ss3 A Theory Parts

ssa A.1 Proof of Theorem 3.1

885 The proof of Theorem 3.1 is based on the so-called Score-projection identity which was first found
gss in Vincent [60] to bridge denoising score matching and denoising auto-encoders. Later the identity
87 is applied by Zhou et al. [79] for deriving distillation methods based on Fisher divergences. We
gss appreciate the efforts of Zhou et al. [79] and re-write the score-projection identity here without proof.
gs9 Readers can check Zhou et al. [79] for a complete proof of score-projection identity.

sso Theorem A.1. Let u(-) be a vector-valued function, using the notations of Theorem 3.1, under mild
go1 conditions, the identity holds:

]EthPs,tu(wt)T{Sps,t (wt) - th lOg qt(wt|w0)} = 07 vo.
892 Next, we turn to prove the Theorem 3.1.

83 Proof. We prove a more general result. Let u(-) be a vector-valued function, the so-called score-
ge4 projection identity [79, 60] holds,

]Emwpgwtu(:ct)T{spe‘t(a:t) — Vg, log qt(mt|xo)} =0, V6. (A.1)

8es Notice that for most commonly used forward diffusion processes such as VP and VE process [57],
ses the term V, log g+ (@+|xo) turns out to be a scale of the difference of an added Gaussian noise e,
so7 therefore the 0 gradient for V, log g;(¢|xo) will vanish. Taking 6 gradient on both sides of identity
ses (A.1), we have

0 ox 0
0=]EthPO,t amt{u(wt)T{Sps,t (wt) - th lOg qt(wt|w0)}}80t + Ethpe,tu(wt) 89 {Spe t (wt)}

899 So we have an identity

0] 0 ox
B)T {830 00)) = B {) {5y (1) = o (o)} o
0
= —%Ewwpe,t {U(wt){spsg[e],t(ﬁﬂt) — Vg, log Qt(wt|$0)}}
(A.2)

900 Notice that the left-hand side of equation (A.2) can be interpreted as the gradient of the loss function
901 when the parameter dependency of the sampling distribution is cut off, i.e.

B @) {50000} =y Barmni {ul@) s (@0} A)
902 Therefore we have the final equation
sy {808 (@) | = = g {0 @0 (510020 - Vi low (aian)}
(A.4)
903 which holds for arbitrary function u(-) and parameter 6. If we set
u(z,) = d'(y)
Yi = Spsg[e],t(ict) — 8q,(xt)
904 Then we formally have
P T
%Emwpsg[@],t{d/(yt)} {Spe,t(wt)}
P / T
= %EZHJOO:;EO;‘EO) { —d (’yt)} {Spg,t(mt) — Vg, log Qt(mtﬁco)} (A.5)
905 O

22

906 A.2 Pytorch style pseudo-code of Score Implicit Matching

907 In this section, we give a PyTorch style pseudo-code for algorithm 1, with the Pseudo-Huber distance
908 function. For a detailed algorithm on CIFAR10 with EDM model, please check Algorithm 2.

909 | import torch
9102 import torch.nn as nn
9113 import torch.optim as optim

9124

9135 # Initialize generator G

9146 G = Generator ()

9157

9168 ## load teacher DM

9179 Sd = DiffusionModel () .load(’ /path_to_ckpt’) .eval() .requires_grad_(False)
91810 Sg = copy.deepcopy (Sd) ## initialize online DM with teacher DM

91911

9202 # Define optimizers

92113 opt_G = optim.Adam(G.parameters(), 1lr=0.001, betas=(0.0, 0.999))
92214 opt_Sg = optim.Adam(Sg.parameters(), 1lr=0.001, betas=(0.0, 0.999))
92315

92416 # Training loop

92517 while True:

92618 ## update Sg

92719 Sg.train() .requires_grad_(True)

9280 G.eval () .requires_grad_(False)

92901

93022 # loop for 2 times to update Sg

93123 for _ in range(2):

93224 z = torch.randn ((2000, 2)).to(device)

9335 with torch.no_grad() :

9346 fake_x = G(z)

9357

93628 t = torch.from_numpy (np.random.choice (np.arange(1,Sd.T), size=
937 fake_x.shape[0], replace=True)) .to(device).long()

93829 fake_xt, t, noise, sigma_t, g2_t = Sd(fake_x, t=t, return_t=True)
93930 sigma_t = sigma_t.view(-1,1) .to(device)

94031 g2_t = g2_t.to(device)

94132 score = Sg(torch.cat ([fake_xt,t.view(-1,1)/Sd.T],-1))/sigma_t
94233

94334 batch_sg_loss = score + noise/sigma_t

94435 batch_sg_loss = (g2_txbatch_sg_loss.square().sum(-1)) .mean()=*3Sd.T
94536

94637 optimizer_Sg.zero_grad()

94738 batch_sg_loss.backward()

94839 optimizer_Sg.step ()

949:0

950!

95142 ## update G

95213 Sg.eval () .requires_grad_ (False)

95314 G.train () .requires_grad_(True)

95445

95516 z = torch.randn ((2000, 2)).to(device)

95617 fake_x = G(z)

95748

95819 t = torch.from_numpy (np.random.choice (np.arange(l,diffusion.T), size=
959 fake_x.shape[0], replace=True)) .to(device).long/()

96050 fake_xt, t, noise, sigma_t, g2_t = diffusion(fake_x, t=t, return_t=
961 True)

96251 sigma_t = sigma_t.view(-1,1) .to(device)

96352 g2_t = g2_t.to(device)

96453

96554 score_true = Sd(torch.cat ([fake_xt,t.view(-1,1)/diffusion.T],-1))/
966 sigma_t

96755 score_fake = Sg(torch.cat ([fake_xt,t.view(-1,1)/diffusion.T],-1))/
968 sigma_t

23

9696
97057
97158
97259
973

97450
97%1
97652
9773
97&4
97%5
9806
98167

982

983
984

985
986

987

988

989

990

991

992

993

994
995

score_diff = score_true - score_fake

offset_coeff = denoise_diff / torch.sqrt (denoise_diff.square () .sum
([1,2,3], keepdims=True) + self.phuber_cxx2)
weight = 1.0

batch_g_loss = weight x offset_coeff x (fake_denoise - images)
batch_g_loss = batch_g_loss.sum([1,2,3]) .mean()

optimizer_G.zero_grad()
batch_g_loss.backward()
optimizer_G.step ()

Listing 1: Pytorch Style Pseudo-code of SIM

A.3 Instances of SIM with different distance functions

In section 3.3, we have discussed the powered normed as distance functions. Other choices, such as
the Huber distance, which is defined as

2)
' y2/2 for yq >

Vi<d<D, L d =

1<d<D, Ls(y) {5(|yd—6/2) otherwise

For other choices of distance functions, such as L1 norm and exponential with powered norms, we
put them in Table 4.

Table 4: Instances of Score Implicit Matching loss with different distance functions. The notations
are aligned with the Algorithm 1.

CHOICE OF d(.) d’(y:) LOSS FUNCTION

ll: 113 2y; —2ytT{sw(mm t) — Va, log qt(mtlmo)}
Hyt(\!\gebetizl, ayiafl) 7a{y£a*1)}T{sw (xt,t) — Vo, logq: (mt\wg)}
ePPlul DL o exp (Bl —aexp(ﬁllytl\i){yia_”}{Sw(%t) - Ve, Iqut@ct\aco)}
lyells sign(y1) —sign(y) ™ {8y (@1 1) = Vo, g 0(a1[20) |
PR 2 La(ye) o L) {3 (@ 1) = Vo, logas (e eo) }
VIlyells +¢2 —c 2\/# 72{2W}T{sw(wt,t)fvmt logqt(:ctkco)}

B Empirical Parts

B.1 Answer for the human preference study
The answer to the human preference study in Figure 1 is

* the middle image of the first row is generated by one-step SIM-DiT-600M;

* the leftmost image of the second row is generated by one step SIM-DiT-600M;

* the leftmost image of the third row is generated by one-step SIM-DiT-600M.
B.2 Experiment details on CIFAR10 dataset
We follow the experiment setting of SiD and DI on CIFAR10. We start with a brief introduction to
the EDM model [21].

24

996

997
998
999
1000

1001
1002
1003

1004
1005

1006
1007
1008

1009

1010
1011
1012
1013

1014

1015
1016

1017

1018

1019
1020

1021
1022
1023

The EDM model depends on the diffusion process
dx; = tdwy, t € [0,T]. B.1)

Samples from the forward process (B.1) can be generated by adding random noise to the output of
the generator function, i.e., ; = @y + te where € ~ N(0, I) is a Gaussian vector. The EDM model
also reformulates the diffusion model’s score matching objective as a denoising regression objective,
which writes,

T
E(z/J) = /*70)‘(t)EmUN;no,mt\wo~pt(wt|wo) ||dw (wtv t) - wOHSdt- (B.2)

Where d.;(-) is a denoiser network that tries to predict the clean sample by taking noisy samples
as inputs. Minimizing the loss (B.2) leads to a trained denoiser, which has a simple relation to the
marginal score functions as:

d ¢, t) — Lt
sy (@i, t) = % (B.3)
Under such a formulation, we actually have pre-trained denoiser models for experiments. Therefore,
we use the EDM notations in later parts.

Construction of the one-step generator. Let dy(-) be pretrained EDM denoiser models. Owing to
the denoiser formulation of the EDM model, we construct the generator to have the same architecture
as the pre-trained EDM denoiser with a pre-selected index ¢*, which writes

xo = go(2) = d(z,t*), z~N(0,(t")’I). (B.4)

We initialize the generator with the same parameter as the teacher EDM denoiser model.

Time index distribution. When training both the EDM diffusion model and the generator, we need
to randomly select a time ¢ in order to approximate the integral of the loss function (B.2). The EDM
model has a default choice of ¢ distribution as log-normal when training the diffusion (denoiser)
model, i.e.
t~ pED]\/I(t) D t= exp(s) (BS)
s~ N(Ppeans P23), Prean = —1.2, Pyq = 1.2. (B.6)

And a weighting function

(tz + O—glata)

(X oanta)2 B.7)

Aepum(t) =

In our algorithm, we follow the same setting as the EDM model when updating the online diffusion
(denoiser) model.
In SiD, they propose to use a special discrete time distribution, which writes

1

=

) 1
Ok = (Uﬁza.'cﬁ(aﬁlm - UTFr‘mm))pv

Omaz = 80.0, 0min = 0.002, p = 7.0, K = 1000
They proposed to choose ¢ uniformly from
t ~psip(t): k~ Unif[0,800],t = ok; (B.8)

We name such a time distribution the K arr distribution in Figure 2 because such a schedule was
originally proposed in Karras’ EDM work for sampling.

However, in practice, we find that K arr distribution (B.8) empirically does not work well. Instead,
we find that a modified log-normal time distribution when updating the generation with SIM works
better than K arr distribution. Our SIM time distribution writes:

t~psim(t): t=exp(s) (B.9)
s ~ N(Ppreans P2g), Pmean = —3.5, Pstq = 2.5. (B.10)

25

1024
1025
1026

1027
1028
1029
1030
1031

1032
1033
1034
1035

1036
1037

1038

1039
1040

Table 5: Hyperparameters used for SIM on CIFAR10 EDM Distillation

Hyperparameter CIFAR-10 (Uncond) CIFAR-10 (Cond)

DM s, Generator gg DM s, Generator gp
Learning rate le-5 le-5 le-5 le-5
Batch size 256 256 256 256
o(t*) 2.5 2.5 2.5 2.5
Adam By 0.0 0.0 0.0 0.0
Adam 1 0.999 0.999 0.999 0.999
Time Distribution pED]\,j(t)(B.S) pSIM(t)(B.9) pEDM(t)(B.S) DSIM (t)(B.Q)
Weighting Aepa (t)(B.7) 1 Aepa (t)(B.7) 1
Loss function (B.2) ??) (B.2)
Number of GPUs 4x A100-40G 4x A100-40G 4x A100-40G 4x A100-40G

Algorithm 2: SIM with Pseudo-Huber distance for distilling EDM teacher [Pytorch Style].

Input: pre-trained EDM denoiser dy, (.), generator gg, prior distribution p,, online EDM
denoiser dy (.); differentiable distance function d(.), and forward diffusion (2.1).

while not converge do

/ freeze 0, update):

xo = go(z).detach(), z ~p,

t ~pepm(t), ® =0+ te, € ~N(0,I)

L(¥) = Appum(t) x [ldy (@, t) — o3

L().backward(); update 1)

/ freeze), update 0:

xo = go(2), z~p.

t~psiv(t), T =m0 +te, € ~N(0,1)

L(0) = {\/lyﬁw} {dw(mtat) - CL’O}7 where y; = dy(x1,t) — dg, (1)
L(8).backward(); update 6

end
return 6, .

Weighting function. As we have said, we use the same Agpas(t) (B.7) weighting function as
EDM when updating the denoiser model. When updating the generator, SiD uses a specially designed
weighting function, which writes:

Cxtt
wg;p(t) = (B.11)
o — dg, (@) |15
Ty = xo +te, € ~N(0,I) (B.12)

The notation sg means stop-gradient, and C' is the data dimensions. They claim such a weighting
function helps to stabilize the training. However, in our experiments, since the SIM itself has
normalized the loss (see section 4), we do not use such ad-hoc weighting functions. Instead, we just
set the weighting function to be 1 for all time. We call the SiD’s weighting function the sidwgt in
Figure 2, and our weighting the nowgt in Figure 2.

In Figure 2, we compare the SiD and SIM with different time distribution and weighting functions.
We find that SIM+nowgt+lognormal time distribution gives the best performances significantly,
therefore our final experiment tasks such a configuration. Table 5 records the detailed configurations
we use for SIM on CIFAR10 EDM distillation.

With the optimal setting and EDM formulation, we can rewrite our algorithm in an EDM style in
Algorithm 2.

B.3 Experiment details on Text-to-Image Distillation

In the Text-to-Image distillation part, in order to align our experiment with that on CIFAR10, we
rewrite the PixArt-a model in EDM formulation:

Dy(x;0) =x—oFy (B.13)

26

1041
1042
1043
1044
1045
1046
1047
1048
1049

1050
1051
1052

1053
1054
1055

1056
1057
1058
1059
1060
1061
1062
1063
1064

1065
1066
1067
1068

1069

1070
1071
1072
1073
1074
1075
1076

1077
1078
1079
1080
1081

1082

1083

1084

1085
1086
1087
1088
1089

1090

Here, following the iDDPM+DDIM preconditioning in EDM, PixArt-« is denoted by Fjy, x is the
image data plus noise with a standard deviation of o, for the remaining parameters such as C; and
Cs, we kept the other parameters unchanged to match those defined in EDM. Unlike the original
model, we only retained the image channels for the output of this model. Since we employed the
preconditioning of iDDPM+DDIM in the EDM, each o value is rounded to the nearest 1000 bins
after being passed into the model. For the actual values used in PixArt-a, beta_start is set to 0.0001,
and beta_end is set to 0.02. Therefore, according to the formulation of EDM, the range of our noise
distribution is [0.01, 156.6155], which will be used to truncate our sampled o. For our one-step
generator, it is formulated as:

96(X; Tinit) = X — TinicFy (B.14)
Here following SiD oy = 2.5 and x ~ N(0, ojnieI), we observed in practice that larger values of

oinit lead to faster convergence of the model, but the difference in convergence speed is negligible for
the complete model training process and has minimal impact on the final results.

We utilized the SAM-LLaVA-Caption10M dataset, which comprises prompts generated by the LLaVA
model on the SAM dataset. These prompts provide detailed descriptions for the images, thereby
offering us a challenging set of samples for our distillation experiments.

All experiments in this section were conducted on 4 A100-40G GPUs with bfloat16 precision, using
the PixArt-XL-2-512x512 model version, employing the same hyperparameters. For both optimizers,
we utilized Adam with a learning rate of 5e-6 and betas=[0, 0.999]. Additionally, to enable a batch
size of 1024, we employed gradient checkpointing and set the gradient accumulation to 8. Finally,
regarding the training noise distribution, instead of adhering to the original iDDPM schedule, we
sample the o from a log-normal distribution with a mean of -2.0 and a standard deviation of 2.0, we
use the same noise distribution for both optimization step and set the two loss weighting to constant
1. Our best model was trained on the SAM Caption dataset for approximately 16k iterations, which is
equivalent to less than 2 epochs. This training process took about 2 days on 4 A100-40G GPUs.

We also tested the impact of different noise distributions on the distillation process. When the noise
distribution is highly concentrated around smaller values, we observed a phenomenon where the
generated samples appear excessively dark. On the other hand, when we used slightly larger noise
distributions, we found that the structure of the generated samples tended to be unstable.

B.4 Instruction for Human Preference Study

Our user study primarily focuses on comparing the outputs of the distilled model and the teacher
model. Each image has undergone rigorous manual review to ensure the safety of survey participants.
We conducted the study using questionnaires, where users were presented with two randomly ordered
images generated by the distilled model and teacher model and asked to select the sample that best
matched the text description and had higher image quality. Finally, we used the collected votes for
the distilled model and the teacher model as indicators of user preference. The questionnaire website
used for conducting these evaluations are shown in Figure 4.

To be more specific, we randomly selected 17 prompt words and generated images of resolution
512x512 using both the student model and the teacher model. To facilitate comparison, we presented
the two images side by side in random order. In the questionnaire, we provided the complete prompt
words for reference in addition to the generated images. In the end, we collected approximately 30
survey responses in total.

B.5 Generated Samples on CIFAR10
B.6 Prompts for Figure 3

* prompt for first row of Figure 3: A small cactus with a happy face in the Sahara desert.

» prompt for second row of Figure 3: An image of a jade green and gold coloured Fabergé
egg, 16k resolution, highly detailed, product photography, trending on artstation, sharp
focus, studio photo, intricate details, fairly dark background, perfect lighting, perfect com-
position, sharp features, Miki Asai Macro photography, close-up, hyper detailed, trending
on artstation, sharp focus, studio photo, intricate details, highly detailed, by greg rutkowski.

 prompt for third row of Figure 3: Baby playing with toys in the snow.

27

AIGC Text-to-Image User Study

B I U e Y

Given the following prompts, select the best image by text similarity and image quality. (17 textimage pairs in
total)

1. Given the following prompts, select the best image by text similarity and image quality. *
"A small cactus with a happy face in the Sahara desert."

TN el S R e DA

Figure 5: One-step SIM model on CIFAR10-conditional. FID=1.96.

28

TR
o dam

_“- h

R
{ W

F o by A i = : " *
e i) T R A 2 b e B e L

U

Figure 6: One-step SIM model on CIFAR10-unconditional. FID=2.17.

29

