practitioners to access longer
time scales in their computational studies. To the best of our knowledge, these modeling
techniques are overwhelmingly used for constructive purposes (drug discovery, modeling of
new materials) and so we would expect the outcomes to have an overall positive societal
impact. We have expressed this view in the paper, by highlighting that our method would
allow practitioners to access longer time scales in their experiments.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: All the employed software has been used properly within its terms, acknowl-
edged and credited. We have not used any other assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a few general-purpose models for molecular dynamics
prediction. These are already accompanied by excellent documentation, which will be made
public along with the models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not involve LLMs in any non-standard or original way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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