
A APPENDIX

The supplementary document is organized as follows:

• Sec. A depicts the 3D geometric projection details of the instance branch.

• Sec. B provides the detailed module network architectures and design rationality.

• Sec. C describes the generation details of BEV proposals.

• Sec. D provides the experimental details and additions of LSSInst.

• Sec. E provide the qualitative results and visualization analysis.

A INSTANCE-LEVEL 3D GEOMETRIC PROJECTION

For the 3D position ego coordinates Ppos ∈ RN×3 at the current time, below are the detailed
multi-view geometric projection for instance-level representations. Firstly, on the spatial hand,
Ppos, i.e., (x, y, z) is warped into the camera coordinate system by using the per-view extrinsics
Mcam = [R|t] ∈ SE3 and intrinsics as 2D points pχ, i.e., (u, v) as follows: xc
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where xc, yc, zc are the coordinates in camera system, fx, fy, cx, cy are camera intrinsic parameters,
and R ∈ R3×3, t ∈ R3×1 denote the spatial rotation and translation matrices.

Secondly, on the temporal hand, we warp pχ to the target coordinate system at time t, and for the
unified expression, the set of target systems includes the current system, i.e., 0 ∈ {t}. On the basis
of Sec. 3.3 and Eqn. 5, below is the detailed formulation of Mt. Given both extrinsic calibration
matrices to the world coordinate system Mcur2w,Mtgt2w ∈ SE3, we can construct the transformation
matrix Mt from the current system to the target one by

Mt = M−1
tgt2w ×Mcur2w =

[
Rtgt ttgt
03 1

]
(8)

where Rtgt ∈ R3×3, ttgt ∈ R3×1 denote the overall temporal rotation and translation matrices.

B NETWORK ARCHITECTURES

Feature Converter The detailed architecture of the feature converter module is the combination
of a 3× 3 kernel-size convolution layer with 1 padding and batch normalization, aiming to learn an
inter-space adaptation from resampled BEV feature to sparse instance features. Here we convert the
whole BEV feature into the adaptive space at first in practice for implementation convenience, and
we give a short proof to show the equivalence as follows:
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(Eqn. 3)
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where F̂α denotes the converted feature from the set of F i
α, and we omit the specific resampling

multipliers in Eqn. 2 for simplicity.
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Sparse Temporal Encoder The specific architecture of the sparse temporal encoder is a naive
three-layer MLP with GeLU (Hendrycks & Gimpel, 2016) for sparse temporal fusion from 2C to
C. Below are the detailed procedures in Alg. 1. As shown in the algorithm, when the iterative
fusion ends, the accumulated highest order of λ will come to (t− 1), i.e., the impact equals to a λt−1

multiplier for every Fδt, which indeed acts as the desirable long-term suppression.

Algorithm 1 The pseudo-code of sparse temporal fusion
Require: Tχ ∈ N+, 0 < Tχ ≤ T, 0 < λ < 1

1: t← Tχ

2: while t ̸= 0 do
3: Fδt ← λFδt ▷ Fδt is formulated by Eqn. 5
4: Fδ(t−1) ← concat[Fδ(t−1), Fδt]
5: Fδ(t−1) ← fenc(Fδ(t−1))
6: t← t− 1
7: end while

C PROPOSAL GENERATION

We describe the generation pipeline for BEV proposals from the proposal head in this section. The
proposal head can be a very lightweight BEV detection head, like CenterHead (Yin et al., 2021), only
for generating the raw BEV proposals with their scores {ρi, si}i. With the non-maximum suppression
(NMS) operation with a score threshold, we can obtain the 3D bounding box candidates Co. Here the
threshold is set as 0.1. Considering the variable amount of candidates, we re-filter them by top-k as
follows, and here k is set as 450, half of the classical total number of 3D queries.

Co := top-k
(
NMS

[
{ρi, si}i

])
(9)

Notably, there also exists the possibility that the amount is smaller than k. We add the blank padding
for the rest, where the position is random with a π/2 yaw, and both scale and velocity are zero.

D EXPERIMENTAL SETTINGS AND EXTENSIONS

Evaluation Metrics For 3D object detection in the nuSense benchmark, our study utilizes a set
of official predefined metrics to evaluate the performance of our approach. These metrics include
mean Average Precision (mAP), Average Translation Error (ATE), Average Scale Error (ASE),
Average Orientation Error (AOE), Average Velocity Error (AVE), Average Attribute Error (AAE),
and nuScenes Detection Score (NDS). Different from direct 3D IoU usage, here mAP is based on the
BEV center distance and is calculated by averaging over distance thresholds of 0.5m, 1m, 2m, and 4m
for ten different classes of objects, including car, truck, bus, trailer, construction vehicle, pedestrian,
motorcycle, bicycle, barrier, and traffic cone. In addition to mAP, NDS is a comprehensive metric that
takes into account other indicators to assess the overall detection performance. The remaining metrics
are designed to measure the precision of positive results in concerned aspects, such as translation,
scale, orientation, velocity, and attribute.

D.1 EXPERIMENTAL SETTINGS

Our implementation is conducted in MMDetection3D (Contributors., 2020) with one NVIDIA A100
40G GPU node. The adoption of data augmentation strategies follows the setting of the BEV branch.
Specifically, the augmentation strategies can be random flips along the X and Y axes, random scaling
and rotation in a limited range in the image or BEV level. As for the FPN (Lin et al., 2016) before
each branch, we follow the settings of BEVDepth (Li et al., 2023b) and DETR3D (Wang et al.,
2021), respectively and choose SECONDFPN (Yan et al., 2018) with 128-dimensional output and
standard FPN (Lin et al., 2016) with 256-dimensional output. We select AdamW (Loshchilov &
Hutter, 2017) as the optimizer and set the learning rate as 2e-4. Notably, in the ablation study, we
selected BEVDepth (Li et al., 2023b) as the BEV branch in the ablation baseline for convenient
experimental conduction. Here the BEV branch used 1+2 frames and the sparse branch of the ablation
baseline didn’t use temporal information except for the frame ablation.
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Table 8: Comparison results of LSS-based detectors for 3D detection on the nuScenes val set. All
methods in the table are trained with CBGS.

Method Backbone Image Size mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDet (Huang et al., 2021) ResNet50 256 × 704 0.298 0.379 0.725 0.279 0.589 0.860 0.245
BEVDet4D (Huang & Huang, 2022) ResNet50 256 × 704 0.322 0.457 0.703 0.278 0.495 0.354 0.206
BEVDepth (Li et al., 2023b) ResNet50 256 × 704 0.351 0.475 0.639 0.267 0.479 0.428 0.198
STS (Wang et al., 2023) ResNet50 256 × 704 0.377 0.489 0.601 0.275 0.450 0.446 0.212
BEVStereo (Li et al., 2023a) ResNet50 256 × 704 0.372 0.500 0.598 0.270 0.438 0.367 0.190
AeDet (Feng et al., 2023) ResNet50 256 × 704 0.387 0.501 0.598 0.276 0.461 0.392 0.196
SA-BEV (Zhang et al., 2023) ResNet50 256 × 704 0.386 0.512 0.612 0.266 0.351 0.382 0.200
SOLOFusion (Park et al., 2023) ResNet50 256 × 704 0.427 0.534 0.567 0.274 0.511 0.252 0.188
LSSInst ResNet50 256 × 704 0.429 0.537 0.595 0.281 0.423 0.273 0.202

Table 9: The experimental verification results of mATE improvement.

Method mAP↑ mATE↓

LSSInst

Out Box Num
300 42.2 0.620
250 42.2 0.619
200 42.1 0.617
150 42.0 0.614
100 41.4 0.608

SOLOFusion (Park et al., 2023) 40.6 0.609

D.2 EXPERIMENTAL EXTENSIONS

In this section, we conducted the experimental extensions to show more persuasive performance
results and ablation. To be specific, these results are involved in CBGS (Zhu et al., 2019) and the
ablations of whistles and bells.

D.2.1 PERFORMANCE EXTENSION

CBGS strategy as an incremental trick is popular in several works to further increase model perfor-
mance. In order to further compare with the LSS-based state-of-the-art methods trained with CBGS,
we conducted a performance evaluation in the nuScenes val set. As shown in Tab. 8, our LSSInst
achieves an mAP of 42.9% and an NDS score of 53.8%, outperforming all existing methods. These
results further demonstrate the missing details improvement and inherent effectiveness of our method
despite the class imbalance compensation using CBGS.

D.2.2 VERIFICATION FOR TRANSLATION IMPROVEMENT

The mA*E is designed to measure a property (here we use * to denote this) by the mean statistical
error, and it’s actually based on the predicted instances, which does not consider the confidence
threshold. Considering that we introduce more queries to capture the missing objects, it also means
we are more likely to yield lower mATE for those low-score predictions. In practice, we enhance the
confidence level and decrease the output box number to show the mATE variation as shown in the
table below. When we change to the 100 output number, we can easily observe the better mATE as
well as higher mAP.

D.2.3 RESULTS OF CATEGORY-LEVEL IMPROVEMENT

This section shows the per-class comparison results between SOLOFusion and LSSInst on the
nuScene val and test set. As illustrated in Fig. 3, we can observe the BEV-insensitive categories
such as the traffic cone and bicycle, especially pedestrian have been detected with a remarkable
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Figure 3: Comparison results of per-classes mAP on nuScenes val set.

Table 10: The ablation results of the frame-level extension.

Frame mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEV Only 0.366 0.477 0.661 0.278 0.625 0.327 0.205

1 0.381 0.494 0.662 0.271 0.473 0.358 0.207
2 0.382 0.495 0.654 0.271 0.470 0.360 0.207
3 0.389 0.497 0.652 0.270 0.454 0.378 0.223
4 0.383 0.496 0.659 0.273 0.462 0.366 0.198

margin. It’s favorable for the improvement of the classes with variable movements or dispersed
locations since there is a large proportion of human beings (pedestrians) in the auto-driving scenario.

D.2.4 ABLATION EXTENSION OF WHISTLES AND BELLS

The ablation study below reveals the role and function of each component in our framework. Notably,
we select BEVDepth as the BEV branch in the ablation baseline for convenient experimental conduc-
tion. The sparse branch of the ablation baseline does not use temporal information except for the
frame ablation.

Offline Temporal Sampling Here we particularly change the frame from 3 to 4 for a more
comprehensive observing range. As shown in Tab. 10, the results reveal a fluctuating trend. The
performance improves gradually as the number of frames increases up to 3, but when the number of
frames reaches 4, the performance starts to decline, reflecting a bottleneck. This observation not only
indicates that our geometric-guided temporal fusion is helpful for short-term matching and alignment
but also shows the theoretical long-term error and verifies the limited approximation mentioned
in Sec. 3.3 even though adding the suppression. It can be inferred that as the look-back window
increases longer, the objects have moved a larger distance within the interval of much more than
3∼4τ = 1.5∼2 seconds, and the variable movement makes it challenging to align the features under
short-term geometric constraints, leading to a continuous decrease in performance. In the future, we
will adopt online temporal sampling to acquire a wider temporal range to improve the problem.

Spatial Sampling and Fusion As for spatial sampling, we utilize deformable attention to aggregate
features from multiple sampling points. As shown in Tab. 11, when we increase the number of
sampling points to 2, there is a 0.4% improvement in mAP, indicating that richer spatial sampling
helps enrich features and optimize intermediate representations. However, further increasing the
number of sampling points results in a performance decline, which may be owing to the smaller
resolution of the feature map. As shown in Tab. 12, We explore the performance of different weights

4



Table 11: Point Ablation

Points mAP↑ NDS↑
1 0.365 0.477
2 0.369 0.478
4 0.361 0.472
6 0.364 0.479

Table 12: Weight Ablation

Weight mAP↑ NDS↑
1 0.365 0.477
2 0.370 0.478
3 0.366 0.480
4 0.362 0.474

Table 13: Adaptor Ablation

BDR FC mAP↑ NDS↑
0.3623 0.4741

✓ 0.3647 0.4769
✓ 0.3651 0.4753

✓ ✓ 0.3661 0.4779

Figure 4: Qualitative comparison between baseline proposals (red), predictions (blue), their superpo-
sition (purple), and GT (white).

assigned to image features. The results reveal that increasing the weight of image features to 2 leads
to a 0.5% improvement in mAP. This indicates that increasing the weight of image features during
spatiotemporal sampling helps enhance the representation ability of queries. The network tends to
utilize a larger weight of image features, which further verifies the effectiveness of our designed
instance branch for improving intermediate representations.

Instance Adaptor To showcase the effectiveness of the instance adaptor module in LSSInst, we
conducted a series of ablation experiments, as depicted in Tab. 13. In this table, BDR denotes the BEV
feature deformable resampling, and FC represents the feature converter. The results indicate that both
sub-modules achieved a 0.2% improvement in both mAP and NDS compared to the baseline. When
combined, they contributed to a total improvement of 0.4%. This indicates that our instance adaptor
module effectively preserves the semantic coherence between BEV and instance representations,
enabling effective improvement of BEV features using instance-level information.

E QUALITATIVE RESULTS

E.1 QUALITATIVE COMPARISON OF BEV-TO-INSTANCE COHERENCE

Despite the semantic segmentation mIoU result between LSSInst and the baseline is 66.21% which
indicates that our method possesses a desirable semantic scene-layout basis and keeps better semantic
coherence, to illustrate this point apparently, here visualize the comparison results between proposals
and predictions. It can be more clearly observed not only the coherence but also extra improvement
on the basis. As shown in Fig. 4, where blue is yielded by BEVInst, red denotes the proposals, purple
means their superposition, and white means GT. We can first conclude that purple boxes occupy
the majority. Then there are many red boxes for false or missed detection and some blue boxes for
orientation correction or additional detection which match the white boxes much more, which directly
proves the improvement.
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E.2 VISUALIZATION

In this section, we show the visualization comparison results for 3D object detection among LSSInst,
ground truth, and current SOTA method SOLOFusion. As shown in Fig. 5, LSSInst has a higher
recall and detects more inapparent and occluded objects. For example, our model successfully detects
distant cars and trucks in the CAM FRONT LEFT and CAM FRONT RIGHT views, especially the vehicle
occluded by trees and the inapparent car with dark color which is highly similar with the background.
Significantly, as the yellow arrow shown in the CAM FRONT RIGHT view, we surprisingly find the
pedestrian, who is so tiny and indistinct that he/she is even ignored by the ground truth, is captured by
LSSInst. Besides, our methods yield a more consistent orientation and box scale with the ground truth
in every view. In contrast, for example, there is a severe rotation shift (the red curved arrow) of the
bus both in the CAM FRONT and CAM FRONT LEFT views as well as the box misalignment among those
cars that are turning past the left traffic lights in the CAM FRONT RIGHT view. These observations
above fully demonstrate the improvement of missing details, no matter the wider-range perception
breadth or own more refined property.
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Figure 5: Comparision of LSSInst, the ground truth, and SOLOFusion on nuScenes val set.
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