
A Theory Parts883

A.1 Proof of Theorem 3.1884

The proof of Theorem 3.1 is based on the so-called Score-projection identity which was first found885

in Vincent [60] to bridge denoising score matching and denoising auto-encoders. Later the identity886

is applied by Zhou et al. [79] for deriving distillation methods based on Fisher divergences. We887

appreciate the efforts of Zhou et al. [79] and re-write the score-projection identity here without proof.888

Readers can check Zhou et al. [79] for a complete proof of score-projection identity.889

Theorem A.1. Let u(·) be a vector-valued function, using the notations of Theorem 3.1, under mild890

conditions, the identity holds:891

Ext∼pθ,tu(xt)
T

{
spθ,t(xt)−∇xt log qt(xt|x0)

}
= 0, ∀θ.

Next, we turn to prove the Theorem 3.1.892

Proof. We prove a more general result. Let u(·) be a vector-valued function, the so-called score-893

projection identity [79, 60] holds,894

Ext∼pθ,tu(xt)
T

{
spθ,t(xt)−∇xt log qt(xt|x0)

}
= 0, ∀θ. (A.1)

Notice that for most commonly used forward diffusion processes such as VP and VE process [57],895

the term ∇xt log qt(xt|x0) turns out to be a scale of the difference of an added Gaussian noise ϵ,896

therefore the θ gradient for ∇xt log qt(xt|x0) will vanish. Taking θ gradient on both sides of identity897

(A.1), we have898

0 = Ext∼pθ,t
∂

∂xt

{
u(xt)

T
{
spθ,t(xt)−∇xt log qt(xt|x0)

}}∂xt
∂θ

+ Ext∼pθ,tu(xt)
T ∂

∂θ

{
spθ,t(xt)

}
So we have an identity899

Ext∼pθ,tu(xt)
T ∂

∂θ

{
spθ,t(xt)

}
= −Ext∼pθ,t

∂

∂xt

{
u(xt)

T
{
spθ,t(xt)−∇xt log qt(xt|x0)

}}∂xt
∂θ

= − ∂

∂θ
Ext∼pθ,t

{
u(xt)

{
spsg[θ],t(xt)−∇xt log qt(xt|x0)

}}
(A.2)

Notice that the left-hand side of equation (A.2) can be interpreted as the gradient of the loss function900

when the parameter dependency of the sampling distribution is cut off, i.e.901

Ext∼pθ,tu(xt)
T ∂

∂θ

{
spθ,t(xt)

}
=

∂

∂θ
Ext∼psg[θ],t

{
u(xt)

Tspθ,t(xt)

}
(A.3)

Therefore we have the final equation902

∂

∂θ
Ext∼psg[θ],t

{
u(xt)

Tspθ,t(xt)

}
= − ∂

∂θ
Ext∼pθ,t

{
u(xt)

{
spsg[θ],t(xt)−∇xt log qt(xt|x0)

}}
(A.4)

which holds for arbitrary function u(·) and parameter θ. If we set903

u(xt) = d′(yt)

yt = spsg[θ],t(xt)− sqt(xt)

Then we formally have904

∂

∂θ
Ext∼psg[θ],t

{
d′(yt)

}T{
spθ,t(xt)

}
=

∂

∂θ
E x0∼pθ,0,

xt|x0∼qt(xt|x0)

{
− d′(yt)

}T{
spθ,t(xt)−∇xt log qt(xt|x0)

}
(A.5)

905

22

A.2 Pytorch style pseudo-code of Score Implicit Matching906

In this section, we give a PyTorch style pseudo-code for algorithm 1, with the Pseudo-Huber distance907

function. For a detailed algorithm on CIFAR10 with EDM model, please check Algorithm 2.908

1 import torch909

2 import torch.nn as nn910

3 import torch.optim as optim911

4912

5 # Initialize generator G913

6 G = Generator()914

7915

8 ## load teacher DM916

9 Sd = DiffusionModel().load(’/path_to_ckpt’).eval().requires_grad_(False)917

10 Sg = copy.deepcopy(Sd) ## initialize online DM with teacher DM918

11919

12 # Define optimizers920

13 opt_G = optim.Adam(G.parameters(), lr=0.001, betas=(0.0, 0.999))921

14 opt_Sg = optim.Adam(Sg.parameters(), lr=0.001, betas=(0.0, 0.999))922

15923

16 # Training loop924

17 while True:925

18 ## update Sg926

19 Sg.train().requires_grad_(True)927

20 G.eval().requires_grad_(False)928

21929

22 # loop for 2 times to update Sg930

23 for _ in range(2):931

24 z = torch.randn((2000, 2)).to(device)932

25 with torch.no_grad():933

26 fake_x = G(z)934

27935

28 t = torch.from_numpy(np.random.choice(np.arange(1,Sd.T), size=936

fake_x.shape[0], replace=True)).to(device).long()937

29 fake_xt, t, noise, sigma_t, g2_t = Sd(fake_x, t=t, return_t=True)938

30 sigma_t = sigma_t.view(-1,1).to(device)939

31 g2_t = g2_t.to(device)940

32 score = Sg(torch.cat([fake_xt,t.view(-1,1)/Sd.T],-1))/sigma_t941

33942

34 batch_sg_loss = score + noise/sigma_t943

35 batch_sg_loss = (g2_t*batch_sg_loss.square().sum(-1)).mean()*Sd.T944

36945

37 optimizer_Sg.zero_grad()946

38 batch_sg_loss.backward()947

39 optimizer_Sg.step()948

40949

41950

42 ## update G951

43 Sg.eval().requires_grad_(False)952

44 G.train().requires_grad_(True)953

45954

46 z = torch.randn((2000, 2)).to(device)955

47 fake_x = G(z)956

48957

49 t = torch.from_numpy(np.random.choice(np.arange(1,diffusion.T), size=958

fake_x.shape[0], replace=True)).to(device).long()959

50 fake_xt, t, noise, sigma_t, g2_t = diffusion(fake_x, t=t, return_t=960

True)961

51 sigma_t = sigma_t.view(-1,1).to(device)962

52 g2_t = g2_t.to(device)963

53964

54 score_true = Sd(torch.cat([fake_xt,t.view(-1,1)/diffusion.T],-1))/965

sigma_t966

55 score_fake = Sg(torch.cat([fake_xt,t.view(-1,1)/diffusion.T],-1))/967

sigma_t968

23

56969

57 score_diff = score_true - score_fake970

58971

59 offset_coeff = denoise_diff / torch.sqrt(denoise_diff.square().sum972

([1,2,3], keepdims=True) + self.phuber_c**2)973

60 weight = 1.0974

61975

62 batch_g_loss = weight * offset_coeff * (fake_denoise - images)976

63 batch_g_loss = batch_g_loss.sum([1,2,3]).mean()977

64978

65 optimizer_G.zero_grad()979

66 batch_g_loss.backward()980

67 optimizer_G.step()981

Listing 1: Pytorch Style Pseudo-code of SIM

A.3 Instances of SIM with different distance functions982

In section 3.3, we have discussed the powered normed as distance functions. Other choices, such as983

the Huber distance, which is defined as984

∀1 ≤ d ≤ D, Lδ(y)d :=

{
y2d/2 for yd ≥ δ

δ(|yd| − δ/2) otherwise

For other choices of distance functions, such as L1 norm and exponential with powered norms, we985

put them in Table 4.986

Table 4: Instances of Score Implicit Matching loss with different distance functions. The notations
are aligned with the Algorithm 1.

CHOICE OF d(.) d′(yt) LOSS FUNCTION

∥yt∥2
2 2yt −2yTt

{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
∥yt∥αα, α≥1,

α even αy
(α−1)
t −α

{
y
(α−1)
t

}T{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
exp(β∥yt∥αα)−1,

α≥1, α even
α exp(β∥yt∥αα)y

(α−1)
t −α exp(β∥yt∥αα)

{
y
(α−1)
t

}{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
∥yt∥1 sign(yt) − sign(yt)

T

{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
Lδ(yt),

Lδ(.) HUBER LOSS
∂
∂yt

Lδ(yt) − ∂
∂yt

Lδ(yt)
T

{
sψ(xt, t) − ∇xt log qt(xt|x0)

}
√

∥yt∥2
2 + c2 − c 2

yt√
∥yt∥22+c2

−2

{
2

yt√
∥yt∥22+c2

}T{
sψ(xt, t) − ∇xt log qt(xt|x0)

}

B Empirical Parts987

B.1 Answer for the human preference study988

The answer to the human preference study in Figure 1 is989

• the middle image of the first row is generated by one-step SIM-DiT-600M;990

• the leftmost image of the second row is generated by one step SIM-DiT-600M;991

• the leftmost image of the third row is generated by one-step SIM-DiT-600M.992

B.2 Experiment details on CIFAR10 dataset993

We follow the experiment setting of SiD and DI on CIFAR10. We start with a brief introduction to994

the EDM model [21].995

24

The EDM model depends on the diffusion process996

dxt = tdwt, t ∈ [0, T]. (B.1)

Samples from the forward process (B.1) can be generated by adding random noise to the output of997

the generator function, i.e., xt = x0 + tϵ where ϵ ∼ N (0, I) is a Gaussian vector. The EDM model998

also reformulates the diffusion model’s score matching objective as a denoising regression objective,999

which writes,1000

L(ψ) =
∫ T

t=0

λ(t)Ex0∼p0,xt|x0∼pt(xt|x0)∥dψ(xt, t)− x0∥22dt. (B.2)

Where dψ(·) is a denoiser network that tries to predict the clean sample by taking noisy samples1001

as inputs. Minimizing the loss (B.2) leads to a trained denoiser, which has a simple relation to the1002

marginal score functions as:1003

sψ(xt, t) =
dψ(xt, t)− xt

t2
(B.3)

Under such a formulation, we actually have pre-trained denoiser models for experiments. Therefore,1004

we use the EDM notations in later parts.1005

Construction of the one-step generator. Let dθ(·) be pretrained EDM denoiser models. Owing to1006

the denoiser formulation of the EDM model, we construct the generator to have the same architecture1007

as the pre-trained EDM denoiser with a pre-selected index t∗, which writes1008

x0 = gθ(z) := d(z, t∗), z ∼ N (0, (t∗)2I). (B.4)

We initialize the generator with the same parameter as the teacher EDM denoiser model.1009

Time index distribution. When training both the EDM diffusion model and the generator, we need1010

to randomly select a time t in order to approximate the integral of the loss function (B.2). The EDM1011

model has a default choice of t distribution as log-normal when training the diffusion (denoiser)1012

model, i.e.1013

t ∼ pEDM (t) : t = exp(s) (B.5)

s ∼ N (Pmean, P
2
std), Pmean = −1.2, Pstd = 1.2. (B.6)

And a weighting function1014

λEDM (t) =
(t2 + σ2

data)

(t× σdata)2
. (B.7)

In our algorithm, we follow the same setting as the EDM model when updating the online diffusion1015

(denoiser) model.1016

In SiD, they propose to use a special discrete time distribution, which writes1017

σk = (σ
1
ρ
max

i

K − 1
(σ

1
ρ

min − σ
1
ρ
max))

ρ,

σmax = 80.0, σmin = 0.002, ρ = 7.0,K = 1000

They proposed to choose t uniformly from1018

t ∼ pSiD(t) : k ∼ Unif [0, 800], t = σk; (B.8)

We name such a time distribution the Karr distribution in Figure 2 because such a schedule was1019

originally proposed in Karras’ EDM work for sampling.1020

However, in practice, we find that Karr distribution (B.8) empirically does not work well. Instead,1021

we find that a modified log-normal time distribution when updating the generation with SIM works1022

better than Karr distribution. Our SIM time distribution writes:1023

t ∼ pSIM (t) : t = exp(s) (B.9)

s ∼ N (Pmean, P
2
std), Pmean = −3.5, Pstd = 2.5. (B.10)

25

Table 5: Hyperparameters used for SIM on CIFAR10 EDM Distillation
Hyperparameter CIFAR-10 (Uncond) CIFAR-10 (Cond)

DM sψ Generator gθ DM sψ Generator gθ
Learning rate 1e-5 1e-5 1e-5 1e-5
Batch size 256 256 256 256
σ(t∗) 2.5 2.5 2.5 2.5
Adam β0 0.0 0.0 0.0 0.0
Adam β1 0.999 0.999 0.999 0.999
Time Distribution pEDM (t)(B.5) pSIM (t)(B.9) pEDM (t)(B.5) pSIM (t)(B.9)
Weighting λEDM (t)(B.7) 1 λEDM (t)(B.7) 1
Loss function (B.2) (??) (B.2)
Number of GPUs 4×A100-40G 4×A100-40G 4×A100-40G 4×A100-40G

Algorithm 2: SIM with Pseudo-Huber distance for distilling EDM teacher [Pytorch Style].
Input: pre-trained EDM denoiser dqt(.), generator gθ, prior distribution pz , online EDM

denoiser dψ(.); differentiable distance function d(.), and forward diffusion (2.1).
while not converge do

// freeze θ, update ψ:
x0 = gθ(z).detach(), z ∼ pz
t ∼ pEDM (t), xt = x0 + tϵ, ϵ ∼ N (0, I)
L(ψ) = λEDM (t)× ∥dψ(xt, t)− x0∥22
L(ψ).backward(); update ψ
// freeze ψ, update θ:
x0 = gθ(z), z ∼ pz
t ∼ pSIM (t), xt = x0 + tϵ, ϵ ∼ N (0, I)

L(θ) = −
{

yt√
∥yt∥2

2+c
2

}T{
dψ(xt, t)− x0

}
, where yt := dψ(xt, t)− dqt(xt)

L(θ).backward(); update θ
end
return θ, ψ.

Weighting function. As we have said, we use the same λEDM (t) (B.7) weighting function as1024

EDM when updating the denoiser model. When updating the generator, SiD uses a specially designed1025

weighting function, which writes:1026

wSiD(t) =
C × t4

∥x0 − dqt(xt)∥1,sg
(B.11)

xt = x0 + tϵ, ϵ ∼ N (0, I) (B.12)

The notation sg means stop-gradient, and C is the data dimensions. They claim such a weighting1027

function helps to stabilize the training. However, in our experiments, since the SIM itself has1028

normalized the loss (see section 4), we do not use such ad-hoc weighting functions. Instead, we just1029

set the weighting function to be 1 for all time. We call the SiD’s weighting function the sidwgt in1030

Figure 2, and our weighting the nowgt in Figure 2.1031

In Figure 2, we compare the SiD and SIM with different time distribution and weighting functions.1032

We find that SIM+nowgt+lognormal time distribution gives the best performances significantly,1033

therefore our final experiment tasks such a configuration. Table 5 records the detailed configurations1034

we use for SIM on CIFAR10 EDM distillation.1035

With the optimal setting and EDM formulation, we can rewrite our algorithm in an EDM style in1036

Algorithm 2.1037

B.3 Experiment details on Text-to-Image Distillation1038

In the Text-to-Image distillation part, in order to align our experiment with that on CIFAR10, we1039

rewrite the PixArt-α model in EDM formulation:1040

Dθ(x;σ) = x− σFθ (B.13)

26

Here, following the iDDPM+DDIM preconditioning in EDM, PixArt-α is denoted by Fθ, x is the1041

image data plus noise with a standard deviation of σ, for the remaining parameters such as C1 and1042

C2, we kept the other parameters unchanged to match those defined in EDM. Unlike the original1043

model, we only retained the image channels for the output of this model. Since we employed the1044

preconditioning of iDDPM+DDIM in the EDM, each σ value is rounded to the nearest 1000 bins1045

after being passed into the model. For the actual values used in PixArt-α, beta_start is set to 0.0001,1046

and beta_end is set to 0.02. Therefore, according to the formulation of EDM, the range of our noise1047

distribution is [0.01, 156.6155], which will be used to truncate our sampled σ. For our one-step1048

generator, it is formulated as:1049

gθ(x;σinit) = x− σinitFθ (B.14)
Here following SiD σinit = 2.5 and x ∼ N (0, σinitI), we observed in practice that larger values of1050

σinit lead to faster convergence of the model, but the difference in convergence speed is negligible for1051

the complete model training process and has minimal impact on the final results.1052

We utilized the SAM-LLaVA-Caption10M dataset, which comprises prompts generated by the LLaVA1053

model on the SAM dataset. These prompts provide detailed descriptions for the images, thereby1054

offering us a challenging set of samples for our distillation experiments.1055

All experiments in this section were conducted on 4 A100-40G GPUs with bfloat16 precision, using1056

the PixArt-XL-2-512x512 model version, employing the same hyperparameters. For both optimizers,1057

we utilized Adam with a learning rate of 5e-6 and betas=[0, 0.999]. Additionally, to enable a batch1058

size of 1024, we employed gradient checkpointing and set the gradient accumulation to 8. Finally,1059

regarding the training noise distribution, instead of adhering to the original iDDPM schedule, we1060

sample the σ from a log-normal distribution with a mean of -2.0 and a standard deviation of 2.0, we1061

use the same noise distribution for both optimization step and set the two loss weighting to constant1062

1. Our best model was trained on the SAM Caption dataset for approximately 16k iterations, which is1063

equivalent to less than 2 epochs. This training process took about 2 days on 4 A100-40G GPUs.1064

We also tested the impact of different noise distributions on the distillation process. When the noise1065

distribution is highly concentrated around smaller values, we observed a phenomenon where the1066

generated samples appear excessively dark. On the other hand, when we used slightly larger noise1067

distributions, we found that the structure of the generated samples tended to be unstable.1068

B.4 Instruction for Human Preference Study1069

Our user study primarily focuses on comparing the outputs of the distilled model and the teacher1070

model. Each image has undergone rigorous manual review to ensure the safety of survey participants.1071

We conducted the study using questionnaires, where users were presented with two randomly ordered1072

images generated by the distilled model and teacher model and asked to select the sample that best1073

matched the text description and had higher image quality. Finally, we used the collected votes for1074

the distilled model and the teacher model as indicators of user preference. The questionnaire website1075

used for conducting these evaluations are shown in Figure 4.1076

To be more specific, we randomly selected 17 prompt words and generated images of resolution1077

512x512 using both the student model and the teacher model. To facilitate comparison, we presented1078

the two images side by side in random order. In the questionnaire, we provided the complete prompt1079

words for reference in addition to the generated images. In the end, we collected approximately 301080

survey responses in total.1081

B.5 Generated Samples on CIFAR101082

B.6 Prompts for Figure 31083

• prompt for first row of Figure 3: A small cactus with a happy face in the Sahara desert.1084

• prompt for second row of Figure 3: An image of a jade green and gold coloured Fabergé1085

egg, 16k resolution, highly detailed, product photography, trending on artstation, sharp1086

focus, studio photo, intricate details, fairly dark background, perfect lighting, perfect com-1087

position, sharp features, Miki Asai Macro photography, close-up, hyper detailed, trending1088

on artstation, sharp focus, studio photo, intricate details, highly detailed, by greg rutkowski.1089

• prompt for third row of Figure 3: Baby playing with toys in the snow.1090

27

Figure 4: Demonstration of our human preference user study interface.

Figure 5: One-step SIM model on CIFAR10-conditional. FID=1.96.

28

Figure 6: One-step SIM model on CIFAR10-unconditional. FID=2.17.

29

