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ABSTRACT

Recent advances in large language and vision-language models have enabled zero-
shot inference, allowing models to solve new tasks without task-specific training.
Various adaptation techniques such as prompt engineering, In-Context Learning
(ICL), and supervised fine-tuning can further enhance the model’s performance
on a downstream task, but they require substantial manual effort to construct ef-
fective prompts or labeled examples. In this work, we introduce a joint infer-
ence framework for fully unsupervised adaptation, eliminating the need for man-
ual prompt engineering and labeled examples. Unlike zero-shot inference, which
makes independent predictions, the joint inference makes predictions simultane-
ously for all inputs in a given task. Since direct joint inference involves compu-
tationally expensive optimization, we develop efficient approximation techniques,
leading to two unsupervised adaptation methods: unsupervised fine-tuning and
unsupervised ICL. We demonstrate the effectiveness of our methods across di-
verse tasks and models, including language-only Llama-3.1 on natural language
processing tasks, reasoning-oriented Qwen2.5-Math on grade school math prob-
lems, vision-language OpenFlamingo on vision tasks, and the API-only access
GPT-4o model on massive multi-discipline tasks. Our experiments demonstrate
substantial improvements over the standard zero-shot approach, including 39%
absolute improvement on the challenging GSM8K math reasoning dataset. Re-
markably, despite being fully unsupervised, our framework often performs on par
with supervised approaches that rely on ground truth labels.

1 INTRODUCTION

Recent progress in large language and vision-language models, which we collectively refer to as
foundation models (FMs), have made it possible to adapt them to solve new tasks via zero-shot
inference by leveraging their general knowledge obtained during pre-training (Brown et al., 2020).
For a given task, zero-shot inference obtains the prediction y for an input sequence x by maximizing
the probability of the next token, i.e., argmaxy p(y|x)1. Various methods have been proposed to
enable better task adaptation, with In-Context Learning (ICL) (Brown et al., 2020; Agarwal et al.,
2024; Jiang et al., 2024), fine-tuning (Hu et al., 2022; Jia et al., 2022), and prompt engineering (Wei
et al., 2022b; Snell et al., 2025) emerging as the most prevalent techniques. While these methods
improve upon zero-shot inference, they rely on labeled examples or require manual effort to craft
effective prompts, which can pose practical limitations.

In this work, we propose a joint inference framework that enables fully unsupervised adaptation on a
new task. Our framework generalizes the standard zero-shot inference to joint inference over N > 1
inputs, resulting in the following optimization problem:

argmax
y1,...yN

p(y1, . . . , yN |x1, . . . , xN ), (1)

∗Equal contribution.
1This usually also involves having a task-specific textual instruction which we omit here for simplicity.
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where y1, . . . , yN are the joint predictions for the corresponding inputs x1, . . . , xN . Compared to
the zero-shot independent predictions, joint inference can guide the model to make consistent pre-
dictions and reason over multiple inputs simultaneously (Figure 1 (left)). Performing joint inference
requires solving the optimization problem that is intractable for a large number of examples N . To
address this, we develop approximation techniques, resulting in two unsupervised adaptation meth-
ods: unsupervised fine-tuning and unsupervised ICL.

Figure 1: Joint inference framework for foundation models. Left: Unlike the standard zero-shot
inference that makes a prediction y independently for each input x, the joint inference makes pre-
dictions for multiple inputs at the same time, leveraging dependencies between all examples. Right:
We develop two methods to perform the joint inference that achieve substantial improvements over
traditional zero-shot inference: unsupervised fine-tuning and unsupervised ICL. Their performance
increases as the number of examples N for the joint inference increases, showing the effectiveness
of the proposed joint inference framework.

Unsupervised fine-tuning is a principled method for fine-tuning an FM to optimize its own joint pre-
dictive probability (Eq. 1). The key principle lies in the self-improvement mechanism, where the FM
is enhanced based on its own feedback. While this method yields strong performance, fine-tuning
requires access to model weights and output probabilities, which are unavailable for close-weight
models such as GPT-4 (Achiam et al., 2023). To enable the broad applicability of our joint infer-
ence framework across all model types, we introduce unsupervised ICL, that relies only on access
to next-token generation and uses the few-shot in-context prompting to iteratively refine the predic-
tions. Unlike supervised ICL, which uses ground truth labels for in-context examples to enhance the
predictions, unsupervised ICL refines the predictions using the model’s own outputs from previous
iterations of refinement. We show that unsupervised ICL, in fact, implicitly maximizes the joint
probability (Eq. 1) and can be seen as an approximate joint inference under the same framework.

We evaluate the proposed methods across a diverse set of tasks, including text and image classifi-
cation, natural language inference, (visual) question-answering, and grade-school math problems.
Our evaluation spans both language-only and vision-language FMs, including open-weight Llama-
3.1 (Dubey et al., 2024), Qwen2.5-Math (Yang et al., 2024) and OpenFlamingo (Awadalla et al.,
2023) models, and close-weight GPT-4o via the corresponding API. Our results show that both pro-
posed methods significantly outperform zero-shot inference and often approach the performance of
fully supervised counterparts, despite not using any labeled examples. For instance, applying unsu-
pervised ICL to Qwen2.5-Math yields a remarkable 39% absolute improvement over zero-shot infer-
ence on the GSM8K math reasoning dataset, closely matching its supervised counterpart. Similarly,
unsupervised fine-tuning applied to Llama-3.1-8B, results in a substantial 23% absolute improve-
ment over zero-shot inference on average over 13 natural language processing tasks and matching
the performance of the supervised fine-tuning on 6 out of 13 tasks.

2 RELATED WORK

Adapting FMs via fine-tuning. Pre-training generalist foundation models followed by task-
specific fine-tunning was shown to be an effective approach to solving different language and vision
tasks (Raffel et al., 2020; Radford et al., 2021; Beyer et al., 2024; Chen et al., 2023a; McKinzie et al.,
2024; Dubey et al., 2024). The first pre-training stage usually involves optimizing an unsupervised
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objective, e.g., next-token prediction for language or contrastive loss for vision, on a large-scale
dataset (Raffel et al., 2020; Cherti et al., 2023; Radford et al., 2021; Kaplan et al., 2020; Schuh-
mann et al., 2022). The second stage involves either full-weights training or parameter-efficient
fine-tunning (Hu et al., 2022; Yosinski et al., 2014; Jia et al., 2022; Chen et al., 2023b; Houlsby
et al., 2019; Pfeiffer et al., 2021). Similar to the second stage, our unsupervised fine-tuning method
updates the weights of a pre-trained FM to adapt to a specific task. However, unlike other fine-tuning
methods, our approach is based on a self-improvement mechanism and does not require labeled ex-
amples.

Adapting FMs via prompting. Prompting-based approaches emerged as an alternative
optimization-free way to adapt an FM to a new task (Wei et al., 2022a; Radford et al., 2019; Brown
et al., 2020; Alayrac et al., 2022). A standard zero-shot inference provides input and a task descrip-
tion as a context for a model and generates the answer via next-token prediction. A large line of
works develop methods to improve this zero-shot inference by, e.g., prompting a model to generate
additional “reasoning” steps (Wei et al., 2022b; Yao et al., 2023; Snell et al., 2025) or providing a
few labeled examples as a context (Brown et al., 2020). Similarly, our unsupervised ICL method
improves upon the zero-shot inference by using a few self-generated examples as a context that are
labeled by the model itself, thus without requiring any labeled examples.

Reinforcement learning for FMs. This line of work uses reinforcement learning algorithms (Sut-
ton & Barto, 2018; Schulman et al., 2017) to fine-tune FMs to optimize a non-differentiable reward
function. These reward functions are either based on a human feedback (Ouyang et al., 2022; Chris-
tiano et al., 2017), a metric (Pinto et al., 2023) or the output the same or another FM (Zheng et al.,
2023; Bai et al., 2022; Lee et al., 2024). Related to this, here we use the model’s own feedback based
on the joint probability (Eq. 1) to fine-tune its weights via a reinforcement learning algorithm.

Probabilistic Inference in FMs. Recently, there has been a significant interest in adapting general
probabilistic inference techniques to perform inference in a probabilistic models defined by a foun-
dation model. For example, Zhao et al. (2024) build upon Sequential Monte-Carlo (Doucet et al.,
2013) to sample from an unnormalized target distribution defined by a foundation model. Another
line of works (Hu et al., 2024; Yu et al., 2024) employ GFlowNets framework (Bengio et al., 2023)
to solve the probabilistic inference problems. While these general probabilistic inference techniques
could be possibly extended to perform the proposed joint inference, we develop the principled unsu-
pervised fine-tuning approach that effectively leverages the structure of our optimization problem.

3 BACKGROUND

3.1 FOUNDATION MODELS PRE-TRAINING

In this work, we study the class of foundation models that are pre-trained on a huge amount of
data to model probabilities of a next token given the preceding ones, also known as the next-token
prediction objective. In particular, given maximal context length L of a foundation model, it models
probabilities of token sequences as follows:

pFM(t1, . . . , tL) =

L∏
l=1

pFM(tl|ti<l), (2)

where ti ∈ V and V is the model’s vocabulary. Such pre-training has shown remarkable scaling laws
(Kaplan et al., 2020), resulting in the predictable gains that can be delivered by increasing model
size, the amount of available training data or compute budget. Furthermore, a separately trained
vision adapter can be integrated in such models to enable performing multimodal tasks (Alayrac
et al., 2022). It allows a foundation model to ingest a multimodal sequence containing images
and/or videos interleaved with text and produce text.

3.2 ADAPTING FOUNDATION MODELS TO DOWNSTREAM TASKS

Given a pre-trained foundation model pFM, different approaches can be used to improve the model’s
performance on a given task.

Supervised fine-tuning. Supervised fine-tuning is the prevalent approach to improve model per-
formance on a downstream task. Specifically, given labeled examples Dtrain, a model is trained to
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maximize the probability of the correct outputs, i.e., cross-entropy —
∑

(x,yGT)∈Dtrain
log pFM(yGT|x),

where yGT denotes the ground truth (GT) output sequence for an input x. Although supervised fine-
tuning is the best performing, it requires access to labeled data and model weights.

Zero-shot Inference and In-Context Learning (ICL). Brown et al. (2020) have shown that
large-scale pre-training via next-token prediction enables zero-shot inference. Specifically, with-
out any additional training, a foundation model can be prompted with an input instance of a task
x and the task description C to generate the corresponding solution via next-token prediction —
argmaxy pFM(y|x,C). It was also demonstrated that the model’s performance is susceptible to the
chosen prompts, giving rise to manual prompt engineering to produce more accurate solutions (Liu
et al., 2023).

Another way to improve the predictions is In-Context Learning (ICL), where a model is provided
with a set of input instances and their corresponding ground truth answers. Subsequently, the model
computes argmaxy pFM(y|x, {(xn, y

GT
n )}Nn=1), where (xn, y

GT
n ) denote ground truth in-context ex-

amples and N denotes the number of in-context examples. Although such approach has proven
itself effective, it requires having access to the set of labeled examples, thus, sharing the limitations
of conventional supervised learning setting.

Chain-of-Thought (CoT). Kojima et al. (2022) have recently proposed the off-the-shelf prompt-
ing technique that surprisingly improves the performance of a model. In particular, a model is
prompted with CCoT = “Think step by step“ phrase, that, in turn, triggers it to generate a problem
solving reasoning — r1, . . . , rm ∼ pFM(·|CCoT, x). Subsequently, conditioning on such reasoning
chain results in more accurate solutions argmaxy pFM(y|r1, . . . , rm, CCoT, x). The authors have
also demonstrated that such approach brings improvements upon both supervised ICL and zero-shot
inference.

4 THE JOINT INFERENCE FRAMEWORK

In this section, we first formally introduce the problem setting and then present a general form of
the joint inference framework.

Definitions and Problem Setting. We refer to a task τ : X → Y as a mapping from the space
of input instances X to the set of plausible answers Y . For example, for question answering, the
elements of X and Y correspond to questions and the corresponding plausible answers to these
questions, respectively. Another example can be the sentiment classification task, where x ∈ X are
sentences, and the set of plausible answers is as simple as Y = {Positive,Negative}. We assume
that we are given a set of input instances D = {xm}Mm=1, xm ∈ X to perform a task τ on these
instances with a foundation model pFM(·).
The question that we aim to answer in our work is what is a principled approach to improve the pre-
dictions of pFM(·) on a given task τ in an unsupervised way, i.e., without having demonstrations of
input instances x with their corresponding correct answers y? To simplify the narration, we consider
close-ended tasks with K plausible answers, i.e., Y = {y1, . . . , yK}, with each y ∈ Y comprising a
single token. We discuss the general case of open-ended tasks in Section 6 and Appendix A.

4.1 GENERAL FORMULATION FOR THE JOINT INFERENCE

Here, we propose to perform joint inference to produce answers for a set of instances D. In particu-
lar, we define the joint likelihood of y1, . . . , yM autoregressively given a set of instances D and aim
to optimize the following objective:

argmax
y1,...,yM∈YM

log p(y1, . . . , yM |x1, . . . , xM ),where (3)

p(y1, . . . , yM |x1, . . . , xM )
def
=

M∏
m=1

pFM(ym|xm, {(xi, yi)}i<m).
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Given that foundation models have limited context length and processing the entire D might be
infeasible, we consider the limited number of instances in a single model pass as follows:

argmax
y1,...,yM∈YM

JN (y1, . . . , yM ),where (4)

JN (y1, . . . , yM )
def
= Ex1,...,xN∼D

1

N

N∑
n=1

log pFM(yn|xn, {(xi, yi)}i<n),

where N limits the number of instances to be processed in a single model pass. Besides the fact that
such formulation makes it possible to efficiently estimate the objective via Monte Carlo sampling,
it also incorporates the important inductive bias. Indeed, Eq. (3) imposes a particular order when
processing the sequence (x1, y1, . . . , xM , yM ) with pFM(·). However, ground truth answers should
not depend on the particular order, and the expectation over different sequences x1, . . . , xN allows to
effectively embed this constraint into the objective. Note that our objective is a strict generalization
of the standard zero-shot inference since J 1 reduces to it. Furthermore, Figure 1 and the results in
Appendix D.1 demonstrate that increasing N leads to obtaining more accurate answers for the set
of instances D compared to the standard zero-shot inference.

Eq. (3) poses a computationally expensive combinatorial optimization problem. In the subsequent
sections, we introduce two methods to optimize the proposed joint inference objective, namely,
unsupervised fine-tuning and unsupervised ICL.

4.2 UNSUPERVISED FINE-TUNING AS A PRINCIPLED APPROACH

Although the objective JN admits efficient Monte Carlo estimation, optimizing it requires KMMN

model calls which is infeasible in practice. To address this challenge, we resort to the following
amortization:

max
y1,...,yM∈YM

JN (y1, . . . , yM ) ≥ max
θ

Eyn∼τθ(·|xn)J
N (y1, . . . , yM ), (5)

where we refer to a τθ(·|xn) as a task encoder which defines a distribution over Y parametrized
by continuous parameters θ. As a result, instead of solving the difficult combinatorial optimization
problem, we can apply efficient stochastic optimization techniques to learn the parameters of the task
encoder. In principle, having a flexible enough τθ would result in the strict equality in Eq. (5). After
the optimization is done, argmax

y∈Y
τθ(y|xn) provides us with answers yn to the corresponding input

instance xn independently from all other input instances xi ̸=n, allowing for the efficient inference.

Efficient optimization. Enabling efficient optimization requires obtaining an unbiased stochastic
gradient estimator of the objective in Eq. (5). However, the objective JN involves evaluating pFM
on discrete tokens yn predicted by the task encoder τθ, rendering this process non-differentiable.
While relaxation is possible (Atanov et al., 2022; Gadetsky & Brbic, 2023; Gadetsky et al., 2024), a
more prevalent approach in such scenarios is using the REINFORCE gradient estimator (Williams,
1992). Despite its generality, a naive implementation of REINFORCE suffers from the high variance
when used for the optimization over combinatorial spaces (Gadetsky et al., 2020; Paulus et al., 2020;
Struminsky et al., 2021). To address this challenge, we develop an effective stochastic gradient es-
timator that leverages the structure of our objective to substantially improve the convergence speed.
We provide the complete derivation of this estimator and compare it to REINFORCE in Appendix
B.1.

Task encoder parametrization. We employ a foundation model itself to serve as our task encoder
τθ(·|xn). In particular, we constrain pFM to model a distribution over Y as follows:

τθ(y|xn) =
pθFM(y|xn)Jy ∈ YK∑

ŷ∈Y pθFM(ŷ|xn)
, (6)

where J·K denotes Iverson bracket and pθFM denotes the same foundation model parametrized by
LoRA (Hu et al., 2022) with the corresponding trainable parameters θ. The LoRA parameters θ
are set such that, at the beginning of training, pθFM corresponds to the zero-shot predictions of pFM,
providing a good initialization for our REINFORCE-based optimization, which is known to lead to
faster convergence (Greensmith et al., 2004). Noteworthy, this parametrization, coupled with our
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unsupervised objective, can be seen as an instantiation of self-training, in which a model improves
by obtaining feedback from itself.

In principle, our unsupervised fine-tuning can be combined with any fine-tuning strategy. We pro-
vide the ablation of the task encoder’s design and its effect on the performance of the unsupervised
fine-tuning approach in Appendix D.2. We found that the LoRA fine-tuning provides the practical
trade-off between parameter efficiency and the performance.

Regularization. Optimizing Eq. (5) can lead to degenerate solutions, i.e., converging to a single
answer for all the input instances, which is common in unsupervised learning (Gansbeke et al., 2020;
Gadetsky & Brbic, 2023; Gadetsky et al., 2024; Grcic et al., 2024; Atanov et al., 2022). This happens
because pFM assigns high probabilities to a single answer after observing the same answer for all
input instances in its context. We regularize our task encoder τ to avoid such trivial solutions. Let
τ prior
θ (y) = Ex∈Dτθ(y|x), then the regularization term is R(τθ) = −

∑
y∈Y τ prior

θ (y) log τ prior
θ (y).

Putting it all together, the final optimization objective to train τθ is as follows:

max
θ

Eyn∼τθ(·|xn)J
N (y1, . . . , yM ) + γR(τθ), (7)

where we found γ = 10 is a good default choice for the regularization strength. We refer to this
principled approach as the joint inference via unsupervised fine-tuning (Figure 2). The pseudocode
and the implementation details are provided in Appendix B.1.

Figure 2: Unsupervised fine-tuning is a principled optimization method to perform joint inference,
enabling unsupervised adaptation on a new task. Given a dataset of questions, each iteration of the
optimization involves generating answers via task encoder independently for a batch of questions
(Step 1). Subsequently, these answers are fed into a foundation model to estimate the joint probabil-
ity, providing the quantitative measure of the quality of the answers (Step 2). Finally, task encoder
is updated to maximize the joint probability (Step 3). These steps are repeated until convergence,
yielding the task encoder adapted on a given task without any supervision.

4.3 UNSUPERVISED IN-CONTEXT LEARNING

Although amortization offers a principled approach to optimize the objective in Eq. (4), it requires
access to model weights to define a task encoder τθ and output probabilities pFM. This makes
unsupervised fine-tuning suitable to open-weight models, but limits its applicability to most close-
weight models, such as GPT-4 (Achiam et al., 2023). To make the joint inference framework broadly
applicable, our key insight is that each summand in Eq. (4) can be seen as ICL predictions:

argmax
y1,...,yn∈Yn

log pFM(yn|xn, {(xi, yi)}i<n). (8)

Unlike conventional supervised ICL, which relies on ground truth answers, our method also opti-
mizes answers.

We employ this insight to develop the unsupervised ICL method to optimize Eq. (4) in the multi-turn
fashion (Figure 3 (left)). Specifically, we iteratively refine answers for the set of instances D via con-
ditioning on the answers from the previous round, where at the beginning they are initialized by the
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zero-shot predictions. In particular, for a given x ∈ D, let y0x ∼ pFM(·|x) be the answers at the 0-th
round. Then, for every consecutive refinement round t, we update the answers for x ∈ D by sam-
pling ytx ∼ pFM(·|x, {(xn, y

t−1
xn

)}Nn=1), where x1, . . . , xN ∼ D. In such a way, unsupervised ICL
self-improves answers through the number of iteration steps. It is important to note that this method
is readily applicable to all existing foundation models, since it only requires obtaining samples from
a model. Figure 3 (right) highlights that unsupervised ICL indeed optimizes the joint inference
objective (Eq. (4)). We also study the effect of increasing number of turns in Appendix D.3. We
provide the complete algorithm in Appendix B.2.

Furthermore, one can observe that our unsupervised ICL resembles the well-known Gibbs sam-
pling (Geman & Geman, 1984) for sampling from untractable joint distribution by iterative sam-
pling from tractable conditionals. Recently, similar ideas were also applied to refine CoT chains
given questions and ground truth answers (Xu et al., 2024). Our unsupervised ICL pushes this idea
further and, when coupled with CoT, can be seen as refining both reasoning chains and answers
(Section 5.1).

Figure 3: Unsupervised In-Context Learning is broadly applicable method to perform joint in-
ference for any task and any existing foundation model. Left: Our method generates answers for
each question independently using zero-shot prompting. Subsequently, it enters the multi-turn stage,
where, at each turn, for each question, the model is prompted with randomly sampled in-context ex-
amples from the dataset (excluding the considered question) with the corresponding answers from
the previous turn. These examples are fed into the model in the left-to-right order along with the
current question to generate a refined answer. Such refinement is repeated for T turns, yielding the
final answers. Right: Both the joint inference objective and the performance improve with more
optimization turns of the unsupervised ICL method.

5 EXPERIMENTS

Datasets and evaluation metric. We evaluate the performance of our two methods for joint infer-
ence across a wide range of tasks, including text classification, image classification, question an-
swering, visual question answering, natural language inference, common-sense reasoning, and math
problem-solving. A detailed description of each dataset, along with the prompts used, is provided
in Appendix C.1. We use accuracy as the evaluation metric for all the experiments.

Foundation models. We utilize three open-source foundation models to evaluate our framework,
namely, Llama-3.1 (Dubey et al., 2024) for text-based experiments, OpenFlamingo (Awadalla et al.,
2023; Alayrac et al., 2022) for vision-language experiments and Qwen2.5-Math-7B (Yang et al.,
2024) for reasoning experiments. Specifically, Llama-3.1-8B is used as the default model for our
main text experiments, instruction-tuned version and the larger 70B instruction-tuned model are used
for the ablations. For vision experiments, we use OpenFlamingo as the default model. Furthermore,
we employ GPT-4o (Achiam et al., 2023) to serve us as a close-weight foundation model in our
experiments.

Baselines. We incorporate the following baselines and upper bounds for our evaluations. (1) Zero-
shot inference makes the predictions independently for each input example without task-specific
fine-tuning or demonstrations. (2) Zero-shot with Chain-of-Thought (CoT) incorporates CoT rea-
soning prompts to generate intermediate reasoning steps before the final answer (Kojima et al.,
2022; Wei et al., 2022b). We only use it for our language experiments, as we found that CoT
does not show any benefit for the OpenFlamingo model, often significantly degrading the per-
formance. (3) Supervised In-Context Learning (ICL) uses labeled training examples to provide
them as demonstrations to the model. Consequently, this serves as an upper bound to our un-
supervised ICL method, which does not use any labeled data. Similarly, (4) Fully-Supervised
Fine-tuning (FT) employs LoRA (Hu et al., 2022) supervised fine-tuning using all labeled train-
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ing examples and serves as an upper bound to our unsupervised fine-tuning method. We refer the
reader to Appendix C.2 for the additional implementation details. Code is publicly available at
https://github.com/mlbio-epfl/joint-inference.

5.1 RESULTS ON NATURAL LANGUAGE PROCESSING TASKS

To study the performance of the joint inference framework on language tasks, we evaluate our meth-
ods on 13 benchmark datasets, spanning various NLP tasks. Our results highlight the effectiveness
of our joint inference framework (Table 1). First, the results show that unsupervised fine-tuning
substantially outperforms the standard zero-shot inference. In particular, it brings 23% absolute
improvement on average over 13 considered datasets, with remarkable 52.5% 30.6%, 26.3% and
19.5% on the SUBJ, Amazon, DBPedia and HellaSwag datasets, respectively. Furthermore, it of-
ten approaches the performance of its fully supervised counterpart, closely matching it on 6 out of
13 considered datasets. Secondly, unsupervised ICL also exhibits remarkable performance gains
compared to the zero-shot inference, bringing 19.2% absolute improvement on average over 13
considered datasets. Remarkably, it is on par with the supervised ICL on 10 out of 13 considered
datasets, overall demonstrating the effectiveness of the proposed joint inference framework.

Table 1: Results of the unsupervised fine-tuning and unsupervised in-context learning meth-
ods on NLP tasks. For each dataset, we show the accuracy (in %) of the zero-shot inference,
the proposed unsupervised fine-tuning (FT), and ICL methods, and their corresponding supervised
counterparts, which represent the upper bound. We use the Llama-3.1-8B model in all cases. Both
proposed unsupervised adaptation methods outperform zero-shot inference and approach the perfor-
mance of the corresponding supervised methods in most cases.

Text Classification Language Inference Question Answering

Adaptation Method SST2 Amazon AGNews TREC DBPedia SUBJ RTE QNLI MNLI COPA BoolQ PIQA HellaSwag Avg.

Zero-shot 77.7 65.5 74.6 42.7 72.4 42.9 62.7 55.5 34.3 81.0 66.7 59.0 46.0 60.1
Zero-shot + CoT 78.8 76.1 58.3 28.7 63.1 54.1 55.6 52.1 47.5 69.0 64.4 58.2 34.6 57.0

Fine-tunning (via LoRA):

Unsupervised FT 92.3 96.1 89.3 61.9 98.7 95.4 81.7 78.2 72.0 88.1 81.7 80.0 65.5 83.1
Fully-Supervised 92.1 96.0 90.4 93.7 98.8 96.3 89.0 89.5 84.7 85.7 85.6 82.1 87.1 90.1

In-Context Learning (no weight updates):

Unsupervised ICL 92.4 96.6 86.2 59.0 97.9 74.2 78.8 67.4 65.9 93.5 82.6 78.4 58.2 79.3
Supervised ICL 93.3 96.6 88.0 72.3 97.6 89.2 80.8 74.5 66.6 92.3 84.1 79.1 59.1 82.6

Mathematical reasoning and multitask language understanding. Furthermore, we
evaluate unsupervised ICL on the GSM8K dataset that requires reasoning capabilities
and on the MMLU(-Pro) dataset that covers broad knowledge of different disciplines.

Table 2: Results of the unsupervised ICL on the mathe-
matical reasoning and multiple choice question answer-
ing. Our unsupervised ICL method improves the perfor-
mance of Llama-3.1-8B and Qwen2.5-Math-7B on chal-
lenging math reasoning and multiple choice question an-
swering.

Adaptation Method GSM8K MMLU MMLU-Pro
Zero-shot 42.5 65.0 23.7

Llama-3.1-8B Unsupervised ICL 52.8 66.7 33.1
Supervised ICL 55.7 66.7 37.8

Zero-shot 52.2 61.0 37.3
Qwen2.5-Math-7B Unsupervised ICL 91.4 62.6 36.4

Supervised ICL 89.9 62.2 38.7

We employ Chain-of-Thought for our
method and all the baselines on the
GSM8K and MMLU-Pro datasets.
Consequently, unsupervised ICL re-
fines both reasoning chains and the
answers in a fully unsupervised man-
ner. Our results indicate that our
method is also applicable to these
challenging benchmarks (Table 2).
For instance, it brings remarkable
39.2% absolute improvement over
the zero-shot baseline on the GSM8K
dataset, also outperforming the super-
vised counterpart.

Unsupervised ICL scales effectively at test-time. Our unsupervised ICL method consists of two
stages: (1) a task adaptation stage, where we iteratively generate labels for unlabeled examples,
creating a labeled support set; and (2) a test stage, where we perform ICL inference on new test
examples using the labeled support set from stage one. Since the adaptation stage is performed once
per task, test-time compute scaling depends on the number of (unsupervised) ICL examples used in
the second test stage. Figure 4 shows how performance improves as we scale test-time compute by
increasing the number of ICL examples. We find that test-time scaling of the 8B model with our
method achieves a better compute-performance trade-off than zero-shot inference with the larger
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70B model. Further scaling of the 70B model leads to additional gains, outperforming CoT in both
compute efficiency and performance.

Unsupervised ICL improves non-instruction-tunned models. Figure 5 shows the impact of in-
struction tuning on the performance of different inference methods on the RTE dataset. We find
that unsupervised ICL and FT methods with the base model perform better than both zero-shot and
CoT with the instruction-tuned model, suggesting less reliance on supervised fine-tuning data. We
provide further positive results of scaling to 70B model in Appendix D.4.

Figure 4: Unsupervised ICL scales effec-
tively at test-time. We report performance on
the RTE dataset with Llama-3.1 models. We
scale test-time compute by using more (unsu-
pervised) ICL examples and show it provides
a better compute-performance trade-off than
zero-shot inference with a bigger model.

Figure 5: Unsupervised ICL and FT improve
non-instruction-tuned models. We show the
performance of different inference methods on
the RTE dataset for base and instruction-tuned
Llama-8B models. Both our methods applied
to the base model outperform zero-shot infer-
ence with the instruction-tuned model.

5.2 RESULTS FOR IMAGE CLASSIFICATION AND VISUAL QUESTION ANSWERING TASKS

To study the performance of the joint inference framework on tasks that require visual comprehen-
sion, we evaluate our methods on seven vision datasets, spanning both image classification tasks
(CIFAR-10, CIFAR-100, Food101) and visual question-answering tasks (COCO-Color, COCO-
Number, VQAv2 and VizWiz). Our results demonstrate that both unsupervised fine-tuning and
unsupervised ICL consistently outperform the standard zero-shot inference (Table 3). In particular,
unsupervised fine-tuning brings substantial absolute improvements of 14% on average over the ap-
plicable datasets with the remarkable gains of 23% on the Food101 dataset, which is the challenging
fine-grained image classification task for a vision-language foundation model. Furthermore, reflect-
ing our language experiments, unsupervised ICL closely matches the performance of its supervised
counterpart on 5 out of 7 considered datasets, overall demonstrating the applicability of our joint
inference framework to vision-language foundation models.

Table 3: Results for image classification and VQA tasks. For each dataset, we report the accuracy
(in %) of zero-shot inference, the proposed unsupervised fine-tuning and unsupervised ICL, and
their corresponding supervised counterparts. We use OpenFlamingo-4B in all cases except VQAv2
and VizWiz, where we use OpenFlamingo-9B. Note that unsupervised fine-tuning is not applicable
to VQAv2 and VizWiz given that these datasets comprise open-ended questions. Both unsuper-
vised fine-tuning and unsupervised ICL methods consistently outperform zero-shot inference and
approach the performance of the corresponding supervised methods in most cases.

Image Classification Visual Question Answering

Adaptation Method CIFAR10 CIFAR100 Food101 COCO-Color COCO-Number VQAv2 VizWiz

Zero-shot 87.2 58.0 58.4 55.8 25.6 58.1 41.6

Fine-tunning (via LoRA):

Unsupervised FT 96.0 74.1 81.0 62.0 42.3 N/A N/A
Fully-Supervised 97.5 84.9 91.5 94.5 85.4 N/A N/A

In-Context Learning (no weight updates):

Unsupervised ICL 92.6 69.0 61.8 57.5 36.8 59.7 46.7
Supervised ICL 93.0 69.1 61.7 58.2 47.1 60.6 55.8
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Table 4: Our unsupervised ICL method im-
proves the performance of closed-weight GPT-
4o on challenging image classification and mul-
tiple choice question answering. Note that su-
pervised ICL is not possible as no support set is
available for MMMU and MMMU-Pro datasets to
perform CoT prompting.

ImageNet-100 MMMU MMMU-Pro

Zero-shot + CoT 76.1 66.4 54.7
Unsupervised ICL 79.0 68.6 55.5
Supervised ICL 79.5 N/A N/A

Closed-weight GPT-4o results. To demon-
strate the applicability of the joint inference
framework to closed-weight models, we em-
ploy GPT-4o and study the performance of
unsupervised ICL on a subset of ImageNet,
MMMU and MMMU-Pro datasets. For Ima-
geNet, we construct a support set containing
1000 images corresponding to 100 classes and
we sample 5000 images for the evaluation pur-
poses only. Specifically, to assess the general-
ization, we refine the support set with our unsu-
pervised ICL for two rounds, and, then, exam-
ine the performance on the evaluation set conditioned on the refined support set. For MMMU and
MMMU-Pro, we directly run methods on the validation split, since no data are available to construct
support sets. Consequently, supervised ICL is not available for MMMU and MMMU-Pro. As be-
fore, we compare our unsupervised ICL to the zero-shot inference, and to the suppervised ICL on
ImageNet, employing ground truth labels for the support set. Table 4 illustrates that unsupervised
ICL brings an improvement of 3%, 2% and 1% compared to zero-shot inference with Chain-of-
Thought prompting on the ImageNet, MMMU and MMMU-Pro datasets, respectively. Furthermore,
unsupervised ICL approaches supervised ICL on the ImageNet dataset, overall demonstrating that
our joint inference framework is also applicable to closed-weight models.

6 CONCLUSION AND LIMITATIONS

In our work, we proposed the joint inference framework that brings substantial improvements over
the standard independent zero-shot inference on a given task. The key idea behind our framework
is to simultaneously make predictions for multiple input instances of a task. To perform such joint
inference, which involves infeasible optimization, we develop two approximations resulting in two
efficient unsupervised methods: unsupervised fine-tuning and unsupervised ICL. We show their
effectiveness on a range of datasets and tasks using large language and vision-language models.
Below, we discuss the framework, both methods and their corresponding limitations.

Reliance of the joint inference framework on ICL capabilities. In order for our joint inference
framework to improve the model’s zero-shot performance, the underlying model should exhibit ICL
capabilities in the first place, i.e., the performance of model with supervised ICL should be higher
than its zero-shot performance. In such case, our framework allows one to invoke the model’s ICL
capability and improve upon the zero-shot without the need for ground truth labels. We study the ef-
fect of weak ICL capabilities on the performance of the joint inference framework in Appendix D.5.

Unsupervised fine-tuning. Unsupervised fine-tuning is a principled method to optimize the pro-
posed joint inference objective. Remarkably, although being unsupervised, it often approaches its
supervised upper bound, which uses labeled examples for fine-tuning. This method has two main
limitations. First, in its current form, it is limited to close-ended tasks with a finite set of plausible
answers Y . This stems from the fact that we need to constrain the output of the task encoder to Y ,
which greatly benefits the optimization. One potential solution to this could be using more advanced
amortization optimization techniques such as (Hu et al., 2024; Zhao et al., 2024). Second, unsuper-
vised fine-tuning is not applicable to closed-weight proprietary models (Achiam et al., 2023; Anil
et al., 2023) since it requires access to model weights and output probabilities. We address these
limitations with our unsupervised ICL method.

Unsupervised ICL. Unsupervised ICL offers a simple yet powerful approximation to perform the
joint inference compatible with any task and model. It requires only obtaining samples from a
model conditioned on the provided input, that is readily available for all the existing foundation
models. Moreover, it can be easily coupled with modern prompting techniques such as Chain-of-
Thought to further improve the performance in an unsupervised manner. Despite the flexibility of
unsupervised ICL, similarly to how supervised ICL lags behind supervised fine-tuning, unsupervised
ICL generally falls short compared to unsupervised fine-tuning. This limitation could be addressed
by the improved capabilities of newly released foundation models with larger context (Agarwal
et al., 2024; Jiang et al., 2024).
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A GENERALIZATION TO MULTI-TOKEN LABELS

In the main paper, we assume for simplicity that each y ∈ Y comprise a single token, which might
not be the case for many datasets. Let yk = [tk1 , . . . , t

k
lk
] ∈ Y be a multi-token label comprising lk

tokens. Then, to compute log pFM(yk|xm, {(xi, yi)}i<m) one would need to sum over all the tokens
comprising yk:

log pFM(yk|xm, {(xi, yi)}i<m) =

lk∑
i=1

log pFM(tki |tkj<i, xm, {(xi, yi)}i<m). (9)

Given that our task encoder τθ involves renormalization in Eq. (6), summation over all the tokens
for all y ∈ Y would require impractical multiple model calls.

First token approximation. In case of absence of labels y ∈ Y sharing their first corresponding
token tk1 , we found that the following approximation of Eq. (9) performs well in practice:

lk∑
i=1

log pFM(tki |tkj<i, xm, {(xi, yi)}i<m) ≈ log pFM(tk1 |xm, {(xi, yi)}i<m). (10)

Bag-of-Tokens (BoT) approximation. First token approximation would not work in case there are
labels yi, yj ∈ Y that share prefix. Such scenario mostly occurs for fine-grained image classification
problems. To address this challenge, we, first, find the minimal prefix ŷk = [tk1 , . . . , t

k
m̂k

], m̂k ≤ mk

that allows to distinguish yk ∈ Y from the rest labels. Then, we propose to consider ŷk as a Bag-of-
Tokens, effectively ignoring the order of tk1 , . . . , t

k
m̂k

:

lk∑
i=1

log pFM(tki |tkj<i, xm, {(xi, yi)}i<m) ≈
∑
t∈ŷk

log pFM(t|xm, {(xi, yi)}i<m). (11)

It is easy to note that Bag-of-Tokens approximation reduces to the first token approximation for
datasets without labels that share a prefix. Consequently, we use it by default for all the datasets.
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B IMPLEMENTATION DETAILS OF THE PROPOSED APPROACHES

B.1 AMORTIZED APPROACH

For the close-ended tasks it is feasible to enumerate all y ∈ Y , thus we renormalize conditional
likelihoods over the entire set Y , resulting in:

log p(yn|xn, {(xi, yi)}i<n)
def
= log

pFM(yn|xn, {(xi, yi)}i<n)∑
y∈Y pFM(y|xn, {(xi, yi)}i<n)

, (12)

where it is important to note that this renormalization does not require additional model calls. It
is well-known that rescaling the objective is beneficial for the faster convergence of REINFORCE-
based optimization methods (Mnih et al., 2015; Schulman et al., 2017; Sutton & Barto, 2018). We
use this renormalization for all the summands in JN in Eq. (7).

Low-variance Gradient Estimator. Our objective in Eq. (5) has the following form:

Ex1,...,xN∼DEyn∼τθ(·|xn)

N∑
n=1

JN
n (y1, . . . , yn),where (13)

JN
n (y1, . . . , yn) =

1

N
log p(yn|xn, {(xi, yi)}i<n).

Without loss of generality, let’s consider particular samples x̂1, . . . , x̂N ∼ D, since averaging over
multiple samples does not introduce any bias. Thus, after rearranging terms, we need to obtain the
unbiased gradients for the following objective:

N∑
n=1

∇θEy1,...,yn∼
∏n

i=1 τθ(·|x̂n)J
N
n (y1, . . . , yn). (14)

Considering only n-th term, let’s note that:

∇θEy1,...,yn∼
∏n

i=1 τθ(·|x̂n)J
N
n (y1, . . . , yn) = ∇θEy1,...,yn−1

∑
y∈Y

JN
n (y1, . . . , yn−1, y)τθ(y|x̂n).

(15)
The key insight here is that marginalization over y ∈ Y can be done efficiently without additional
model calls as before. Let’s denote J̃ (y1, . . . , yn−1, θ) =

∑
y∈Y JN

n (y1, . . . , yn−1, y)τθ(y|x̂n),
then

∇θEy1,...,yn−1
J̃ (y1, . . . , yn−1, θ) = (16)

Ey1,...,yn−1

[
J̃ (y1, . . . , yn−1, θ)

n−1∑
j=1

∇θ log τθ(yj |x̂j)
]
+ Ey1,...,yn−1

∂

∂θ
J̃ (y1, . . . , yn−1, θ),

where the first term can be seen as the REINFORCE gradient estimator for J̃ (y1, . . . , yn−1, θ) and
the second term is low-variance pathwise derivative. To reduce the variance of the overall estimator
even further, we introduce simple yet effective control variate for the first term. In particular, let
y∗j = argmax

y∈Y
τθ(y|x̂j), j = 1, . . . , (n− 1), then our final gradient estimator is:

Ey1,...,yn−1

[[
J̃ (y1, . . . , yn−1, θ)− B(x̂1, . . . , x̂n)

]
×
[ n−1∑

j=1

∇θ log τθ(yj |x̂j)
]]

+ (17)

+Ey1,...,yn−1

∂

∂θ
J̃ (y1, . . . , yn−1, θ),where

B(x̂1, . . . , x̂n) =
∑
y∈Y

JN
n (y∗1 , . . . , y

∗
n−1, y)τθ(y|x̂n).

The obtained estimator admits the unbiased estimate by sampling y1, . . . , yN ∼ τθ(·|x̂n) and calcu-
lating what is inside expectations. Figure B1 demonstrates the effectiveness of the proposed gradient
estimator on several tasks.

B.2 MULTI-TURN FOR UNSUPERVISED IN-CONTEXT LEARNING
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Figure B1: Comparison of our gradient estimator with the naive approach. The plot shows
the convergence rate during optimization of the joint inference objective. Our proposed gradient
estimator achieves faster convergence and leads to the higher values of the objective.

Algorithm B1 Amortized Approach

1: Input: Dataset D, Foundation model pFM(·), hyperparameter N , LoRA task encoder τθ(·) with
parameters θ, regularization strength γ, number of iterations T , learning rate α, batch size B

2: Initialize θ0 such that τθ0 = pFM
3: for t = 0 to T − 1 do
4: Sample mini-batch xb

1, . . . , x
b
N ∼ D, b = 1, . . . , B

5: Sample answers ybn ∼ τθt(·|xb
n), n = 1, . . . , N ; b = 1, . . . , B

6: Estimate τ prior
θt

(·) = 1
N×B

∑B
b=1

∑N
n=1 τθt(·|xb

n)

7: Compute the objective Ot =
1
B

∑B
b=1

∑N
n=1 JN

n (y1, . . . , yn) + γR(τ prior
θt

)
8: Compute the gradient estimator gt via Eq. (17)
9: Updante the parameters: θt+1 = θt + αgt

10: end for
11: Produce answers yn = argmax

y∈Y
τθT (y|x)for all x ∈ D

12: Output: Answers for D

Algorithm B2 Multi-Turn Approach

1: Input: Dataset D, Foundation model pFM(·), hyperparameter N , number of turns T , number of
repeats Nr

2: Initialize answers with zero-shot predictions: D0 = {(x, y) | x ∈ D, y ∼ pFM(·|x)}
3: for t = 1 to T do
4: Initialize Dt = ∅
5: for x ∈ D do
6: for n = 1 to Nr do
7: Sample support examples labeled by previous turn: (x1, y

t−1
1 ), . . . , (xN , yt−1

N ) ∼ Dt−1

8: Obtain answer: yxn ∼ pFM(·|x, (x1, y
t−1
1 ), . . . , (xN , yt−1

N ))
9: end for

10: Take majority vote over Nr options: yx = MAJ(yx1 , . . . , y
x
Nr

)
11: Update answers: Dt = Dt ∪ {yx}
12: end for
13: end for
14: Take answers from the last turn: {yn | (xn, yn) ∈ DT }
15: Output: Answers for D
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C EXPERIMENTAL DETAILS

C.1 DATASETS AND PROMPTS

Text. We evaluate our method on 16 NLP datasets covering various tasks. For sentiment analysis,
we use SST2 (Socher et al., 2013), which contains movie reviews classified as positive or negative,
and Amazon (McAuley & Leskovec, 2013), a dataset of product reviews with similar labels. For
topic classification, we use AG-News (Zhang et al., 2015), which consists of news articles catego-
rized into four topics (World, Sports, Business, and Technology), TREC (Voorhees & Tice, 2000)
for classifying questions into six types, and DBpedia-14 (Lehmann et al., 2015), which includes
Wikipedia articles grouped into 14 categories. SUBJ (Pang & Lee, 2004) is used for classifying
sentences as subjective or objective. For natural language inference, we use RTE (Wang et al., 2018)
to assess entailment relationships, QNLI (Rajpurkar et al., 2016) for sentence-answering tasks, and
MNLI (Williams et al., 2018), which involves classifying sentence pairs into entailment, contradic-
tion, or neutral. We also include COPA (Roemmele et al., 2011) and HellaSwag (Zellers et al., 2019)
for story completion, BoolQ (Clark et al., 2019) for yes/no question answering, and PIQA (Bisk
et al., 2020) for physical commonsense reasoning. For open-ended questions, GSM8K (Cobbe et al.,
2021) assesses mathematical reasoning through multi-step word problems, MMLU (Hendrycks
et al., 2021) and MMLU-Pro (Wang et al., 2024) measure multi-task language understanding and
knowledge across diverse range of subjects.

For each dataset, we randomly sample 2, 000 examples as the train split for unsupervised learning,
and 1, 000 examples as the test split for evaluation (except for COPA where there are only 500
examples in total). We balance labels in both train split and test split. For GSM8K (Cobbe et al.,
2021), we use the whole test set which contains 1319 examples for the evaluation. The datasets and
corresponding prompts are summarized at Table C1.

Vision. We evaluate our method on ten vision datasets, including four image classification tasks and
six visual question-answering tasks. For image classification, we use CIFAR10 (Krizhevsky et al.,
2009), a benchmark dataset with color images across 10 different classes, CIFAR100 (Krizhevsky
et al., 2009) and ImageNet-100 (Deng et al., 2009), which provide a more detailed classification
challenge with 100 classes. We also include Food101 (Bossard et al., 2014), a large-scale dataset
featuring a wide variety of food categories. For visual question answering, we use COCO-Color and
COCO-Number, both derived from VQAv2 (Goyal et al., 2018), VQAv2 itself and VizWiz (Gurari
et al., 2018). COCO-Color focuses on questions about the dominant colors of objects in images,
testing the model’s ability to understand color attributes, while COCO-Number involves predicting
numerical attributes such as object counts, evaluating the model’s numeric reasoning based on visual
input. Furthermore, we use challenging MMMU (Yue et al., 2024a) and MMMU-Pro (Yue et al.,
2024b) datasets that assess multi-discipline multimodal understanding capabilities of foundation
models.

For all vision datasets, unless mentioned otherwise, we train the model on the entire training set
and report performance on the test set. Details of the prompts used for each dataset can be found in
Table C1.

C.2 IMPLEMENTATION DETAILS / HYPERPARAMETERS

Unsupervised Fine-tuning. We use LoRA (Hu et al., 2022) for parameter-efficient fine-tuning on
NLP and vision tasks. For NLP tasks with Llama-3.1, we also use flash-attention (Dao et al., 2022)
and 4-bit quantization of the model provided by the Unsloth library 2 to improve efficiency. We
found that with improved gradient estimator, the training is less sensitive to the hyper-parameters.
Thus we do not customize hyperparamters for each datasets, and instead using a learning rate of
1e-5 with Adam optimizer for all datasets. The model is fine-tuned for 6,000 iterations and usually
the training converges at around 2,000 iterations. We train our model with 64 examples at each
mini-batch. We use context-length N = 16 for the main experiments and provide ablation study on
the effect of N at Appendix D.1. Similarly, for vision experiments, we train our model for 3,000
iterations with a learning rate of 1e-4, and 256 examples at each iteration. The typical training time
is 12h for text tasks and 4h for vision tasks, on one NVIDIA H100 GPU.

2The library could be found at https://github.com/unslothai/unsloth
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Unsupervised ICL. For unsupervised in-context learning (ICL), we initialize pseudo-labels using
zero-shot predictions and iteratively refine them based on ICL predictions. At each iteration, the
label of a query example is updated based on the ICL prediction from N support examples. For tasks
that involve reasoning process, such as GSM8K and MMLU-pro, we also initialize the reasoning
chain with zero-shot Chain-of-Thought (CoT) inference and then update it through unsupervised
ICL. In addition, we manually filter out unformatted responses when selecting support examples, as
we find this step helpful to improve the quality of demonstrations for open-ended tasks. For both
supervised and unsupervised ICL, we manually balance the labels when sampling support examples,
as this helps prevent biased predictions. Additionally, we sample 5 support sequences per iteration
and apply a majority vote to reduce variance (except for MMLU-pro). The labels are updated across
5 turns, if not specifically mentioned, after which we report the accuracy on the test set.

GPT-4o evaluation. We use the version of ”gpt-4o-2024-08-06” for evaluation. We experiment
on a subset of the ImageNet dataset with 1000 support images and 5000 evaluation images corre-
sponding to 100 classes. We perform two-turn pseudo labeling for unsupervised ICL and 16-shot
for evaluation. The total cost for the API call and evaluation is $200.
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Table C1: Datasets and corresponding prompts used in this paper.

Dataset Prompts

SST2 <sentence>
The sentiment of the sentence is <label>.

Amazon <title><content>
The sentiment of the sentence is <label>.

AG-News <text>
The topic of the sentence is about <label>.

TREC <text>
The topic of the sentence is about <label>.

DBpedia-14 <title><content>
The topic of the sentence is about <label>.

SUBJ <text>
The sentence is <label>.

RTE
<premise>
Question: Does this imply that “<hypothesis>”, yes or no?
Answer: <label>.

QNLI
<sentence>
Question: Does that sentence have all you need to answer the question “<question>”, yes or no?
Answer: <label>.

MNLI
<premise>
Based on the previous passage, is it true that “<hypothesis>”?
Answer: <label>.

COPA

Consider the following premise: “<premise> ”
Choice 1: <choice1>
Choice 2: <choice2>
Q: Which one is more likely to be the <question>, choice 1 or choice 2?
A: <label>.

BoolQ
<passage>
Question: After reading this passage, the answer to the question <question> is yes or no?
Answer: <label>.

PIQA

Goal: <goal>
Solution 1: <sol1>
Solution 2: <sol2>
Question: Given the goal, what is the correct solution, solution 1 or solution 2?
Answer: <label>.

HellaSwag

Consider the following description: “<ctx>”
Choice 1: <endings1>
Choice 2: <endings2>
Choice 3: <endings3>
Choice 4: <endings4>
Question: Which is the most plausible ending, choice 1, choice 2, choice 3 or choice 4?
Answer: <label>.

GSM8K
Given the following problem, reason and give a final answer to the problem.
Problem: <question>
Answer: <label>

CIFAR10 <image>An image of <label>.<|endofchunk|>
CIFAR100 <image>An image of <label>.<|endofchunk|>
Food101 <image>An image of <label>.<|endofchunk|>
COCO-Color <image>Question: <question>? Short answer: <label><|endofchunk|>
COCO-Number <image>Question: <question>? Short answer: <label><|endofchunk|>
VQAv2 <image>Question: <question>? Short answer: <label><|endofchunk|>
VizWiz <image>Question: <question>? Short answer: <label><|endofchunk|>

ImageNet-100 <image>Please identify the class of the image provided. The class has to belong to one of the classes
specified in the system prompt

MMLU

The following are multiple choice questions (with answers) about <subject>.
<question>
Options: <options>
Answer: <answer>

MMLU-Pro

The following are multiple choice questions (with answers) about category. Think step by step and
then finish your answer with ”the answer is (X)” where X is the correct letter choice.
Question: <question>
Options: <options>
Answer: <answer>

MMMU,
MMMU-Pro

Prompt for a multiple-choice question:
System prompt: Answer the following multiple-choice question. The last line of your response should be of the following format:
’Answer: $LETTER’ (without quotes) where LETTER is one of the options. Think step by step before answering.
User prompt:
<question>
<options>
The last line of your response should be of the following format:
’Answer: $LETTER’ (without quotes) where LETTER is one of the options. Think step by step before answering.
<answer>
Prompt for an open question:
System prompt: Answer the following open-ended question. Do not use latex. Think step by step before answering.
Provide the final answer in the last line of your response in the following format
’The final answer is $ANSWER’ (without quotes) where ANSWER is a single word, phrase or number.
User prompt:
<question>
<options>
Do not use latex. Think step by step before answering. Provide the final answer in the last line of your response
in the following format ’The final answer is $ANSWER’ (without quotes) where $ANSWER is a single word,
phrase or number.
<answer>

21



Published as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 THE INFLUENCE OF THE CONTEXT LENGTH N

We examine the impact of the context length N on the performance of our method across both
language-only and vision-language tasks. As shown in Figure D1, increasing the context length
consistently improves the performance for both our methods, demonstrating the benefits of the joint
inference framework to improve the predictions of a foundation model upon the zero-shot inference.
Remarkably, unsupervised ICL closely matches the performance of its corresponding supervised
upper bound for different values of N . It is also worth noting that the well-known self-training
principle, e.g. Huang et al. (2022), resembles as the special case of our unsupervised fine-tuning
with N = 1.

Figure D1: The effect of the context length N . We show the performance of both our methods for
different context lengths (N ). For both text (left) and image (right) classification tasks, our method
displays consistent improvement as N increases. This demonstrates the benefits of making joint
predictions for multiple examples under the proposed joint inference framework.

D.2 ABLATION OF TASK ENCODER PARAMETRIZATION

The choice of the parametrization of the task encoder for fine-tuning can lead to different results
in terms of under-fitting and over-fitting. Notably, our method can be applied to any fine-tuning
strategy, the only difference with supervised fine-tuning is that we do not need labels. We chose
LoRA as a widely-adopted adaptation method that trades off over-fitting and under-fitting. To further
strengthen our experimental evaluation, we conduct additional experiments of fine-tuning via (i) full
fine-tuning and (ii) using a linear head on top of the fixed model (Table D1).

First, the results suggest that unsupervised fine-tuning with all three task encoders substantially
outperforms the zero-shot performance on each of the considered datasets. For instance, even with
the simple linear task encoder, unsupervised fine-tuning improves by 12%, 10% and 12% on the
SST2, RTE and Boolq dataset respectively. On the other hand, we can observe that linear task
encoder significantly underfits both LoRA and full fine-tuning. In particular, LoRA fine-tuning
outperforms the linear task encoder by 3%, 9% and 3% on the SST2, RTE and Boolq datasets
respectively.

Furthermore, it can be observed that supervised fine-tuning with full model training severely overfits
on the RTE dataset compared to LoRA parameter efficient fine-tuning. In turn, the unsupervised fine-
tuning with full model training inherits this problem and performs worse compared to the LoRA
fine-tuning. In particular, compared to LoRA supervised fine-tuning, full supervised fine-tuning
drops by 7% on the RTE dataset. This, in turn, results in a 2% drop of the performance of full
unsupervised fine-tuning compared to LoRA unsupervised fine-tuning. Overall, the obtained results
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suggest that the LoRA fine-tuning provides the practical trade-off between parameter efficiency and
the performance.

Table D1: Task encoder ablation. LoRA fine-tuning provides the practical trade-off between pa-
rameter efficiency and the performance.

Trainable Param. SST2 RTE BoolQ
Zero-shot - 77.7 62.7 66.7

Unsupervised FT LoRA 92.3 81.7 81.7
Linear 89.6 72.8 78.6
Full 92.3 80.3 81.3

Supervised FT LoRA 92.1 89.0 85.6
Linear 90.1 74.4 79.9
Full 92.0 82.4 85.7

D.3 CONVERGENCE RATE OF THE MULTI-TURN UNSUPERVISED IN-CONTEXT LEARNING

In addition, we investigate the performance of our unsupervised ICL with respect to the number of
turns. The results are shown in Figure D2. Interestingly, we find that the method often converges to
near-optimal performance with only a few turns, approaching the supervised ICL upper bound.

Figure D2: The convergence analysis of the multi-turns unsupervised ICL method. We study
the number of relabeling turns need for the unsupervised ICL method to converge. We find that the
proposed method converges to near-optimal performance after only a few turns and approaches the
upper bound supervised ICL performance.

D.4 THE INFLUENCE OF INSTRUCTION-TUNING AND MODEL SIZE

We study the performance of our methods, unsupervised fine-tuning and unsupervised ICL, when
applied to the instruction-tuned Llama-3.1-8B and the larger scale Llama-3.1-70B models. Results
show that our joint inference framework is effectively applicable across different model sizes com-
pared to Chain-of-Thought (Figure D3), which can improve a foundation model only for large-scale
models. In addition, even for the large-scale Llama-3.1-70B model, our unsupervised fine-tuning
and unsupervised ICL significantly outperform the Chain-of-Thought prompting technique. In par-
ticular, it surpasses CoT by 5% and 4% on the SST-2 and RTE datasets, respectively, providing a
principled approach to enhance predictions for models across different sizes.
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Figure D3: Using instruction-tuned and larger scale models. We evaluate our methods on the base
8B, instruction-tuned 8B-Instruct, and a larger 70B-Instruct from the Llama-3.1 family. We find that
both proposed methods scale to instruction-tuned and larger-scale models consistently outperform
zero-shot baselines. Notably, our methods applied to the base non-tuned 8B model outperform or
work closely to the zero-shot methods on a ×9 larger 70B-Instruct that also benefits from additional
training.

D.5 WEAK IN-CONTEXT LEARNING CAPABILITIES AND JOINT INFERENCE FRAMEWORK

Small models can still exhibit ICL capabilities and improve upon zero-shot performance in some
cases. To show that, we conduct extensive experiments on RTE, SST2 and BoolQ datasets using
small models (Table D2). We find that whenever a small model exhibits ICL capabilities, meaning
that supervised ICL outperforms zero-shot baseline, one can expect improvements with the unsuper-
vised ICL as well. For instance, on the SST2 dataset with the Phi 1.5 model supervised ICL achieves
42.7% relative improvement over zero-shot and the unsupervised ICL achieves 44% improvement.
With the 3B parameter model, supervised and unsupervised ICL outperform zero-shot baseline by a
large margin consistently across all datasets.

Table D2: Small models can be improved via joint inference framework whenever they exhibit
ICL capabilities.

RTE SST2 BoolQ

Zero-shot Unsup. ICL Sup. ICL Zero-shot Unsup. ICL Sup. ICL Zero-shot Unsup. ICL Sup. ICL
Llama 3.1 8B 62.7 78.8 80.8 77.7 92.4 93.3 66.7 82.6 84.1
Llama 3.2 3B 61.6 73.7 75.0 72.4 93.3 92.5 51.3 75.1 76.2
Phi 1.5 60.3 60.5 61.8 58.5 84.7 83.5 59.7 57.3 56.4
Llama 3.2 1B 50.8 55.8 56.5 68.6 54.3 61.0 50.0 50.0 54.9

Furthermore, even in cases when a small model doesn’t exhibit ICL capabilities, unsupervised fine-
tuning method can be used to improve this small model using feedback from a larger model with
stronger ICL capabilities (Table D3). For example, for the smallest tried Llama-3.2-1B model,
our unsupervised FT method significantly improves upon zero-shot when using a larger model to
compute the joint inference objective and provide feedback to the small task encoder (Table D3).
First, it is easy to see that even using the same 1B model to compute the joint inference objective
leads to substantial gains in the performance (Table D2). For example, as shown in the experiment
of previous paragraph, supervised ICL on the RTE dataset leads to only 5% improvement upon the
zero-shot baseline. In turn, unsupervised fine-tuning leads to 10% improvement, outperforming the
supervised ICL (Table D3). Furthermore, using larger models for computing the joint inference
objective further improves the performance of the small Llama-3.2-1B model, closely approaching
the supervised fine-tuning upper bound. For instance, on the BoolQ dataset, using the 70B model
in the objective results in a remarkable 24% absolute gain over the zero-shot baseline. We note that
this is a one-time adaptation cost per task, after which the inference is made with the low-cost small
model. Overall, these results suggest that both our methods readily applicable to a broad range of
LLMs.
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Table D3: Large models that exhibit ICL capabilities can be used to improve small models with
weak ICL capabilities.

Objective compute with SST2 RTE BoolQ
Zero-shot - 68.6 50.8 50.0

Unsupervised FT Llama 3.2 1B 90.5 60.8 57.4
Llama 3.2 8B 90.8 74.5 73.4
Llama 3.2 70B-Instruct 90.6 75.6 74.4

Supervised FT - 90.0 79.3 75.5
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