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A PROPERTIES OF FUNCTION g

Recall that the function g : [0, π) → [0, π) is defined as (see Lemma 4.1)

g(z) = arccos

(
π − z

π
cos z +

1

π
sin z

)
, (12)

Figure 4 shows the plot of this function. From the plot, we can easily find the following properties.

Figure 4: Curve of the function g(θ). As can be seen, g(θ) is monotonic, and is approximately the
identity function y = θ in the small angle region (θ ≪ 90◦).

Proposition A.1 (Properties of g). The function g defined in Eq.(12) has the following properties:

1. g is a monotonically increasing function;

2. g(z) ≤ z, for all z ∈ [0, π); and g(z) = z if and only if z = 0;

3. for any z ∈ [0, π), the sequence {gl(z)}∞l=1 is monotonically decreasing, and has the limit
liml→∞ gl(z) = 0.

It is worth to note that the last property of g function immediately implies the collapse of embedding
vectors from different inputs in the infinite depth limit L → ∞. This embedding collapse has been
observed in prior works Poole et al. (2016); Schoenholz et al. (2016) (although by different type of
analysis) and has been widely discussed in the literature of Edge of Chaos.
Theorem A.2. Consider the same ReLU neural network as in Lemma 4.1. Given any two inputs x, z ∈
Rd, the sequence of angles between their l-embedding vectors, {θ(l)(x, z)}Ll=1, is monotonically
decreasing. Moreover, in the limit of infinite depth,

lim
L→∞

θ(L)(x, z) = 0, (13)

and there exists a vector α such that, for any input x, the last layer L-embedding

α(L)(x) = ∥x∥α. (14)

Proof of Proposition A.1. Part 1. First, we consider the auxiliary function g̃(z) = π−z
π cos z +

1
π sin z. We see that

dg̃(z)

dz
= −

(
1− z

π

)
sin z ≤ 0, ∀z ∈ [0, π).

Hence, g̃(z) is monotonically decreasing on [0, π). Combining with the monotonically decreasing
nature of the arccos function, we get that g is monotonically increasing.

Part 2. It suffices to prove that cos z ≤ g̃(z) and that the equality holds only at z = 0. For z = 0,
it is easy to check that cos z = g̃(z), as both z and sin z are zero. For z ∈ (0, π/2), noting that
tan z − z > 0, we have

g̃(z) =
π − z

π
cos z +

1

π
sin z = cos z +

1

π
(−z + tan z) cos z > cos z. (15)
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For z = π/2, we have cosπ/2 = 0 < 1/π = g̃(π/2). For z ∈ (π/2, π), we have the same relation
as in Eq.(15). The only differences are that, in this case, cos z < 0 and tan z − z < 0. Therefore, we
still get g̃(z) > cos z for z ∈ (π/2, π).

Part 3. From part 2, we see that g(z) < z for all z ∈ (0, π). Hence, for any l, gl+1(z) < gl(z).
Moreover, since z = 0 is the only fixed point such that g(z) = z, in the limit l → ∞, gl(z) → 0.

B PROOF OF PROPOSITION 5.1

Proof. Consider the matrix B and the n vectors bk ≜ Bk·, k ∈ [n]. The smallest singular value
square of matrix B is defined as

σ2
min(B) = min

v ̸=0

vTBBTv

vTv
= min

v ̸=0

∥
∑

k vkbk∥2

∥v∥2
.

Since the angle ϕ between bi = Bi· and bj = Bj· is small, let v′ be the vector such that v′i = ∥bj∥,
v′j = −∥bi∥ and v′k = 0 for all k ̸= i, j. Then

σ2
min(B) ≤

∥
∑

k v
′
kbk∥2

∥v′∥2
=

∥∥∥∥∥ ∥bj∥√
∥bi∥2 + ∥bj∥2

bi −
∥bi∥√

∥bi∥2 + ∥bj∥2
bj

∥∥∥∥∥
2

=
2∥bi∥2∥bj∥2

∥bi∥2 + ∥bj∥2
(1− cosϕ)

=
∥bi∥2∥bj∥2

∥bi∥2 + ∥bj∥2
ϕ2 +O(ϕ4).

Since A = BBT , the smallest eigenvalue λmin(A) of A is the same as σ2
min(B).

On the other hand, the largest eigenvalue λmax(A) of matrix A is lower bounded by tr(A)/n. Note
that the diagonal entries Akk = ∥bk∥. Hence, c ≤ λmax(A) ≤ C. Therefore, the condition number
κ = λmax(A)/λmin(A) = Ω(1/ϕ2).

C PROOFS OF THEOREMS FOR LINEAR NEURAL NETWORK

C.1 PROOF OF THEOREM 3.1

Proof. First of all, we provide a useful lemma.

Lemma C.1. Consider a matrix A ∈ Rm×d, with each entry of A is i.i.d. drawn from N (0, 1). In
the limit of m → ∞,

1

m
ATA → Id×d, in probability. (16)

We first consider the embedding vectors ᾱ(l) and the embedding angles θ̄(l). By definition in Eq.(3),
we have, for all l ∈ [L] and input x ∈ Rd,

ᾱ(l)(x) =
1

ml/2
W (l)W (l−1) · · ·W (1)x. (17)

Note that at the network initialization entries of W (l) are i.i.d. and follows N (0, 1). Hence, the inner
product

⟨ᾱ(l)(x), ᾱ(l)(z)⟩ = 1

ml
xTW (1)T · · ·W (l−1)TW (l)TW (l)W (l−1) · · ·W (1)z

(a)
= xT z,

where in step (a) we recursively applied Lemma C.1 l times. Putting z = x, we get ∥ᾱ(l)(x)∥ = ∥x∥,
for all l ∈ [L]. By the definition of embedding angles, it is easy to check that θ̄(l)(x, z) = θin(x, z),
for all l ∈ [L].
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Now, we consider the model gradient ∇f̄ and the model gradient angle ϕ̄. As we consider the model
gradient only at network initialization, we don’t explicitly write out the dependence on w0, and we
write ∇f̄(w0,x) simply as ∇f̄(x). The model gradient ∇f̄ can be decomposed as

∇f̄(x) = (∇1f̄(x),∇2f̄(x), · · · ,∇L+1f̄(x)), with∇lf̄(x) =
∂f̄(x)

∂W (l)
,∀l ∈ [L+ 1]. (18)

Hence, the inner product

⟨∇f̄(x),∇f̄(z)⟩ =
L+1∑
l=1

⟨∇lf̄(x),∇lf̄(z)⟩,

and for all l ∈ [l + 1],

⟨∇lf̄(x),∇lf̄(z)⟩ = ⟨ᾱ(l−1)(x), ᾱ(l−1)(z)⟩ · ⟨
L+1∏

l′=l+1

1√
m
W (l′)T ,

L+1∏
l′=l+1

1√
m
W (l′)T ⟩ (b)

= xT z.

Here in step (b), we again applied Lemma C.1. Therefore,

⟨∇f̄(x),∇f̄(z)⟩ = (L+ 1)xT z. (19)

Putting z = x, we get ∥∇f(x)∥ = (L+ 1)∥x∥. By the definition of model gradient angle, it is easy
to check that ϕ̄(x, z) = θin(x, z).

D PROOFS OF THEOREMS FOR RELU NETWORK

D.1 PRELIMINARY RESULTS

Before the proofs, we introduce some useful notations and lemmas.

Given a vector v ∈ Rp, we define the following diagonal indicator matrix:

I{v≥0} = diag
(
I{v1≥0}, I{v2≥0}, · · · , I{vp≥0}

)
, (20)

with

I{vi≥0} =

{
1 vi ≥ 0,
0 vi < 0.

Lemma D.1. Consider two vectors v1,v2 ∈ Rp and a p-dimensional random vector w ∼
N (0, Ip×p). Denote θ as the angle between v1 and v2, i.e., cos θ = ⟨v1,v2⟩

∥v1∥∥v2∥ . Then, the prob-
ability

P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)] =
1

2
− θ

2π
. (21)

Lemma D.2. Consider two arbitrary vectors v1,v2 ∈ Rp and a random matrix W ∈ Rq×p with
entries Wij i.i.d. drawn from N (0, 1). Denote θ as the angle between v1 and v2, and define
u1 =

√
2√
qσ(Wv1) and u2 =

√
2√
qσ(Wv2). Then, in the limit of q → ∞,

⟨u1,u2⟩ =
1

π
((π − θ) cos θ + sin θ) ∥v1∥∥v2∥. (22)

Lemma D.3. Consider two arbitrary vectors v1,v2 ∈ Rp and two random matrices U ∈ Rs×q and
W ∈ Rq×p, where all entries Uij , i ∈ [s] and j ∈ [q], and Wkl, k ∈ [q] and l ∈ [p], are i.i.d. drawn
from N (0, 1). Denote θ as the angle between v1 and v2, and define matrices A1 =

√
2√
qUI{Wv1≥0}

and A2 =
√
2√
qUI{Wv2≥0}. Then, in the limit of q → ∞, the matrix

A1A
T
2 =

π − θ

π
Is×s. (23)
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D.2 PROOF OF LEMMA 4.1

Proof. Consider an arbitrary layer l ∈ [L] of the ReLU neural network f at initialization. Given
two arbitrary network inputs x, z ∈ Rd, the inputs to the l-th layer are α(l−1)(x)) and α(l−1)(z)),
respectively.

By definition, we have

α(l)(x) =

√
2

m
σ
(
W (l)α(l−1)(x)

)
, α(l)(z) =

√
2

m
σ
(
W (l)α(l−1)(z)

)
, (24)

with entries of W (l) being i.i.d. drawn from N (0, 1). Recall that, by definition, the angle between
α(l−1)(x)) and α(l−1)(z)) is θ(l−1)(x, z). Applying Lemma D.2, we immediately have the inner
product

⟨α(l)(z), α(l)(x)⟩ =1

π

(
(π − θ(l−1)(x, z)) cos θ(l−1)(x, z) + sin θ(l−1)(x, z)

)
× ∥α(l−1)(x)∥∥α(l−1)(z)∥. (25)

In the special case of x = z, we have θ(l−1)(x, z) = 0, and obtain from the above equation that

∥α(l)(x)∥2 = ∥α(l−1)(x)∥2. (26)

Apply Eq.(26) back to Eq.(25), we also get

cos θ(l)(x, z) =
⟨α(l)(z), α(l)(x)⟩
∥α(l)(x)∥∥α(l)(z)∥

=
1

π

(
(π − θ(l−1)(x, z)) cos θ(l−1)(x, z) + sin θ(l−1)(x, z)

)
(27)

That is θ(l)(x, z) = g(θ(l−1)(x, z)). Recursively apply this relation, we obtain the desired result.

D.3 PROOF OF THEOREM 4.2

Proof. By Lemma 4.1, we have that

cos θ(l)(x, z) =

(
1− θ(l−1)(x, z)

π

)
cos θ(l−1)(x, z) +

1

π
sin θ(l−1)(x, z)

= cos θ(l−1)(x, z)

(
1 +

1

π

(
tan θ(l−1)(x, z)− θ(l−1)(x, z)

))
= cos θ(l−1)(x, z)

(
1 +

1

3π
(θ(l−1)(x, z))3 + o

(
(θ(l−1)(x, z))3

))
.

Noting that the Taylor expansion of the cos function at zero is cos z = 1 − 1
2z

2 + o(z3), one can
easily check that, for all l ∈ [L],

θ(l)(x, z) = θ(l−1)(x, z)− 1

3π
(θ(l−1)(x, z))2 + o

(
(θ(l−1)(x, z))2

)
. (28)

Note that θ(l)(x, z) ≤ θ(l−1)(x, z) = o(1/L). Iteratively apply the above equation, one gets, for all
l ∈ [L], if θ(0)(x, z) = o(1/L),

θ(l)(x, z) = θ(0)(x, z)− l

3π
(θ(0)(x, z))2 + o

(
(θ(0)(x, z))2

)
. (29)

D.4 PROOF OF LEMMA 4.3

Proof. The model gradient ∇f(x) is composed of the components ∇lf(x) ≜
∂f
∂W l , for l ∈ [L+ 1].

Each such component has the following expression: for l ∈ [L+ 1]

∇lf(x) = α(l−1)(x)δ(l)(x), (30)
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where

δ(l)(x) =

(
2

m

)L−l+1
2

W (L+1)I{α̃(L)(x)≥0}W
(L)I{α̃(L−1)(x)≥0} · · ·W (l+1)I{α̃(l)(x)≥0}. (31)

Note that in Eq.(30), ∇lf(x) is an outer product of a column vector α(l−1)(x) ∈ Rml−1×1 (ml−1 = d
if l = 1, and ml−1 = m otherwise) and a row vector δ(l)(x) ∈ R1×ml (ml = 1 if l = L + 1, and
ml = m otherwise).

First, we consider the inner product ⟨∇lf(z),∇lf(x)⟩, for l ∈ [L+ 1].1 By Eq.(30), we have

⟨∇lf(z),∇lf(x)⟩ = ⟨δ(l)(z), δ(l)(x)⟩ · ⟨α(l−1)(z), α(l−1)(x)⟩. (32)

For ⟨α(l−1)(z), α(l−1)(x)⟩, applying Lemma 4.1, we have

⟨α(l−1)(z), α(l−1)(x)⟩ = ∥x∥∥z∥ cos θ(l−1)(x, z). (33)

For ⟨δ(l)(z), δ(l)(x)⟩, by definition Eq.(31), we have

⟨δ(l)(z), δ(l)(x)⟩ =
(

2

m

)L−l+1

×W (L+1)I{α̃(L)(x)≥0} · · ·W (l+1)I{α̃(l)(x)≥0,α̃(l)(z)≥0}W
(l+1)T︸ ︷︷ ︸

A

· · · I{α̃(L)(z)≥0}W
(L+1)T

Recalling that α̃(l) = W (l)α̃(l−1) and applying Lemma D.3 on the the term A above, we obtain

⟨δ(l)(z), δ(l)(x)⟩ = π − θ(l−1)(x, z)

π
⟨δ(l+1)(z), δ(l+1)(x)⟩.

Recursively applying the above formula for l′ = l, l + 1, · · · , L, and noticing that δ(L+1) = 1, we
have

⟨δ(l)(z), δ(l)(x)⟩ =
L+1∏

l′=l−1

(
1− θ(l

′)(x, z)

π

)
. (34)

Combining Eq.(32), (33) and (34), we have

⟨∇lf(z),∇lf(x)⟩ = ∥x∥∥z∥ cos θ(l−1)(x, z)

L−1∏
l′=l−1

(
1− θ(l

′)(x, z)

π

)
. (35)

For the inner product between the full model gradients, we have

⟨∇f(z),∇f(x)⟩ =
L+1∑
l=1

⟨∇lf(z),∇lf(x)⟩ = ∥x∥∥z∥
L∑

l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(
1− θ(l

′)(x, z)

π

)]
.

(36)
Putting x = z in the above equation, we have θ(l)(x, z) = 0 for all l ∈ [L], and obtain

∥∇f(x)∥2 = ∥x∥2 · (L+ 1). (37)

Hence, we have

cosϕ(x, z) =
⟨∇f(z),∇f(x)⟩
∥∇f(x)∥∥∇f(z)∥

=
1

L+ 1

L∑
l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(1− θ(l
′)(x, z)/π)

]
. (38)

1With a bit of abuse of notation, we refer to the flattened vectors of ∇lf in the inner product.
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D.5 PROOF OF THEOREM 4.4

Proof. For simplicity of notation, we don’t explicitly write out the dependent on the inputs x, z, and
write θ(l) ≜ θ(l)(x, z), and ϕ ≜ ϕ(x, z). We start the proof with the relation provided by Lemma 4.3.

cosϕ(x, z) =
1

L+ 1

L∑
l=0

[
cos θ(l)

L−1∏
l′=l

(1− θ(l
′)/π)

]
(a)
=

1

L+ 1

L∑
l=0

[
cos θ(0)

l−1∏
l′=0

(
1 +

1

π
tan θ(l

′) − 1

π
θ(l

′)

) L−1∏
l′=l

(1− θ(l
′)/π)

]
(b)
=

1

L+ 1

L∑
l=0

[
cos θ(0)

l−1∏
l′=0

(
1 +

1

3π
(θ(l

′))3 + o(θ(l
′))3
) L−1∏

l′=l

(1− θ(l
′)/π)

]
(c)
=

cos θ(0)

L+ 1

L∑
l=0

[
l−1∏
l′=0

(
1 +

1

3π
(θ(0))3 + o(θ(0))3

)

×
L−1∏
l′=l

(
1− 1

π
θ(0) +

l′

3π2
(θ(0))2 + o((θ(0))2)

)]

=
cos θ(0)

L+ 1

L∑
l=0

(
1− L− l

π
θ(0) +

(L− l)(2L− l − 2)

3π2
(θ(0))2 + o((θ(0))2)

)
= cos θ(0)

(
1− L

2
θ(0) + o(θ(0))

)
.

D.6 PROOF OF THEOREM 5.3

Proof. For this shallow ReLU network, the model gradient, for an arbitrary input x, is written as

∇f(x) = xδ(x) ∈ Rd×m, (39)

where δ(x) ∈ R1×m has the following expression

δ(x) =

√
2

m
vT I{Wx≥0}.

At initialization, W is a random matrix. Utilizing Lemma D.3, it is easy to check that ∥δ(x)∥ = 1 for
all input x in the infinite width limit.

Recall that the NTK K = FFT , where the gradient feature matrix F consist of the gradient feature
vectors ∇f(x) for all x for the dataset. Hence, the smallest eigenvalue λmin(K) satisfies

λmin(K) = min
u̸=0

uTKu

∥u∥2
= min

u̸=0

∥
∑n

i=1 ui∇f(xi)∥
2∑n

i=1 u
2
i

= min
u̸=0

∑m
j=1 ∥

∑n
i=1 uiδj(xi)xi∥2∑n
i=1 u

2
i

= min
u̸=0

m∑
j=1

∑n
i=1(uiδj(xi))

2∑n
i=1 u

2
i

∥
∑n

i=1 uiδj(xi)xi∥2∑n
i=1(uiδj(xi))2

(a)
> min

u̸=0

m∑
j=1

∑n
i=1(uiδj(xi))

2∑n
i=1 u

2
i

λmin(G). (40)

In the inequality (a) above, we made the following treatment: for each fixed j, we consider uiδj(xi)
as the i-th component of a vector u′

j ; by definition, the minimum eigenvalue of Gram matrix

λmin(G) = min
u′ ̸=0

(u′)TGu′/∥u′∥2 ≤ (u′
j)

TGu′
j/∥u′

j∥2, ∀j; (41)
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moreover, this ≤ inequality becomes equality, if and only if all u′
j are the same and equal to

argminu′ ̸=0(u
′)TGu′/∥u′∥2. As easy to see, when the dataset is not degenerate, for different j, u′

j

are different, hence only the strict inequality < holds in step (a).

Continuing from Eq.(40), we have

λmin(K) > min
u̸=0

m∑
j=1

∑n
i=1(uiδj(xi))

2∑n
i=1 u

2
i

λmin(G)

= min
u̸=0

∑n
i=1 u

2
i ∥δ(xi)∥2∑n
i=1 u

2
i

λmin(G)

= min
u̸=0

∑n
i=1 u

2
i∑n

i=1 u
2
i

λmin(G) = λmin(G).

Therefore, we showed that λmin(K) > λmin(G).

As for the largest eigenvalue λmax(K), we can apply the same logic above for λmin(K) (except
replacing the min operator by max and have < in step (a)) to get λmax(K) > λmax(G).

Therefore, by definition of condition number, the condition number κ of NTK is strictly smaller than
the Gram matrix condition number κ0.

D.7 PROOF OF THEOREM 5.2

Proof. According to the definition of NTK and Lemma 4.3, the NTK matrix K for this dataset
D = {(x1, y1), (x2, y2)} is (NTK is normalized by the factor 1/(L+ 1)2):

K =

(
∥∇f(x1)∥2 ⟨∇f(x1),∇f(x2)⟩

⟨∇f(x2),∇f(x1)⟩ ∥∇f(x2)∥2
)

=

(
∥x1∥2 ∥x1∥∥x2∥ cosϕ

∥x1∥∥x2∥ cosϕ ∥x2∥2
)
.

The eigenvalues of the NTK matrix K are given by

λ1(K) =
1

2

(
∥x1∥2 + ∥x2∥2 +

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2ϕ

)
, (42a)

λ2(K) =
1

2

(
∥x1∥2 + ∥x2∥2 −

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2ϕ

)
. (42b)

Similarly, for the Gram matrix G, we have

G =

(
∥x1∥2 xT

1 x2

xT
1 x2 ∥x2∥2

)
=

(
∥x1∥2 ∥x1∥∥x2∥ cos θin

∥x1∥∥x2∥ cos θin ∥x2∥2
)
,

and its eigenvalues as

λ1(G) =
1

2

(
∥x1∥2 + ∥x2∥2 +

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2θin

)
,

λ2(G) =
1

2

(
∥x1∥2 + ∥x2∥2 −

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2θin

)
.

By Theorem 4.4, we have cosϕ < cos θin, when θin = o(1/L) and θin ̸= 0. Hence, we have the
following relations

λ1(G) > λ1(K) > λ2(K) > λ2(G),

which immediately implies κ < κ0.

When comparing ReLU networks with different depths, i.e., network f1 with depth L1 and network
f2 with depth L2 with L1 > L2, notice that in Eq.(42) the top eigenvalue λ1 monotonically decreases
in ϕ, and the bottom (smaller) eigenvalue λ2 monotonically increases in ϕ. By Theorem 4.4, we
know that the deeper ReLU network f1 has a better data separation than the shallower one f2, i.e.,
ϕf1 > ϕf2 . Hence, we get

λ1(Kf2) > λ1(Kf1) > λ2(Kf1) > λ2(Kf2). (43)

Therefore, we obtain κf1 < κf2 . Namely the deeper ReLU network has a smaller NTK condition
number.
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E TECHNICAL PROOFS

E.1 PROOF OF LEMMA C.1

Proof. We denote Aij as the (i, j)-th entry of the matrix A. Therefore, (ATA)ij =
∑m

k=1 AkiAkj .
First we find the mean of each (ATA)ij . Since Aij are i.i.d. and has zero mean, we can easily see
that for any index k,

E[AkiAkj ] =

{
1, if i = j

0, otherwise
.

Consequently,

E[(
1

m
ATA)ij ] =

{
1, if i = j

0, otherwise
.

That is E[ 1mATA] = Id.

Now we consider the variance of each (ATA)ij . If i ̸= j we can explicitly write,

V ar

[
1

m
(ATA)ij

]
=

1

m2
· E

[
m∑

k1=1

m∑
k2=1

Ak1iAk1jAk2iAk2j

]

=
1

m2
·

m∑
k1=1

m∑
k2=1

E [Ak1iAk1jAk2iAk2j ]

=
1

m2

 m∑
k=1

E
[
A2

kiA
2
kj

]
+
∑

k1 ̸=k2

E [Ak1iAk1jAk2iAk2j ]


=

1

m2

 m∑
k=1

E
[
A2

ki

]
E
[
A2

kj

]
+
∑

k1 ̸=k2

E[Ak1i]E[Ak1j ]E[Ak2i]E[Ak2j ]


=

1

m2
· (m+ 0) =

1

m
.

In the case of i = j, then,

V ar

[
1

m
(ATA)ii

]
=

1

m2
· V ar

[
m∑

k=1

A2
ki

]
=

1

m2
·

m∑
k=1

V ar
[
A2

ki

] (a)
=

1

m2
(m · 2) = 2

m
. (44)

In the equality (a) above, we used the fact that A2
ki ∼ χ2(1). Therefore, limm→∞ V ar( 1

m (ATA)) =
0.

Now applying Chebyshev’s inequality we get,

Pr(| 1
m
ATA− Id| ≥ ϵ) ≤

V ar( 1
m (ATA))

ϵ
(45)

Obviously for any ϵ ≥ 0 as m → ∞, the R.H.S. goes to zero. Thus, 1
mATA → Id×d, in probability.

E.2 PROOF OF LEMMA D.1

Proof. Note that the random vector w is isotropically distributed and that only inner products wTv1

and wTv2 appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

v1 = ∥v1∥(1, 0, 0, · · · , 0),
v2 = ∥v2∥(cos θ, sin θ, 0, · · · , 0).
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In this setting, the only relevant parts of w are its first two scalar components w1 and w2. Define w̃
as

w̃ = (w1, w2, 0, · · · , 0) =
√

w2
1 + w2

2(cosω, sinω, 0, · · · , 0). (46)

Then,

P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)] = P[(w̃Tv1 ≥ 0) ∧ (w̃Tv2 ≥ 0)] =
1

2π

∫ π
2

θ−π
2

dω =
1

2
− θ

2π
.

E.3 PROOF OF LEMMA D.2

Proof. Note that the ReLU activation function σ(z) can be written as zIz≥0. We have,

⟨u1,u2⟩ =
2

q
vT
1 W

T I{Wv1≥0,Wv2≥0}Wv2

=
2

q

q∑
i=1

vT
1 (Wi·)

T I{Wi·v1≥0,Wi·v2≥0}Wi·v2

q→∞
= 2Ew∼N (0,Ip×p)[v

T
1 wI{wTv1≥0,wTv2≥0}w

Tv2]

Note that the random vector w is isotropically distributed and that only inner products wTv1 and
wTv2 appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

v1 = ∥v1∥(1, 0, 0, · · · , 0),
v2 = ∥v2∥(cos θ, sin θ, 0, · · · , 0).

In this setting, the only relevant parts of w are its first two scalar components w1 and w2. Define w̃
as

w̃ = (w1, w2, 0, · · · , 0) =
√

w2
1 + w2

2(cosω, sinω, 0, · · · , 0). (47)

Then, in the limit of q → ∞,
⟨u1,u2⟩ = 2Ew∼N (0,Ip×p)[v

T
1 wI{wTv1≥0,wTv2≥0}w

Tv2]

= 2Ew̃∼N (0,I2×2)[v
T
1 w̃I{w̃Tv1≥0,w̃Tv2≥0}w̃

Tv2]

= 2∥v1∥∥v2∥ · Ew̃∼N (0,I2×2)[∥w̃∥2] · 1

2π

∫ π
2

θ−π
2

cosω cos(θ − ω)dω

= 2∥v1∥∥v2∥ · 2 ·
1

4π
((π − θ) cos θ + sin θ)

= ∥v1∥∥v2∥
1

π
((π − θ) cos θ + sin θ) .

E.4 PROOF OF LEMMA D.3

Proof.

A1A
T
2 =

2

q

q∑
k=1

U·kI{Wk·v1≥0,Wk·v2≥0}(U·k)
T

q→∞
= 2 · Eu∼N (0,Is×s),w∼N (0,Ip×p)[uu

T I{wTv1≥0,wTv2≥0}]

(a)
= 2 · Eu∼N (0,Is×s)[uu

T ] · Ew∼N (0,Ip×p)[I{wTv1≥0,wTv2≥0}]

= 2 · Eu∼N (0,Is×s)[uu
T ] · P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)]

(b)
=

π − θ

π
Is×s.

In the step (a) above, we used the fact that U is independent of W , v1 and v2. In the step (b) above,
we applied Lemma D.1, and used the fact that Eu∼N (0,Is×s)[uu

T ] = Is×s.
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Figure 5: NTK condition number vs. depth, for sigmoid-activated network and tanh-activated
network.

F NUMERICAL RESULTS OF OTHER ACTIVATION FUNCTIONS

In this section, we show some preliminary numerical results of some other non-linear activation
functions, although the main focus of this paper is ReLU.

Specifically, analogous to what we did for ReLU network, we compute the NTK condition number for
the following two types of non-linearly activated neural networks at random initialization: sigmoid-
activated network and tanh-activated network. In both cases, we use the same network width, 512,
as in Figure 2 for ReLU network. The scaling factor,

√
2/ml in Eq.(1), was replaced by

√
cσ/ml,

where cσ is a activation-specific constant and is defined as cσ =
(
Ex∼N (0,1)[σ(x)

2]
)−1

(see for
example Eq.(2) of Du et al. (2019a)).

Figure 5 shows the dependence of the NTK condition number on the network depth. We observe that
different non-linear activation function may have different effects on the NTK condition numbers κ.
As the figure tells, tanh also helps to decrease the condition number (similar to ReLU), while sigmoid
has the opposite effect, worsening the NTK conditioning.

A theoretical analysis of these non-linear activation functions are out of the scope of this paper, but
we expect future work will theoretically clarify the exact effects of different types of non-linear
activation functions.
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