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A PROPERTIES OF FUNCTION g

Recall that the function g : [0, 7) — [0, 7) is defined as (see Lemma[4.1)

— 1
g(z) = arccos (W i cos z + — sin z) , (12)
T T

Figure ] shows the plot of this function. From the plot, we can easily find the following properties.
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Figure 4: Curve of the function ¢g(#). As can be seen, g(6) is monotonic, and is approximately the
identity function y = 6 in the small angle region (6 < 90°).

Proposition A.1 (Properties of g). The function g defined in Eq.(I2) has the following properties:

1. g is a monotonically increasing function;
2. g(z) <z forall z € [0,7); and g(z) = z ifand only if z = 0;

3. forany z € [0, ), the sequence {g'(2)}52, is monotonically decreasing, and has the limit
limy s o0 gl(z) =0.

It is worth to note that the last property of g function immediately implies the collapse of embedding
vectors from different inputs in the infinite depth limit L — oo. This embedding collapse has been
observed in prior works |Poole et al.|(2016)); Schoenholz et al.|(2016)) (although by different type of
analysis) and has been widely discussed in the literature of Edge of Chaos.

Theorem A.2. Consider the same ReLU neural network as in Lemma Given any two inputs X,z €
RY, the sequence of angles between their l-embedding vectors, {00 (x, Z)}lel, is monotonically
decreasing. Moreover, in the limit of infinite depth,

lim H(L)(X,z) =0, (13)

L—o0

and there exists a vector o such that, for any input X, the last layer L-embedding

atf (x) = |x]|a. (14)

mT—z
T

Proof of Proposition|[A.]] Part 1. First, we consider the auxiliary function g(z) =
% sin z. We see that

cos z +

dg(z)
dz
Hence, §(z) is monotonically decreasing on [0, 7). Combining with the monotonically decreasing
nature of the arccos function, we get that g is monotonically increasing.

=— (1 - E) sinz <0, Vze[0,).
7r

Part 2. It suffices to prove that cos z < g(z) and that the equality holds only at z = 0. For z = 0,
it is easy to check that cos z = §(z), as both z and sin z are zero. For z € (0,7/2), noting that
tan z — z > 0, we have

™=z

1 1
g(z) = cosz+ —sinz = cosz + — (—z + tan z) cos z > cos z. (15)
T 71'
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For z = m/2, we have cosm/2 = 0 < 1/7m = g(n/2). For z € (7/2, ), we have the same relation
as in Eq.(I5). The only differences are that, in this case, cos z < 0 and tan z — z < 0. Therefore, we
still get g(z) > cos z for z € (7/2, ).

Part 3. From part 2, we see that g(z) < z for all z € (0, 7). Hence, for any I, g'*1(2) < ¢'(2).
Moreover, since z = 0 is the only fixed point such that g(z) = z, in the limit [ — oo, g'(2) — 0. O

B PROOF OF PROPOSITION [5.1]

Proof. Consider the matrix B and the n vectors by, £ By., k € [n]. The smallest singular value
square of matrix B is defined as

T T 2

2 . V.BB'v > bl
; B - —_— = —_—

Omin(B) = it —70— = min == 0

Since the angle ¢ between b; = B;. and b; = B;. is small, let v’ be the vector such that v} = ||b;||,
v; = —||bs|| and v}, = 0 for all k # i, j. Then

P b R N 1 R L N
min = - z J
Tk SR VIl + o,
b 21lb
— =Bl IO 0 g
Mol 1 o, 9
I
= To2 + oy p? O

Since A = BBT, the smallest eigenvalue A, (A) of A is the same as 02,; (B).

On the other hand, the largest eigenvalue A;,q.(A) of matrix A is lower bounded by tr(A)/n. Note

that the diagonal entries Ay = ||bx||. Hence, ¢ < Ajpaz(A) < C. Therefore, the condition number
K = )\max(A)/Amin(A) = Q(l/¢2) H

C PROOFS OF THEOREMS FOR LINEAR NEURAL NETWORK

C.1 PROOF OF THEOREM[3.]]
Proof. First of all, we provide a useful lemma.

Lemma C.1. Consider a matrix A € R™*%, with each entry of A is i.i.d. drawn from N'(0,1). In
the limit of m — o0,

1
—ATA = Iy.q, inprobability. (16)
m

We first consider the embedding vectors @(*) and the embedding angles (). By definition in Eq.,
we have, for all [ € [L] and input x € R<,

1

al(x) = —7

wOwW =D oWy, (7)
Note that at the network initialization entries of W) are i.i.d. and follows A/(0, 1). Hence, the inner
product

(@B (x),a0(z)) = —xTWOT .. pE-DTOTy Oy -1 o, @ 7,
m

where in step (a) we recursively applied Lemma|C.1|] times. Putting z = x, we get la® ()] = |1,
for all | € [L]. By the definition of embedding angles, it is easy to check that 8 (x, z) = 0,,,(x, z),
foralll € [L].
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Now, we consider the model gradient V f and the model gradient angle ¢. As we consider the model
gradient only at network initialization, we don’t explicitly write out the dependence on wg, and we
write V f(wg, x) simply as V f(x). The model gradient V f can be decomposed as

_0f(%)

Vi) = (Vif(x), Vo f(x), . Vi f(x), with Vif(x) = 5025,

Vie[L+1]. »18)

Hence, the inner product

and forall [ € [ + 1],

7 7 (1-1) (1-1) Tr 1 anT o1 oy, ® 7
(Vif(x),Vif(z)) = (""" (x),a"" (2)) - ( WE, =W =xz
l l l/l_l!rl vm l’l_l!rl vm

Here in step (b), we again applied Lemma|[C.1] Therefore,
(Vf(x),Vf(z))=(L+1)x"z (19)

Putting z = x, we get ||V f(x)|| = (L + 1)||x||. By the definition of model gradient angle, it is easy
to check that ¢(x, z) = 0;,(x, z). O

D PROOFS OF THEOREMS FOR RELU NETWORK

D.1 PRELIMINARY RESULTS

Before the proofs, we introduce some useful notations and lemmas.

Given a vector v € R?, we define the following diagonal indicator matrix:

Livsop = diag Iy, 035 Ljws>0} -+ L{w, >0} ) » (20)
with

1 _ 1 Vi > 07
{0t = 0 v <0.

Lemma D.1. Consider two vectors vi,vy € RP and a p-dimensional random vector w ~
N(0,I,xp). Denote 0 as the angle between vy and v, i.e., cos = m Then, the prob-
ability

1 0

P{(wlvy > 0) A (wlvy >0)] = 3" on Q1)

Lemma D.2. Consider two arbitrary vectors vi,vo € RP and a random matrix W € RI*P with
entries W;; i.i.d. drawn from N(0,1). Denote 0 as the angle between vy and Vo, and define

u = %U(Wvl) and uy = %O—(WVQ). Then, in the limit of ¢ — o0,

1 .
(ur,ug) = - ((mr — 0) cos O + sin0) || vy]|]|va]l. (22)

Lemma D.3. Consider two arbitrary vectors vy, vy € RP and two random matrices U € R**9 and
W € R?*P, where all entries U,j, i € [s] and j € [q), and Wiy, k € [q] and | € [p], are i.i.d. drawn

Sfrom N'(0,1). Denote 6 as the angle between vy and vs, and define matrices Ay = %UI[{WV] >0}

and Ay = %Uﬂ{wwzo}w Then, in the limit of ¢ — oo, the matrix

-0
A AT = T Ioxe. (23)
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D.2 PROOF OF LEMMA [4.1]

Proof. Consider an arbitrary layer [ € [L] of the ReLU neural network f at initialization. Given
two arbitrary network inputs x,z € R?, the inputs to the [-th layer are o/~ (x)) and a(!=1)(z)),
respectively.

By definition, we have

a(l)(x) = \/za (W(l)a(l_l)(x)) , a(l)(z) = \/ZO’ (W(l)a(l_l)(z)) , (24)

with entries of W) being i.i.d. drawn from A (0,1). Recall that, by definition, the angle between
a1V (x)) and o= (z)) is 0~V (x,z). Applying Lemma we immediately have the inner
product

1

(@ (2),a®) (1)) =— (7 = 0"~V (x,2)) cos 0" (x,2) +sin 60~ (x,2)

x [lal=D (x)[[[lal' = (2)]. (25)

In the special case of x = z, we have ("1 (x, z) = 0, and obtain from the above equation that

la®® (x)|* = [l ()%, (26)

Apply Eq.(26) back to Eq.(23), we also get
O@).a0) _ 1
cos M) X,7) = {a : =—((m— 9(1_1)(Xaz cos 9(1_1)(X7Z) + sin 9(1_1)(x,z
%2 = ol ] ~ 7 ! (2)2)

That is 0 (x,z) = g(8%~1)(x, z)). Recursively apply this relation, we obtain the desired result. []

D.3 PROOF OF THEOREM [4.2]

Proof. By Lemmaf4.1] we have that

601 (x, z)

/10) — (1=
cos 0\ (x,2) ( -

1
> cos 0V (x,z) + = sin 0V (x, z)
71'

= cos 0V (x,2) (1 + 1 (tan 00—V (x,2z) — 01V (x, z)))
T

= cos H(Z_l)(x,z) <1 + %(9(1_1)(x,z))3 +o0 ((Q(Z_l)(x, z))3)> .

Us

Noting that the Taylor expansion of the cos function at zero is cosz = 1 — %zz + 0(23), one can
easily check that, for all l € [L],
1

(0D, 2)? 40 (00D (x,2)). (28)

0V (x,2) = 00V (x,2) — 3
7r

Note that 6() (x,z) < 8!~V (x,z) = o(1/L). Iteratively apply the above equation, one gets, for all
1€ [L],if 00 (x,2z) = o(1/L),
l
00 (x,2) = 00 (x,2) = = (0 (x.2))* + 0 ((9<O>(x, z))2) . (29)
T
O

D.4 PROOF OF LEMMA [4.3]

Proof. The model gradient V f(x) is composed of the components V, f(x) £ 22 for | € [L + 1].
Each such component has the following expression: for [ € [L + 1]

Vif(x) = a1V (x)5" (x), (30)
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where

L—1+1

2

2
7060 = <m> WD G0 0020 W P Tiae-ng20) - W T aw 920 GD

Note that in Eq.(30), V; f (x) is an outer product of a column vector a1 (x) € R™ %! (m;_; = d
if 1 = 1, and m;_; = m otherwise) and a row vector §) (x) € R"*™ (m; = 1ifl = L + 1, and
m; = m otherwise).

First, we consider the inner product (V; f(z), V; f(x)), forl € [L + 1]E| By Eq., we have

(Vif(2), Vif(x)) = (6V(2), 6V (%)) - ("7 (z), oV (x)). (32)

For (o'~ (z), o'~V (x)), applying Lemma we have
(@ V(2), 0"V (x)) = |x][]1z] cos 8~V (x, 2). (33)

For (3() (z), 60 (x)), by definition Eq.(31), we have

60 (2), 60 (x)) = (:l>L—l+1

> W(L+1)H{d(”(x)20} .. W(l+1)]l{d(l>(x)20,&(l>(z)ZO}W(l-H)T -

Lot (zy20) W DT

A

Recalling that &) = W1 &(=1) and applying Lemma[D.3|on the the term A above, we obtain

_ pt-1)
(60 (z), 00 (x)) = L(X’Z)@(Hl)(z)’ 5D (x)).
™
Recursively applying the above formula for I’ = 1,1 + 1,--- , L, and noticing that §(**1) = 1, we
have
L+1 )
(00,6000 = ] (1 . Z>> . a4
r=i-1 T
Combining Eq.(32), (33) and (34), we have
L-1 /
00 (x,z
(V1f(2), 91769} = [l cos 0V (x2) ] (1 SR )
r=1-1

For the inner product between the full model gradients, we have

L+1 L l L—1 9(1/)()( Z)
(V(2),V(x) =Y _(Vif(2), Vif(x)) = |x[llz] D costVx.2) [T | 1-—=] ]
1=1 1=0 U=l
(36)
Putting x = z in the above equation, we have () (x, z) = 0 for all I € [L], and obtain
IVFGI* = lIx]I* - (L +1). 37)

Hence, we have

< v f(Z), ) f( ) - [ g(l) FR _ ) ]
E cos 0\ (x,2) | I (1-06Y)(x,z)/m)|. (38)
” y f(X)HH y f(Z 1 1=0 =l

cos ¢(x,z) =

O

'With a bit of abuse of notation, we refer to the flattened vectors of V; f in the inner product.
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D.5 PROOF OF THEOREM [4.4]

Proof. For simplicity of notatlon we don’t explicitly write out the dependent on the inputs x, z, and
write #) £ 91 (x, z), and qb ¢(x,z). We start the proof with the relation provided by Lemma-

cos P(x,z) = ﬁ Z lCOSQ ) H — o ) /) ]

=1
1—
@ 7L—1|— 1 Z [cos 0 H

o1 L -1 1 L-1
©_- Z [cos 90 (1 + —(09) + o(0 ))3) H (10t )/77)]

L+1 =0 '=0 3m U=l
L -1
(i) COSQ(O) 1 (0) (0)
T ; l/]i[g L+ 2 (0 +0(6)

_ cos O¢ XL: (1 B LT_ZG(O) + (L — l)(2L —1— 2) (9(0))2 + O((Q(O))2))

32

D.6 PROOF OF THEOREM [3.3]

Proof. For this shallow ReLU network, the model gradient, for an arbitrary input x, is written as
Vf(x) = xd(x) € R&>™, (39

where §(x) € R™ has the following expression

/2
d(x) = EVT]I{szo}w

At initialization, W is a random matrix. Utilizing Lemma[D.3] it is easy to check that [|§(x)| = 1 for
all input x in the infinite width limit.

Recall that the NTK K = FFT, where the gradient feature matrix I’ consist of the gradient feature
vectors V f(x) for all x for the dataset. Hence, the smallest eigenvalue A, (K) satisfies

T
o () — i WK I w9
u#0 ||u|| u#0 Zl 1U
ZJ 1 ||Zz L widj ()%
= min S
u7#0 Zz 1 W
Zz 1 (u;d (XZ))2 ||Z7, 1“1 (Xz)xL”
= min -
u;éoz Z’L 1U2 Zz 1(ulaj(xl))2
Doica (uid(x4))? 1 Uw x;))?
< II%Z S 1u =L I Ain(G). (40)

In the inequality (a) above, we made the following treatment: for each fixed j, we consider u;d; (x;)
as the i-th component of a vector u;-; by definition, the minimum eigenvalue of Gram matrix

Amin(G) = min(u')" Gu'/W|* < (u)" G/, j; (41)

18
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moreover, this < inequality becomes equality, if and only if all u;- are the same and equal to
arg miny 2o (u')T Gu’/||u’[|2. As easy to see, when the dataset is not degenerate, for different j, u’
are different, hence only the strict inequality < holds in step (a).

Continuing from Eq.(0), we have

)\mzn > mlnz ZT 1 Ul Xi)) )‘mzn(G)
z lu’

u;éO
n 2 A2
.- > LGOS
u#0 i1 Y
no9
— min Ll“ymm(a) = Anin(G).
w0 S

Therefore, we showed that A, (K) > Apmin (G).

As for the largest eigenvalue ;4. (K), we can apply the same logic above for A, (K) (except
replacing the min operator by max and have < in step (a)) to get Aoz (K) > Aoz (G).

Therefore, by definition of condition number, the condition number x of NTK is strictly smaller than
the Gram matrix condition number . O

D.7 PROOF OF THEOREM[3.2]

Proof. According to the definition of NTK and Lemma [.3] the NTK matrix K for this dataset
D = {(x1,41), (X2,92)} is (NTK is normalized by the factor 1/(L + 1)?):

_ IVf ()12 (Vi) VF(x2)) \ _ [ [[x1[[[[xz2| cos &
k= ( (Vf(x2), VI(x1)) IVf(x2)|2 ) a ( %1 [l[x2]| cos ¢ <2 )

The eigenvalues of the NTK matrix K are given by

1
M(K) =5 <||X1||2 + 21 + VI [t + e[ + ||X1H2||X2H26082¢) : (42a)

1
M (K) =5 (IIXlII2 + 2l = V/lxa[* + 2| + ||X1H2||X2H2<1082¢) : (42b)

Similarly, for the Gram matrix GG, we have

G = ||>;1H2 x{xy | _ < || e[}z ] cos i
xixy [l %1 [[l[x2]| cos Oin %2l ’
and its eigenvalues as
1
M(G) =5 (I\Xlll2 + 21+ v/l 4+ ez [ + [l |22 |2 cos 29m> ,
1
X(G) =5 (I\Xlll2 + 21 = v/l [ + Iz [ + [l |22 ]2 cos 29m) :

By Theorem [4.4] we have cos ¢ < cos8;,,, when 6;,, = o(1/L) and 6;,, # 0. Hence, we have the
following relations
)\1(G) > )\1(K> > )\Q(K) > /\2(6?)7

which immediately implies k < Kg.

When comparing ReLLU networks with different depths, i.e., network f; with depth L, and network
f2 with depth Ly with Ly > Lo, notice that in Eq.2)) the top eigenvalue \; monotonically decreases
in ¢, and the bottom (smaller) eigenvalue A\, monotonically increases in ¢. By Theorem 4.4} we
know that the deeper ReLLU network f; has a better data separation than the shallower one f5, i.e.,
¢y, > ¢r,. Hence, we get

)‘1(Kf2) >>‘1(Kf1) >)‘2(Kf1) >)‘2(Kf2)' (43)
Therefore, we obtain k¢, < ry,. Namely the deeper ReLU network has a smaller NTK condition
number. =
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E TECHNICAL PROOFS

E.1 PRroOF OF LEMMA [CT]

Proof. We denote A;; as the (i, j)-th entry of the matrix A. Therefore, (AT A);; = >"7", ApiAy;.
First we find the mean of each (AT A);;. Since A;; are i.i.d. and has zero mean, we can easily see
that for any index k,

1, ifi=j
E[ApiAws] = '
[AkiA;] {0, otherwise
Consequently,
E[(—ATA);]=<" ’
[( m )ii] {0, otherwise

That is E[-- AT A] = I,.
Now we consider the variance of each (AT A);;. If i # j we can explicitly write,

m m

1 1
Var |:m(ATA)“:| = W -E Z Z Akl’iA’ﬁjAkziAkgj
Py
1 m m
= ﬁ Z E[A, Ak, j AkyiAk,j]
1 ka=1

1 m
=— | Y_E[A2A%] + D E[AkiAk,jAkyiAr,;]
k=1

= k1#k2
1 m
= —5 | D E[ARIE[AR] + Y E[Axi]E[A, B[4, ]E[Ar,)]
k=1 k1#k2
1
= (m
In the case of ¢ = 7, then,
1, 1 SN 1 & 91 (@ 1 2
Var {m(A A)”} =5 Var ;A,ﬂ- =—- Z ar [A};] = ﬁ(m :2) = po (44)

k=
In the equality (a) above, we used the fact that A7, ~ x2(1). Therefore, lim,,_,oc Var(x(ATA)) =
0.

Now applying Chebyshev’s inequality we get,
Var( (AT A))

€

1
Pr(|EATA — Il > e < (45)

Obviously for any € > 0 as m — oo, the R.H.S. goes to zero. Thus, = AT A — I .4, in probability.
O]

E.2 PROOF OF LEMMA [D.]]

Proof. Note that the random vector w is isotropically distributed and that only inner products w’ v,
and w7lv, appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

vi = [V l(1,0,0,,0),
vy = ||va/(cosf,sin 6,0, - ,0).

20
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In this setting, the only relevant parts of w are its first two scalar components w; and ws. Define w

as
w = (wi,ws,0,--+,0) = /w} + w3(cosw,sinw, 0, ,0). (46)

P[(wTv1 > 0) A (w''vz > 0)] = PI(% vy = 0) A (%va > 0)] = —— /9 faw=i_f

Then,

E.3 PROOF OF LEMMAI[D.2
Proof. Note that the ReLU activation function o(z) can be written as zI.>(. We have,

2
(ug,ug) = 5V1TWTH{Wv120,Wszo}WV2

2~ 1 T
= - Zvl (Wz) H{W,;.vlzo,wi.szo}Wer
7=
q—00 T T
= 2B N (0,2 0) [V1 WwT v, >0,wTvo >0} W V2]

Note that the random vector w is isotropically distributed and that only inner products w’v; and
T

w* vy appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

Vi = ||V1||(].,0,0,-" 70)7

vy = ||va]/(cosf,sin6,0,--- ,0).

In this setting, the only relevant parts of w are its first two scalar components w; and ws. Define w

as
w = (wi,ws,0,--+,0) = /w} + w3(cosw,sinw, 0, ,0). 47)

Then, in the limit of ¢ — oo,

T
<U1, u2> = 2EW~N(0711)X1))[V1 W]I{WTV;lZO,WTVQZO}W VQ]

NN

T~ ~
= 2]EV~V~./\/'(0,IQ><2) [Vl WH{WTvl ZO,«,TVQZ()}W VQ]

Jus
2

. 1
= 2/[villllvall - w0, ) W17 - g/ cosw cos(f — w)dw

1 .
= 2||vi]|||vall - 2- = ((m — 0) cos  + sin )

1 .
= HV1||||V2H; ((m —6)cosf +sinb).

E.4 PROOF oF LEMMA D3]

Proof.

5 1
A A7 = 4 > Ukliw, vy >0,y vazo0y (Uk)”
k=1
q—00

2 EunN(0,1sx0), weN (0,1, 5 p) [wu" T 7y, 50 wrvs>03]
(a)

é 2. IEuw./\/'(O,ISXS) [uuT] ' IEWN./\/(O,IPXP) [H{wTvl >0,wlvy 20}]
=2 Euon(0,1,) [0’ ] - P[(whvi > 0) A (wva > 0)]

(b ™— 0

- 7Is><s-
s

In the step (a) above, we used the fact that U is independent of W, vy and v,. In the step (b) above,
we applied Lemma and used the fact that Ey. o 1., ) [uu®] = L.

sxs)
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Sigmoid tanh

1070 SVHN —— SVHN
F-MNIST 600 F-MNIST
1074 — MNIST — MNIST
—— CIFAR-10 — CIFAR-10

number
NTK condition number

NTK condition
5

a 5
number of hidden layers number of hidden layers

Figure 5: NTK condition number vs. depth, for sigmoid-activated network and tanh-activated
network.

F NUMERICAL RESULTS OF OTHER ACTIVATION FUNCTIONS

In this section, we show some preliminary numerical results of some other non-linear activation
functions, although the main focus of this paper is ReL.U.

Specifically, analogous to what we did for ReLU network, we compute the NTK condition number for
the following two types of non-linearly activated neural networks at random initialization: sigmoid-
activated network and ranh-activated network. In both cases, we use the same network width, 512,
as in Figure [2for ReLU network. The scaling factor, \/2/m; in Eq., was replaced by /¢, /my,

where ¢, is a activation-specific constant and is defined as ¢, = (E:m N(Oﬂl)[a(x)ﬂ)_l (see for
example Eq.(2) of Du et al.| (2019a)).

Figure 5] shows the dependence of the NTK condition number on the network depth. We observe that
different non-linear activation function may have different effects on the NTK condition numbers «.
As the figure tells, tanh also helps to decrease the condition number (similar to ReLU), while sigmoid
has the opposite effect, worsening the NTK conditioning.

A theoretical analysis of these non-linear activation functions are out of the scope of this paper, but
we expect future work will theoretically clarify the exact effects of different types of non-linear
activation functions.
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