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ABSTRACT

Recently, significant progress has been made in understanding the generalization
of neural networks (NNs) trained by gradient descent (GD) using the algorithmic
stability approach. However, most of the existing research has focused on one-
hidden-layer NNs and has not addressed the impact of different network scaling.
Here, network scaling corresponds to the normalization of the layers. In this paper,
we greatly extend the previous work (Lei et al., 2022; Richards & Kuzborskij,
2021) by conducting a comprehensive stability and generalization analysis of GD
for two-layer and three-layer NNs. For two-layer NNs, our results are established
under general network scaling, relaxing previous conditions. In the case of three-
layer NNs, our technical contribution lies in demonstrating its nearly co-coercive
property by utilizing a novel induction strategy that thoroughly explores the effects
of over-parameterization. As a direct application of our general findings, we
derive the excess risk rate of O(1/

√
n) for GD algorithms in both two-layer and

three-layer NNs. This sheds light on sufficient or necessary conditions for under-
parameterized and over-parameterized NNs trained by GD to attain the desired risk
rate of O(1/

√
n). Moreover, we demonstrate that as the scaling factor increases or

the network complexity decreases, less over-parameterization is required for GD
to achieve the desired error rates. Additionally, under a low-noise condition, we
obtain a fast risk rate of O(1/n) for GD in both two-layer and three-layer NNs.

1 INTRODUCTION

Deep neural networks (DNNs) trained by (stochastic) gradient descent (GD) have achieved great
success in a wide spectrum of applications such as image recognition (Krizhevsky et al., 2017), speech
recognition (Hinton et al., 2012), machine translation (Bahdanau et al., 2014), and reinforcement
learning (Silver et al., 2016). In practical applications, most of the deployed DNNs are over-
parameterized, i.e., the number of parameters is far larger than the size of the training data. In Zhang
et al. (2016), it was empirically demonstrated that over-parameterized NNs trained with SGD can
generalize well to the test data while achieving a small training error. This has triggered a surge of
theoretical studies on unveiling this generalization mastery of DNNs.

In particular, norm-based generalization bounds are established using the uniform convergence
approach (Bartlett et al., 2017; 2021; Golowich et al., 2018; Long & Sedghi, 2019; Neyshabur
et al., 2015; 2018). However, this approach does not take the optimization algorithm and the data
distribution into account. Another line of work is to consider the structure of the data distribution and
provide algorithm-dependent generalization bounds. In Brutzkus et al. (2017); Li & Liang (2018), it is
shown that SGD for over-parameterized two-layer NNs can achieve small generalization error under
certain assumptions on the structure of the data. Allen-Zhu et al. (2019a) studies the generalization
of SGD for two-layer and three-layer NNs if there exists a true (unknown) NN with low error on the
data distribution. The other important line of work is the neural tangent kernel (NTK)-type approach
(Arora et al., 2019a; Cao & Gu, 2019; Chizat & Bach, 2018; Nitanda et al., 2019) which shows that
the model trained by GD is well approximated by the tangent space near the initialization and the
generalization analysis can be reduced to those of the convex case or kernel methods. However, most
of them either require a very high over-parameterization or focus on special function classes.

Recently, the appealing work Richards & Kuzborskij (2021) provides an alternative approach in a
kernel-free regime, using the concept of algorithmic stability (Bousquet & Elisseeff, 2002; Hardt
et al., 2016; Kuzborskij & Lampert, 2018). Specifically, it uses the model-average stability Lei &
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Ying (2020a) to derive generalization bounds of GD for two-layer over-parameterized NNs. Lei et al.
(2022) improves this result by deriving generalization bounds for both GD and SGD, and relaxing
the over-parameterization requirement. Taheri & Thrampoulidis (2023) derives fast generalization
bounds of GD with smooth activation for self-bounded losses under a separable distribution. However,
the above studies only focus on two-layer NNs and a very specific network scaling.
Contributions. We study the stability and generalization of GD for both two-layer and three-layer
NNs with generic network scaling factors. Our contributions are summarized as follows.
• We establish excess risk bounds for GD on both two-layer and three-layer NNs with general

network scaling under relaxed over-parameterization conditions. As a direct application of our
generalization results, we show that GD can achieve the excess risk rate O(1/

√
n) when the network

width m satisfies certain qualitative conditions related to the scaling parameter c, the size of training
data n, and the network complexity measured by the norm of the minimizer of the population risk
(refer to Section 3 for further discussions). Further, under a low-noise condition, our excess risk rate
can be improved to O(1/n) for both two-layer and three-layer NNs.
• A crucial technical element in the stability analysis for NNs trained by GD is establishing the

almost co-coercivity of the gradient operator. This property naturally holds true for two-layer NNs due
to the empirical risks’ monotonically decreasing nature which no longer remains valid for three-layer
NNs. Our technical contribution lies in demonstrating that the nearly co-coercive property still
holds valid throughout the trajectory of GD. To achieve this, we employ a novel induction strategy
that fully explores the effects of over-parameterization (refer to Section 4 for further discussions).
Furthermore, we are able to eliminate a critical assumption made in Lei et al. (2022) regarding an
inequality associated with the population risk of GD’s iterates (see Remark 2 for additional details).
• Our results characterize a quantitative condition in terms of network complexity and scaling factor

under which GD for two-layer and three-layer NNs can achieve the excess risk rate O(1/
√
n) in

under-parameterization and over-parameterization regimes. Our results shed light on sufficient or
necessary conditions for under-parameterized and over-parameterized NNs trained by GD to achieve
the desired risk rate O(1/

√
n). In addition, our results show that as the scaling factor increases or the

network complexity decreases, less over-parameterization is needed for GD to achieve the desired
error rates for tow-layer and three-layer NNs.

2 PROBLEM FORMULATION

Let P be a probability measure defined on a sample space Z = X × Y , where X ⊆ Rd and Y ⊆ R.
Let S = {zi = (xi, yi)}ni=1 be a training dataset drawn from P . One aims to build a prediction model
fW : X 7→ R parameterized by W in some parameter space W based on S. The performance of fW
can be measured by the population risk defined as L(fW) = 1

2

∫∫
X×Y

(
fW(x)− y

)2
dP (x, y). The

corresponding empirical risk is defined as

LS(fW) =
1

2n

n∑
i=1

(
fW(xi)− yi

)2
. (1)

We denote by ℓ(W; z) = 1
2 (fW(x) − y)2 the loss function of W on a data point z = (x, y). The

best possible model is the regression function f∗ defined as f∗(x) = E[y|x], where E[·|x] is the
conditional expectation given x. In this paper, we consider the prediction model fW with a neural
network structure. In particular, we are interested in two-layer and three-layer fully-connected NNs.

Two-layer NNs. A two-layer NN of width m > 0 and scaling parameter c ∈ [1/2, 1] takes the form

fW(x) =
1

mc

m∑
k=1

akσ(wkx),

where σ : R 7→ R is an activation function, W = [w⊤
1 , . . . ,w

⊤
m]⊤ ∈ W with W = Rm×d is the

weight matrix of the first layer, and a fixed a = [a1, . . . , am] with ak ∈ {−1,+1} is the weight of
the output layer. In the above formulation, wk ∈ R1×d denotes the weight of the edge connecting
the input to the k-th hidden node, and ak denotes the weight of the edge connecting the k-th hidden
node to the output node. The output of the network is scaled by a factor m−c that is decreasing with
the network width m. Two popular choices of scaling are Neural Tangent Kernel (NTK) (Allen-Zhu
et al., 2019b; Arora et al., 2019a;b; Jacot et al., 2018; Du et al., 2018; 2019) with c = 1/2 and mean
field (Chizat & Bach, 2018; Chizat et al., 2019; Mei et al., 2019; 2018) with c = 1. Richards &
Rabbat (2021) studied two-layer NNs with c ∈ [1/2, 1] and discussed the influence of the scaling
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by trading off it with the network complexity. We also focus on the scaling c ∈ [1/2, 1] to ensure
that meaningful generalization bounds can be obtained. We fix the output layer weight a and only
optimize the first layer weight W in this setting.

Three-layer NNs. For a matrix W, let Ws: and Wis denote the s-th row and the (i, s)-th entry of W.
For an input x ∈ Rd, a three-layer fully-connected NN with width m > 0 and scaling c ∈ (1/2, 1] is

fW(x) =
1

mc

m∑
i=1

aiσ
( 1

mc

m∑
s=1

W
(2)
is σ(W(1)

s: x)
)
,

where σ : R 7→ R is an activation function, W = [W(1),W(2)] ∈ W = Rm×(d+m) is the weight
matrix of the neural network, and a = [a1, . . . , am] with ai ∈ {−1,+1} is the fixed output layer
weight. Here, W(1) ∈ Rm×d and W(2) ∈ Rm×m are the weights at the first and the second layer,
respectively. For simplicity, we assume that the widths of each hidden layer are the same. Our
findings can readily extend to scenarios where the widths and scaling factors vary across layers. We
consider the setting of optimizing the weights in both the first and the second layers.

We consider the gradient descent to solve the minimization problem: minW LS(fW). For simplicity,
let L(W) = L(fW) and LS(W) = LS(fW).

Definition 1 (Gradient Descent). Let W0 ∈ W be an initialization point, and {ηt : t ∈ N} be a
sequence of step sizes. Let ∇ denote the gradient operator. At iteration t, the update rule of GD is

Wt+1 = Wt − ηt∇LS(Wt). (2)

We say the gradient operator ∇LS(W) is ϵ-almost co-coercivity with ϵ > 0 and α ≥ 0 if ⟨W−
W′,∇LS(W)−∇LS(W

′)⟩ ≥ α∥∇LS(W)−∇L(W′)∥22−ϵ∥W−W′−ηt(∇LS(W)−∇LS(W
′))∥22.

Target of Analysis. Let W∗ = argminW∈W L(W) where the minimizer is chosen to be the one
enjoying the smallest norm. For a randomized algorithm A to solve (1), let A(S) be the output
of A applied to the dataset S. The generalization performance of A(S) is measured by its excess
population risk, i.e., L(A(S)) − L(W∗). In this paper, we are interested in studying the excess
population risk of models trained by GD for both two-layer and three-layer NNs.

For any λ>0, let W∗
λ=argminW{L(W)+λ

2 ∥W−W0∥22}. We use the following error decomposition

E[L(A(S))]−L(W∗)=E
[
L(A(S))−LS(A(S))

]
+E

[
LS(A(S))−LS(W

∗
λ)−

λ

2
∥W∗

λ−W0∥22
]

+
[
L(W∗

λ) +
λ

2
∥W∗

λ −W0∥22 − L(W∗)
]
, (3)

where we use E[LS(W
∗
λ)] = L(W∗

λ). Here, we denote ∥ · ∥2 the standard Euclidean norm of
a vector or a matrix, and ∥ · ∥op the spectral norm of a matrix. The first term in (3) is called
the generalization error, which can be controlled by stability analysis. The second term is the
optimization error, which can be estimated by tools from optimization theory. The third term, denoted
by Λλ = L(W∗

λ) +
λ
2 ∥W

∗
λ −W0∥22 − L(W∗), is the approximation error which will be estimated

by introducing an assumption on the complexity of the NN (Assumption 3 in Section 3.1).

We use the following on-average argument stability (Lei & Ying, 2020a) to study generalization error.

Definition 2 (On-average argument stability). Let S = {zi}ni=1 and S′ = {z′i}ni=1 be drawn
i.i.d. from an unknown distribution P . For any i ∈ [n] =: {1, . . . , n}, define S(i) =
{z1, . . . , zi−1, z

′
i, zi+1, . . . , zn} as the set formed from S by replacing the i-th element with z′i.

We say A is on-average argument ϵ-stable if ES,S′,A
[
1
n

∑n
i=1 ∥A(S)−A(S(i))∥22

]
≤ ϵ2.

Our analysis requires the following standard assumptions (Lei et al., 2022; Richards & Kuzborskij,
2021). Both sigmoid and hyperbolic tangent activation functions satisfy Assumption 1.

Assumption 1 (Activation function). The activation function a 7→ σ(a) is continuous and twice
differentiable with |σ(a)| ≤ Bσ , |σ′(a)| ≤ Bσ′ and |σ′′(a)| ≤ Bσ′′ , where Bσ, Bσ′ , Bσ′′ > 0.

Assumption 2 (Inputs, labels and loss). There exist constants cx, cy, c0 > 0 such that ∥x∥2 ≤ cx ,
|y| ≤ cy and max{ℓ(0; z), ℓ(W0; z)} ≤ c0 for any x ∈ X , y ∈ Y and z ∈ Z .

Assumption 2 requires that the loss is uniformly bounded when evaluated under the initialization.
One can verify that this requirement holds true for some widely used activations including sigmoid
activation and hyperbolic tangent activation for any initialization.
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3 MAIN RESULTS

In this section, we present our main results on the excess population risk of NNs trained by GD.

3.1 TWO-LAYER NEURAL NETWORKS WITH SCALING PARAMETERS

We say a function ℓ : W×Z → R is ρ-smooth if for any W,W′ ∈ W and z ∈ Z , there holds
ℓ(W; z)−ℓ(W′; z)≤⟨∇ℓ(W′; z),W−W′⟩+ρ

2∥W−W′∥22. We denote B ≍ B′ if there exist some
universal constants c1, c2>0 such that c1B≥B′≥c2B, and denote B ≳ B′ (B ≲ B′) if there exists

a constant c > 0 such that B ≥ cB′ (cB ≤ B′). Let ρ = c2x
(B2

σ′+BσBσ′′

m2c−1 +
Bσ′′cy
mc

)
. The following

theorem to be proved in Appendix A.1 presents generalization error bounds of GD for two-layer NNs.

Theorem 1 (Generalization error). Suppose Assumptions 1 and 2 hold. Let {Wt} be produced by
(2) with ηt ≡ η ≤ 1/(2ρ) based on S. Assume

m ≳
(
(ηT )2(1 + ηρ)

√
ρ(ρηT + 2)

/
n
) 2

4c−1 + (ηT )
3

4c−1 +
(
ηT

) 1
c . (4)

Then, for any t ∈ [T ], there holds E[L(Wt)− LS(Wt)] ≤
(
4e2η2ρ2t

n2 + 4eηρ
n

)∑t−1
j=0 E

[
LS(Wj)

]
.

Remark 1. Theorem 1 establishes the first generalization results for general c ∈ [1/2, 1], which shows
that the requirement on m becomes weaker as c becomes larger. Indeed, with a typical choice ηT ≍
n

c
6µ+2c−3 (as shown in Corollary 4 below), the assumption (4) becomes m ≳ n

1
6µ+2c−3 (1+

51−96µ
8(8c−3)

).
This requirement becomes milder as c increases for any µ ∈ [0, 1], which implies that large scaling
reduces the requirement on the network width. In particular, our assumption only requires m ≳ ηT
when c = 1. Lei et al. (2022) provided a similar generalization bound with an assumption m ≳
(ηT )5/n2 + (ηT )2, and our result with c = 1/2 is consistent with their result.

The following theorem to be proved in Appendix A.2 develops the optimization error bounds of GD.

Theorem 2 (Optimization error). Suppose Assumptions 1 and 2 hold. Let {Wt} be produced by (2)
with ηt ≡ η ≤ 1/(2ρ) based on S. Let b̃ = c2xBσ′′( 2Bσ′cx

mc−1/2 +
√
2c0) and assume (4) holds. Assume

m ≳
(
T (

√
ηT + ∥W∗

1
ηT

−W0∥2)
(η3ρ2T 2

n2
+

η2Tρ

n
+ 1

)) 1
c . (5)

Then we have

E[LS(WT )]− LS(W
∗
1

ηT
)− 1

2ηT
∥W∗

1
ηT

−W0∥22 ≤ 2b̃

mc
(
√
2ηTc0 + ∥W∗

1
ηT

−W0∥2)

×
((8e2η3ρ2T 2

n2
+
8eη2Tρ

n

) T−1∑
s=0

E
[
LS(Ws)

]
+ ∥W∗

1
ηT

−W0∥22 + ηT
[
L(W∗

1
ηT

)−L(W∗)
])
.

We can combine generalization and optimization error bounds together to derive our main result of GD
for two-layer NNs. It is worth mentioning that our excess population bound is dimension-independent,
which is mainly due to that stability analysis focuses on the optimization process trajectory, as opposed
to the uniform convergence approach which involves the complexity of function space and thus is
often dimension-dependent. In addition, the following theorem holds for both random initialization
and fixed initialization settings. Without loss of generality, we assume ηT ≥ 1.

Theorem 3 (Excess population risk). Suppose Assumptions 1 and 2 hold. Let {Wt} be produced by
(2) with ηt ≡ η ≤ 1/(2ρ). Assume (4) and (5) hold. For any c ∈ [1/2, 1], if ηTm1−2c = O(n) and
m ≳ (ηT (

√
ηT +∥W∗

1
ηT

−W0∥2))1/c, then E[L(WT )−L(W∗)] = O
(
ηTm1−2c

n L(W∗)+Λ 1
ηT

)
.

Remark 2. Theorem 3 provides the first excess risk bounds of GD for two-layer NNs with general
scaling parameter c ∈ [1/2, 1] which recovers the previous work Richards & Kuzborskij (2021); Lei
et al. (2022) with c = 1/2. Specifically, Richards & Kuzborskij (2021) derived the excess risk bound
O
(
ηT
n L(W∗)+Λ 1

ηT

)
with m ≳ (ηT )5, we relax this condition to m ≳ (ηT )3 by providing a better

estimation of the smallest eigenvalue of a Hessian matrix of the empirical risk (see Lemma A.6).
This bound was obtained in Lei et al. (2022) under a crucial condition E[L(Ws)] ≥ L(W∗

1
ηT

) for

any s ∈ [T ], which is difficult to verify in practice. Here, we are able to remove this condition by
using L(W∗

1
ηT

)−L(Ws)≤L(W∗
1

ηT

)−L(W∗)≤Λ 1
ηT

since L(Ws)≥L(W∗) when controlling the

bound of GD iterates (see Lemma A.7 for details). Furthermore, if we ignore the effect of W∗
1

ηT

and

L(W∗), Theorem 3 implies that the larger the scaling parameter c is, the better the excess risk bound
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Figure 1: Scaling parameter c versus Network complexity parameter µ for Part (a) in Corollary 4 (left) and Part
(a) in Corollary 8 (right). Blue Region without dots: values of c and µ where over-parameterization is necessary
to achieve error bound O(1/

√
n). Blue Region with dots: values of c and µ where under-parameterization is

sufficient to achieve error bound O(1/
√
n). Pink Region: the desired bound cannot be guaranteed.

is. The reason could be that the smoothness parameter related to the objective function along the GD
trajectory becomes smaller for a larger c (see Lemma A.3 for details).

As a direct application of Theorem 3, we can derive the excess risk rates of GD for two-layer NNs
by properly trade-offing the generalization, optimization and approximation errors. To this end,
we introduce the following assumption to control the approximation error which can interpret the
complexity of the network, i.e., how well the network approximates the least population risk. To
achieve guarantees on the excess population risk, the approximation error should be sufficiently small,
which can be interpreted as a complexity assumption of the learning problem.
Assumption 3 (Richards & Rabbat (2021)). There is µ∈ [0, 1] and population risk minimizer W∗

with ∥W∗∥2≤m
1
2−µ.

Corollary 4. Let assumptions in Theorem 3 hold and Assumption 3 hold. Suppose c
3 + µ > 1

2 .

(a) If c ∈ [1/2, 3/4) and c + µ ≥ 1, we can choose m ≍ (ηT )
3
2c and ηT such that n

c
6µ+2c−3 ≲

ηT ≲ n
c

3−4c . If c ∈ [3/4, 1], we can choose m ≍ (ηT )
3
2c and ηT such that ηT ≳ n

c
6µ+2c−3 .

Then there holds E[L(WT )− L(W∗)] = O
(
1/
√
n
)
.

(b) Assume L(W∗) = 0. We can choose m ≍ (ηT )
3
2c and ηT such that ηT ≳ n

2c
6µ+2c−3 , and get

E[L(WT )− L(W∗)] = O
(
1/n

)
.

Corollary 4 shows that for a fixed µ, the lower bound of m becomes smaller as c increases. It means
that large c relaxes the requirement to the width m for GD to achieve the excess risk rate O(1/

√
n).

The difference made over c = 3/4 in part (a) is proof artifacts. More details is given in Appendix A.3.

Interpretation of the Results: Corollary 4 indicates a quantitative condition via the network com-
plexity and scaling factor where GD for two-layer NNs can achieve the excess risk rate O(1/

√
n) in

under-parameterization and over-parameterization regimes. Here, the under-parameterization regime
and over-parameterization regime correspond to the region that m ≲ n and m ≳ n, respectively.

Let us first explain the meanings of the regions and lines in the left panel of Figure 1. Specifically,
the blue regions (with or without dots) correspond to the conditions c

3 + µ > 1
2 and c + µ ≥ 1 in

part (a) of Corollary 4, while our results do not hold in the pink region which violates the conditions
in part (a). Furthermore, under conditions c

3 + µ > 1
2 and c + µ ≥ 1, that the desired bound in

part (a) can be achieved by choosing m ≍ (ηT )
3
2c for any ηT satisfying ηT ≳ n

c
6µ+2c−3 if c ≥ 3/4

and n
c

3−4c ≳ ηT ≳ n
c

6µ+2c−3 if c ∈ [1/2, 3/4), which further implies that GD with any width
m ≳ n

3
2(6µ+2c−3) if c ∈ [3/4, 1] and n

3
2(3−4c) ≳ m ≳ n

3
2(6µ+2c−3) if c ∈ [1/2, 3/4) with suitable

iterations can achieve the error rate O(1/
√
n). This observation tells us that the smallest width

for guaranteeing our results in part (a) is m ≍ n
3

2(6µ+2c−3) for any c ∈ [1/2, 1]. The dotted line
µ = 3/4−c/3 in the figure corresponds to the setting m ≍ n, i.e., 3

2(6µ+2c−3) = 1. Correspondingly,

5



Under review as a conference paper at ICLR 2024

we use the dotted blue region above the dotted line to indicate the under-parameterization region and
the blue region without dots below the dotted line for the over-parameterization region. We call the
network under-parameterized if m ≲ n and the network over-parameterized if m ≳ n . With the
above explanations, we can interpret the left panel of Figure 1 as follows.
• Firstly, from the figure, we know that, if values of c and µ are located above the dotted line
µ ≥ 3/4− c/3, i.e., the blue region with dots, under-parameterization is sufficient for GD to achieve
the error rate O(1/

√
n). It implies that the sufficient condition for under-parameterized NNs trained

by GD achieving the desired rate is µ ≥ 3/4− c/3. The potential reason is that the population risk
minimizer W∗ is well-behaved in terms of its norm being relatively small with µ being relatively
large there. In particular, when µ > 1/2, ∥W∗∥2 ≤ m1/2−µ tends to 0 as m tends to infinity. Hence,
it is expected that under-parameterized NNs can learn this relatively simple W∗ well. However, it is
worthy of mentioning that over-parameterization can also achieve the rate O(1/

√
n) since the dotted

line only indicates the smallest width required for achieving such an error rate.
• Secondly, from the figure, we see that, if c and µ belong to the blue region without dots which is
between the solid lines and the dotted line, then over-parameterization is necessary for achieving the
error rate O(1/

√
n). This is because, in the blue region without dots, that the conditions of choosing

m ≳ n
3

2(6µ+2c−3) in part (a) of Corollary 4 which will always indicate the over-parameterization
region, i.e., m ≳ n. Furthermore, from the above discussions, our theoretical results indicate that
the over-parameterization does bring benefit for GD to achieve good generalization in the sense that
GD can achieve excess risk rate O(1/

√
n) when c and µ is in the whole blue region (with or without

dots) while under-parameterization can only do so for the blue region with dots where the network
complexity is relatively simple, i.e., µ is relatively large.
• Thirdly, our results do not hold for GD when values of c and µ are in the pink region in the figure.
In particular, when µ < 1/6, our bounds do not hold for any c ∈ [1/2, 1]. We suspect that this is
due to the artifacts of our analysis tools and it remains an open question to us whether we can get
a generalization error bound O(1/

√
n) when µ < 1/6. In addition, our results in Corollary 4 also

indicate that the requirement on m becomes weaker as c and µ become larger. It implies that networks
with larger scaling and simpler network complexity are biased to weaken the over-parameterization
for GD to achieve the desired error rates for two-layer NNs.
Remark 3. In Lemma A.3, we show that fW is Bσ′cxm

1
2−c-Lipschitz. Combining this result with

Assumption 3 we know |fW∗(x)−f0(x)|2 = O(m2(1−c−µ)). In order for |fW∗(x)−f0(x)|2 to not
vanish as m tends to infinity, one needs c+ µ ≤ 1. In Corollary 4, we also need c

3 + µ > 1
2 to ensure

the excess risk bounds vanish. Combining these two conditions together implies that c can not be
larger than 3/4. That is, for the range c ∈ (3/4, 1], the conditions in Corollary 4 restrict the class of
functions the networks can represent as m tends to infinity. However, we want to emphasize that even
for the simplest case that |fW∗(x)− f0(x)|2 tends to 0 as m tends to infinity, our results still imply
that over-parameterization does bring benefit for GD to achieve optimal excess risk rate O(1/

√
n).

Besides, our corollary mainly discusses the conditions for achieving the excess risk rate O(1/
√
n)

and O(1/n). The above-mentioned conditions will be milder if we consider the slower excess risk
rates. Then the restriction on c will be weaker. Furthermore, our main result (i.e., Theorem 3) does
not rely on Assumption 3, and it holds for any setting.
Comparison with the Existing Work: Part (b) in Corollary 4 shows fast rate O(1/n) can be derived
under a low-noise condition L(W∗) = 0 which is equivalent to the fact that there is a true network
such that y = fW∗(x) almost surely. Similar to part (a), large c and large µ also help weaken the
requirement on m in this case. For a special case µ = 1/2 and c = 1/2, Lei et al. (2022) proved that
GD for two-layer NNs achieves the excess risk rate O(1/

√
n) with m ≍ n3/2 and ηT ≍

√
n in the

general case, which is further improved to O(1/n) with m ≍ n3 and ηT ≍ n in a low-noise case.
Corollary 4 recovers their results with the same conditions on m and ηT for this setting.

Richards & Rabbat (2021) studied GD with weakly convex losses and showed that the excess
population risk is controlled by O

(
ηTL2

n +
∥Wϵ−W0∥2

2

ηT +ϵ(ηT+∥W∗−W0∥2)
)

if 2ηϵ < 1/T when
the empirical risk is ϵ-weakly convex and L-Lipschitz continuous, where Wϵ = argminW LS(W)+
ϵ∥W−W0∥22. If the approximation error is small enough, then the O(1/

√
n) bound can be achieved

by choosing ηT =
√
n if ∥Wϵ∥2 = O(1). Indeed, their excess risk bound will not converge for the

general case. Specifically, note that LS(Wϵ)+ϵ∥Wϵ−W0∥22 ≤ LS(0)+ϵ∥W0∥22, then there holds
∥Wϵ −W0∥22 = O(1/ϵ). The simultaneous appearance of 1

ηTϵ and ηTϵ causes the non-vanishing
error bound. Richards & Rabbat (2021) also investigated the weak convexity of two-layer NNs
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with a smooth activation function. Under the assumption that the derivative of the loss function is
uniformly bounded by a constant, they proved that the weak convexity parameter is controlled by
O(d/mc). We provide a dimension-independent weak convexity parameter which further yields a
dimension-independent excess risk rate O(1/

√
n). More discussion can be found in Appendix A.3.

3.2 THREE-LAYER NEURAL NETWORKS WITH SCALING PARAMETERS

Now, we present our results for three-layer NNs. Let ρ̂ = 4B2(1 + 2B1) and BT =
√
ηT + ∥W0∥2,

where B1, B2 > 0 are constants depending on cx, Bσ′ , Bσ′′ and c0, whose specific forms are given
in Appendix B.1. We first present the generalization bounds for three-layer NNs.
Theorem 5 (Generalization error). Suppose Assumptions 1 and 2 hold. Let {Wt} be produced by
(2) with ηt ≡ η ≤ 1/(8ρ̂) based on S. Assume

m ≳ (ηT )4+(ηT )
1

4c−2 +∥W0∥
4

8c−3

2 +∥W0∥
1

6c−3

2 +
(
(ηTBT )

2+
(ηT )

7
2BT

n

) 1

5c− 1
2

+
(
(ηT )

3
2B2

T +
(ηT )3BT

n

) 1
4c−1 +

(
(ηT )2BT +

(ηT )
7
2

n

) 1
5c−1 +

(
(ηT )

3
2BT +

(ηT )3

n

) 1

4c− 3
2 . (6)

Then, for any t ∈ [T ], E[L(Wt)− LS(Wt)] ≤
(
4e2η2ρ̂2t

n2 + 4eηρ̂
n

)∑t−1
j=0 E

[
LS(Wj)

]
.

Similar to Theorem 1, Theorem 5 also implies that a larger scaling c relaxes the requirement on m.
Remark 4. As compared to two-layer NNs, the analysis of three-layer NNs is more challenging since
we can only show that λmax

(
∇2ℓ(W; z)

)
≤ ρW where ρW depends on ∥W∥2, i.e., the smoothness

parameter of ℓ relies on the upper bound of W, while that of two-layer NNs is uniformly bounded. In
this way, three-layer NNs do not enjoy the almost co-coercivity, which is the key step to controlling
the stability of GD. To handle this problem, we first establish a crude estimate ∥Wt−W0∥2≤ηtm2c−1

for any c > 1/2 by induction strategy. Once having the estimate of ∥Wt∥2, we can upper bound
ρW by a constant ρ̂ if m satisfies (6). It implies that the loss is ρ̂-smooth along the trajectory of GD.
Finally, by assuming η≤1/(2ρ̂) we build the upper bound ∥Wt−W0∥2≤

√
2c0ηt. However, for the

case c = 1/2, we cannot get a similar bound due to the condition m2−4c∥Wt−W0∥22 = O(m2c−1).
Specifically, the upper bound of ∥Wt−W0∥2 in this case contains a worse term 2t, which is not easy
to control. Therefore, we only consider c∈(1/2, 1] for three-layer NNs. The estimate of ∥Wt−W0∥2
when c=1/2 remains an open problem. The detailed proof of the theorem is given in Appendix B.1.

Let CT,n = ηT + η3T 2/n2, ĈW = 4B1

(
m−3c(∥W∥22 + 2c0ηT ) + m

1
2−2c(∥W∥2 +

√
2c0ηT )

)
and B̂W =

( B2
σ′cx

m2c−1/2 (
√
2c0ηT + ∥W∥2) + Bσ′Bσ

m2c−1

)
(2
√
2ηTc0 + ∥W∥2) +

√
2c0 . The following

theorem gives optimization error bounds for three-layer NNs. The proof is given in Appendix B.2.
Theorem 6 (Optimization error). Let Assumptions 1, 2 hold. Let {Wt} be produced by (2) with
ηt ≡ η ≤ 1/(8ρ̂). Assume m is large enough such that (6) and

m ≳(CT,n(BT + ∥W∗
1

ηT
∥2)4)

1

5c− 1
2 +(CT,n(BT + ∥W∗

1
ηT

∥2)3)
1

4c−1 +(CT,n(BT + ∥W∗
1

ηT
∥2)2)

1

4c− 3
2

+ (CT,n(BT + ∥W∗
1

ηT
∥2))

1

2c− 1
2 . (7)

Then we have

E
[
LS(WT )]−LS(W

∗
1

ηT
)− 1

2ηT
∥W∗

1
ηT

−W0∥22
]
≤ ĈW∗

1
ηT

B̂W∗
1

ηT

((4e2η3T 2ρ̂2

n2
+

4eη2T ρ̂

n

)
×

T−1∑
s=0

E
[
LS(Ws)

]
+ ∥W∗

1
ηT

−W0∥22 + ηT
[
L(W∗

1
ηT

)− L(W∗)
])
.

Now, we develop excess risk bounds of GD for three-layer NNs by combining Theorem 5 and
Theorem 6 together. The proof is given in Appendix B.3.
Theorem 7 (Excess population risk). Suppose Assumptions 1 and 2 hold. Let {Wt} be produced
by (2) with η ≤ 1/(8ρ̂). Assume (6) and (7) hold. For any c ∈ (1/2, 1], if n ≳ ηT , then there holds
E[L(WT )−L(W∗)] = O

(
ηT
n L(W∗) + Λ 1

ηT

)
.

Finally, we establish excess risk bounds of GD for three-layer NNs by assuming Assumption 3 holds.
Corollary 8. Let assumptions in Theorem 7 and Assumption 3 hold. The following statements hold.

7
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(a) Assume µ ≥ 1/2. If c ∈ [9/16, 1], we can choose m ≍ (ηT )4 and ηT such that n
1

2(8µ−3) ≲

ηT ≲
√
n. If c ∈ (1/2, 9/16), we can choose m ≍ (ηT )

1
4c−2 and ηT such that n

2c−1
2µ+4c−3 ≲

ηT ≲
√
n. Then E[L(WT )− L(W∗)] = O(1/

√
n).

(b) Assume L(W∗) = 0 and µ ≥ 1/2. If c ∈ [9/16, 1], we can choose m ≍ (ηT )4 and ηT ≳ n
1

8µ−3 .
If c ∈ (1/2, 9/16), we can choose m ≍ (ηT )

1
4c−2 and ηT such that ηT ≳ n

4c−2
4c+2µ−3 . Then

E[L(WT )− L(W∗)] = O(1/n).

Discussion of the Results: Part (a) in Corollary 8 shows GD for three-layer NNs can achieve the
excess risk rate O(1/

√
n) with m ≍ (ηT )4 and n

1
2(8µ−3) ≲ ηT ≲

√
n for the case c ∈ [9/16, 1] and

m ≍ (ηT )
1

4c−2 and n
2c−1

2µ+4c−3 ≲ ηT ≲
√
n for the case c ∈ (1/2, 9/16), respectively. Note that there

is an additional assumption µ ≥ 1/2 in part (a). Combining this assumption with ∥W∗∥2 ≤ m
1
2−µ

together, we know that the population risk minimizer W∗ cannot be too large to reach the power of
the exponent of m. The potential reason is that we use a constant to bound the smoothness parameter
in the analysis for three-layer NNs. Part (a) also indicates a quantitative condition in terms of m and
c where GD for three-layer NNs can achieve the excess risk rate O(1/

√
n) in under-parameterization

and over-parameterization regimes, which is interpreted in the right panel of Figure 1. The results
in part (a) tell us that the smallest width for guaranteeing the desired bounds are m ≍ n

2
8µ−3 for

c ∈ [9/16, 1] and m ≍ n
1

2(2µ+4c−3) for c ∈ (1/2, 9/16). Similar to the left panel of Figure 1, the
dotted lines µ = 5

8 and µ = 7
4 − 2c in the right panel of Figure 1 correspond to the setting m ≍ n,

i.e., 2
8µ−3 = 1 and 1

2(2µ+4c−3) = 1. Hence, when c and µ belong to the blue region with dots,
under-parameterization is sufficient to achieve the desired rate. When c and µ are located in the blue
region without dots which is between the solid lines and the dotted line, over-parameterization is
necessary for GD to achieve the rate O(1/

√
n). Our results for three-layer NNs also imply that the

over-parameterization does bring benefit for GD to achieve good generalization in the sense that GD
can achieve excess risk rate O(1/

√
n). Under a low-noise condition, part (b) implies that the excess

risk rate can be improved to O(1/n) with suitable choices of m and ηT . These results imply that the
larger the scaling parameter is, the less over-parameterization is needed for GD to achieve the desired
error rate for both the general case and low-noise case.

Comparison with the Existing Work: Richards & Rabbat (2021) studied the minimal eigenvalue of
the empirical risk Hessian for a three-layer NN with a linear activation in the first layer for Lipschitz
and convex losses (e.g., logistic loss), while we focus on NNs with more general activation functions
for least square loss. See more detailed discussion in Appendix B.4. Ju et al. (2022) studied the
generalization performance of overparameterized three-layer NTK models with the absolute loss and
ReLU activation. They showed that the generalization error is in the order of O(1/

√
n) when there

are infinitely many neurons. They only trained the middle-layer weights of the networks. To the best
of our knowledge, our work is the first study on the stability and generalization of GD to train both
the first and the second layers of the network in the kernel-free regime.

4 MAIN IDEA OF THE PROOF

In this section, we present the main ideas for proving the main results in Section 3.

Two-layer Neural Networks. (3) decomposes the excess population risk into three terms: general-
ization error, optimization error and approximation error. We estimate these three terms separately.

Generalization error. From Lemma A.2 we know the generalization error can be upper bounded by
the on-average argument stability of GD. Hence, it remains to figure out the on-average argument
stability of GD. A key step in our stability analysis is to show that the loss is strongly smooth and
weakly convex, which can be obtained by the following results given in Lemma A.3:

λmax

(
∇2ℓ(W; z)

)
≤ρ and λmin

(
∇2ℓ(W; z)

)
≥−

(
c3xBσ′Bσ′′m

1
2−2c∥W−W0∥2+c2xBσ

√
2c0m

−c
)
.

Here ρ = O(m1−2c), λmax(A) and λmin(A) denote the largest and the smallest eigenvalue of A,
respectively. The lower bound of λmin(∇2ℓ(W; z)) is related to ∥W −W0∥2. We further show it is
uniformly bounded (see the proof of Theorem A.6). Then the smoothness and weak convexity of the
loss scale with m1−2c and mc, which implies that the loss becomes more smooth and more convex
for wider networks with a larger scaling.

8
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Based on the above results, we derive the following uniform stability bounds ∥Wt − W
(i)
t ∥2 ≤

2ηeT
√
2c0ρ(ρηT + 2)/n, where W

(i)
t is the iterates derived by applying SGD to S(i). Here, the

weak convexity of the loss plays an important role in presenting the almost co-coercivity of the
gradient operator, which helps us establish the recursive relationship of ∥Wt − W

(i)
t ∥2. Note

ρ = O(m1−2c) = O(1). Then we know ∥Wt −W
(i)
t ∥2 = O(m

1−2c

n (ηT )3/2), which implies that
GD is more stable for a wider neural network with a large scaling.

Optimization error. A key step is to use the smoothness and weak convexity to control

E[∥W∗
1

ηT
−Wt∥22]≤

(8e2η3ρ2t2
n2

+
8eη2tρ

n

)t−1∑
s=0

E[LS(Ws)]+2E
[
∥W∗

1
ηT
−W0∥22

]
+2ηT

[
L(W∗

1
ηT
)−L(W∗)

]
in Lemma A.3. We use L(W∗

1
ηT

)−L(Ws) ≤ L(W∗
1

ηT

)−L(W∗)≤Λ 1
ηT

to remove the condition

E[L(Ws)] ≥ L(W∗
1

ηT

) for any s ∈ [T ] in Lei et al. (2022). Then the optimization error can be

controlled by the monotonically decreasing of {LS(Wt)}. The proofs are given in Appendix A.2.

Excess population risk. Combining stability bounds, optimization bounds and approximation error
together, and noting that L(W∗

1
ηT

) + 1
2ηT ∥W

∗
1

ηT

−W0∥22 ≤ L(W∗) + 1
2ηT ∥W

∗ −W0∥22, one can
get the final error bound. The detailed proof can be found in Appendix A.3.

Three-layer Neural Networks. One of our technical contributions is to show that this almost
co-coercivity still holds true along the GD’s trajectory by a novel induction strategy fully exploring
the over-parameterization. In particular, we develop stability bounds and control the generalization
error by estimating the smoothness and curvature of the loss function:

λmax(∇2ℓ(W; z)) ≤ ρW and λmin(∇2ℓ(W; z))≥−CW(
2Bσ′Bσ

m2c−1
∥W(2)∥2 +

√
2c0),

where ρW and CW depend on ∥W∥2. The specific forms of ρW and CW are given in Appendix B.1.
As mentioned in Remark 4, it is not easy to estimate ∥Wt∥2 since the smoothness of the loss relies on
the norm of W in this case. We address this difficulty by first giving a rough bound of ∥Wt −W0∥2
by induction, i.e., ∥Wt −W0∥2 ≤ ηtm2c−1. Then, for any W produced by GD iterates, we can
control ρW by a constant ρ̂ if m is large enough. Finally, by assuming ηρ̂ ≤ 1/2, we prove that
∥Wt −W0∥2 ≤

√
2c0ηt and further get ∥Wt∥2 ≤ ∥W0∥2 +

√
2c0ηt.

After estimating ∥Wt∥2, we can develop the following almost co-coercivity of the gradient operator:
⟨Wt −W

(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )⟩ ≥ 2η

(
1− 4ηρ̂

)∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2

− ϵ̃t
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2
.

It helps to establish the uniform stability bound
∥∥Wt−W(i)

t

∥∥
2
≤2eηT

√
2c0ρ̂(ρ̂ηT+2)/n. Based on

stability bounds, we get generalization bounds by Lemma A.2. The proofs are given in Appendix B.1.

Similar to two-layer NNs, to estimate the optimization error for three-layer NNs, we first control
E[∥W∗

1
ηT

−Wt∥22] by using the smoothness and weak convexity of the loss. Then the desired bound

can be obtained by the monotonically decreasing property of {LS(Wt)}. The final error bounds
(Theorem 7 and Corollary 8) can be derived by plugging generalization and optimization bounds
back into (3). The detailed proof can be found in Appendix B.3.

5 CONCLUSION

In this paper, we extend the previous work (Lei et al., 2022; Richards & Kuzborskij, 2021) by
establishing the stability and generalization of GD for NNs with generic network scaling factors. Our
results provide a quantitative condition that relates the scaling factor and network complexity to the
achievement of the desired excess risk rate in two-layer and three-layer NNs.

There are several remaining questions for further study. Firstly, can our analysis of GD for NNs be
extended to SGD with reduced computation cost? The main challenge lies in the non-monotonicity
of objective functions in SGD, which is crucial for the stability analysis. Secondly, our analysis for
three-layer NNs does not apply to the case of c = 1/2. It would be interesting to develop a result
specifically for this setting. Lastly, extending our results to multiple layers would be interesting. The
main difficulty lies in estimating the maximum and minimum eigenvalues of a Hessian matrix of the
empirical risk, which rely on the norm of the coupled weights of different layers.
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Appendix for “Generalization Guarantees of Gradient Descent
for Shallow Neural Networks”

A PROOFS OF TWO-LAYER NEURAL NETWORKS

A.1 PROOFS OF GENERALIZATION BOUNDS

We first introduce the self-bounding property of smooth functions (Srebro et al., 2010).
Lemma A.1 (Self-bounding property). Suppose for all z ∈ Z , the function W 7→ ℓ(W; z) is
nonnegative and ρ-smooth. Then ∥∇ℓ(W; z)∥22 ≤ 2ρℓ(W; z).

The following lemma establishes the connection (Lei & Ying, 2020a) between the on-average
argument stability and the generalization error.
Lemma A.2. Let A be an algorithm. If for any z, the map W 7→ ℓ(W; z) is ρ-smooth, then

E[L(A(S))−LS(A(S))]≤ ρ

2n

n∑
i=1

E[∥A(S)−A(S(i))∥22]+
(2ρE[LS(A(S))]

n

n∑
i=1

E[∥A(S)−A(S(i))∥22]
) 1

2 .

We work with vectorized quantities so W ∈ Rmd. Then ∇fW(x) ∈ Rmd and ∇2fW(x) ∈
Rmd×md. Denote by ∥W∥op the spectral norm of a matrix W. We first introduce the following
lemma, which shows that the loss function is smooth and weakly convex.
Lemma A.3 (Smoothness and Curvature). Suppose Assumptions 1 and 2 hold. Let W0 be the initial
point of GD. For any fixed W ∈ Rm×d and any z ∈ Z , there holds

λmax

(
∇2ℓ(W; z)

)
≤ρ with ρ=c2x

(B2
σ′+BσBσ′′

m2c−1
+
Bσ′′cy
mc

)
,

λmin

(
∇2ℓ(W; z)

)
≥−

(c3xBσ′Bσ′′

m2c− 1
2

∥W−W0∥2+
c2xBσ

√
2c0

mc

)
.

Proof. Recall that fW(x) = 1
mc

∑m
k=1 akσ(wkx). Let v = (v1, . . . ,vm) ∈ Rdm with vk ∈ Rd

where k ∈ [m]. According to Assumption 1,2 and noting that |ak| = 1, we can give the following
estimations:

∥∇2fW(x)∥op = max
v:∥v∥2≤1

m∑
k=1

ak
mc

⟨vk,x⟩2σ′′(wkx)

≤ ∥x∥22Bσ′′

mc
max

v:∥v∥2≤1

m∑
k=1

∥vk∥22

≤ c2xBσ′′

mc
, (A.1)

∥∇fW(x)∥22 =

m∑
k=1

∥∥ ak
mc

xσ′(wkx)
∥∥2
2
≤ B2

σ′c2x
m2c−1

(A.2)

and ∣∣fW(x)− y
∣∣ ≤ ∣∣fW(x)

∣∣+ cy ≤ m1−cBσ + cy. (A.3)
Note

∇2ℓ(W; z) = ∇fW(x)∇fW(x)⊤ +∇2fW(x)
(
fW(x)− y

)
. (A.4)

Then for any W ∈ Rmd, we can upper bound the maximum eigenvalue of the Hessian as

λmax(∇2ℓ(W; z)) ≤ ∥∇fW(x)∥22 + ∥∇2fW(x)∥op|fW(x)− y|

≤ B2
σ′c2x

m2c−1
+

c2xBσ′′

mc

(
m1−cBσ + cy

)
= c2x

(B2
σ′ +BσBσ′′

m2c−1
+

Bσ′′cy
mc

)
,

13
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which implies that the loss function is ρ-smooth with ρ = c2x
(B2

σ′+BσBσ′′

m2c−1 +
Bσ′′cy
mc

)
.

For any W,W′ ∈ Rmd, from Assumption 1 we know∣∣fW(x)−fW′(x)
∣∣ ≤ 1

mc

m∑
k=1

∣∣σ(wkx)−σ(w′
kx)

∣∣ ≤ Bσ′

mc

m∑
k=1

∣∣(wk−w′
k)x

∣∣ ≤ cxBσ′

mc−1/2
∥W−W′∥2.

(A.5)
Combining (A.4) with the fact that ∇fW(x)∇fW(x)⊤ is positive semi-definite together, we obtain

λmin(∇2ℓ(W; z)) ≥ −∥∇2fW(x)∥op
∣∣fW(x)− y

∣∣
≥ −c2xBσ′′

mc

(∣∣fW(x)− fW0
(x)

∣∣+ ∣∣fW0
(x)− y

∣∣)
≥ −c2xBσ′′

mc

( cxBσ′

mc−1/2
∥W −W0∥2 +

√
2ℓ(W0; z)

)
≥ −c2xBσ′′

mc

( cxBσ′

mc−1/2
∥W −W0∥2 +

√
2c0

)
, (A.6)

where in the third inequality we used (A.5) with W′ = W0 and in the last inequality we used
Assumption 2. The proof is completed.

To give an upper bound of the uniform stability, we need the following lemma which shows how the
GD iterate will deviate from the initial point.

Lemma A.4 (Richards & Kuzborskij (2021)). Suppose the loss is ρ-smooth and η ≤ 1/(2ρ). Then
for any t ≥ 0, i ∈ [n],

∥Wt −W0∥2 ≤
√

2ηtLS(W0),

∥W(i)
t −W0∥2 ≤

√
2ηtLS(i)(W0).

The following lemma shows an almost co-coercivity of the gradient operator associated with shallow
neural networks. For any i ∈ [n], define S(i) = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zn} as the set formed

from S by replacing the i-th element with z′i. For any W ∈ W ,

LS\i(W) = LS(W)− 1

n
ℓ(W; zi) = LS(i)(W)− 1

n
ℓ(W; z′i).

Let {Wt} and {W(i)
t } be the sequence produced by GD based on S and S(i), respectively.

Lemma A.5 (Almost Co-coercivity of the Gradient Operator). Suppose the loss is ρ-smooth and
η ≤ 1/(2ρ). Then

⟨Wt −W
(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )⟩ ≥ 2η

(
1− ηρ

2

)∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2

− ϵt
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2
,

where ϵt =
c2xBσ′′
mc

(
cxBσ′
mc−1/2 (1 + ηρ)

∥∥Wt −W
(i)
t

∥∥
2
+ cxBσ′

√
2ηTc0

mc−1/2 +
√
2c0

)
.

Proof. This lemma can be proved in a similar way as Lemma 5 in Richards & Kuzborskij (2021)
except the estimation of the eigenvalue of Hessian matrix. Specifically, for α ∈ [0, 1], let W(α) =

αWt + (1 − α)W
(i)
t − αη

(
∇ℓ(Wt; z) − ∇ℓ(W

(i)
t ; z)

)
. According to (A.1) and (A.4) , for any

W ∈ W , we know

λmin

(
∇2LS\i(W)

)
≥ −c2xBσ′′

mc

( 1

n

∑
j∈[n],j ̸=i

|fW(xj)− yj |
)
.
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Let W = W(α). Note Lemma A.3 shows that the loss is ρ-smooth with ρ = c2x
(B2

σ′+BσBσ′′

m2c−1 +
Bσ′′cy
mc

)
. Then from (A.5) and the smoothness of ℓ we can get

1

n

∑
j∈[n],j ̸=i

|fW(α)(xj)− yj |

≤ 1

n

∑
j∈[n],j ̸=i

|(fW(α)(xj)− f
W

(i)
t
(xj)) + (f

W
(i)
t
(xj)− fW0

(xj)) + (fW0
(xj)− yj)|

≤ cxBσ′

mc−1/2
∥W(α)−W

(i)
t ∥2 +

cxBσ′

mc−1/2
∥W(i)

t −W0∥2 +
√

2LS\i(W0)

≤ cxBσ′α

mc−1/2

(
∥Wt −W

(i)
t ∥2 + η∥∇ℓ(Wt; z)−∇ℓ(W

(i)
t ; z)∥2

)
+

cxBσ′
√
2ηTc0

mc−1/2
+

√
2c0

≤ cxBσ′(1 + ηρ)

mc−1/2
∥Wt −W

(i)
t ∥2 +

cxBσ′
√
2ηTc0

mc−1/2
+
√
2c0,

where in the third inequality we used Lemma A.4 and ℓ(W0; z) ≤ c0.

Combining the above two inequalities together, we get

λmin

(
∇2LS\i(W(α))

)
≥ −c2xBσ′′

mc

(cxBσ′(1 + ηρ)

mc−1/2
∥Wt −W

(i)
t ∥2 +

cxBσ′
√
2ηTc0

mc−1/2
+

√
2c0

)
.

Similarly, let W̃(α) = αW
(i)
t + (1− α)Wt − αη

(
∇ℓ(W

(i)
t ; z))−∇ℓ(Wt; z)

)
, we can prove that

λmin

(
∇2LS\i(W̃(α))

)
≥ −c2xBσ′′

mc

(cxBσ′(1 + ηρ)

mc−1/2
∥Wt −W

(i)
t ∥2 +

cxBσ′
√
2ηTc0

mc−1/2
+

√
2c0

)
.

The remaining arguments in proving the lemma are the same as Lemma 5 in Richards & Kuzborskij
(2021). We omit the proof for simplicity.

Based on the almost co-coercivity property of the gradient operator, we give the following uniform
stability theorem.

Theorem A.6 (Uniform Stability). Suppose Assumptions 1 and 2 hold. Let S, S(i) be constructed
in Definition 2. Let {Wt} and {W(i)

t } be produced by (2) with η ≤ 1/(2ρ) based on S and S(i),
respectively. Assume (4) holds. For any t ∈ [T ], there holds

∥Wt −W
(i)
t ∥2 ≤

2ηeT
√

2c0ρ(ρηT + 2)

n
.

Proof. Recall that

LS\i(W) = LS(W)− 1

n
ℓ(W; zi) = LS(i)(W)− 1

n
ℓ(W; z′i).

Note W = Rm×d. Then by the update rule Wt+1 = Wt − η∇LS(Wt), there holds∥∥Wt+1 −W
(i)
t+1

∥∥2
2

=
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)
− η

n

(
∇ℓ(Wt; zi)−∇ℓ(W

(i)
t ; z′i)

)∥∥2
2

≤ (1 + p)
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2

+
η2(1 + 1/p)

n2

∥∥∇ℓ(Wt; zi)−∇ℓ(W
(i)
t ; z′i)

∥∥2
2

≤ (1 + p)
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2

+
2η2(1 + 1/p)

n2

(∥∥∇ℓ(Wt; zi)
∥∥2
2
+

∥∥∇ℓ(W
(i)
t ; z′i)

∥∥2
2

)
, (A.7)

where in the first inequality we used (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2.
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According to Lemma A.5 we can get∥∥Wt −W
(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2

=
∥∥Wt−W(i)

t

∥∥2
2
+η2

∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2
−2η

〈
Wt−W

(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )

〉
≤
∥∥Wt−W(i)

t

∥∥2
2
+η2

∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2
−4η2

(
1− ηρ

2

)∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2

+ 2ηϵt
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2
,

where ϵt =
cxBσ′′
mc

( cxBσ′
mc−1/2 (1 + ηρ)

∥∥Wt −W
(i)
t

∥∥
2
+ cxBσ′

√
2ηTc0

mc−1/2 +
√
2c0

)
.

Rearranging the above inequality and noting that ηρ ≤ 1/2, we obtain

(1− 2ηϵt)
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2

≤
∥∥Wt −W

(i)
t

∥∥2
2
+ η2(2ηρ− 3)

∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2
≤

∥∥Wt −W
(i)
t

∥∥2
2
.

We can choose m large enough to ensure 2ηϵt < 1 holds for any t ∈ [T ]. Indeed, 2ηϵt < 1 holds
as long as condition (4) holds. We will discuss it at the end of the proof. Now, plugging the above
inequality back into (A.7) yields∥∥Wt+1 −W

(i)
t+1

∥∥2
2

≤ 1 + p

1− 2ηϵt

∥∥Wt −W
(i)
t

∥∥2
2
+

2η2(1 + 1/p)

n2

(∥∥∇ℓ(Wt; zi)
∥∥2
2
+
∥∥∇ℓ(W

(i)
t ; z′i)

∥∥2
2

)
. (A.8)

We can apply (A.8) recursively and derive∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤2η2(1 + 1/p)

n2

t∑
j=0

(∥∥∇ℓ(Wj ; zi)
∥∥2
2
+

∥∥∇ℓ(W
(i)
j ; z′i)

∥∥2
2

) t∏
j̃=j+1

1 + p

1− 2ηϵj̃
,

(A.9)

where we used W0 = W
(i)
0 .

According to Lemma A.1 and Lemma A.4, we know

∥∇ℓ(Wj ; z)∥22 ≤ 2∥∇ℓ(Wj ; z)−∇ℓ(W0; z)∥22 + 2∥∇ℓ(W0; z)∥22
≤ 2ρ2∥Wj −W0∥22 + 4ρℓ(W0; z) ≤ 4ρ2ηjLS(W0) + 4ρℓ(W0; z).

Similarly, we can show that

∥∇ℓ(W
(i)
j ; z)∥22 ≤ 4ρ2ηjLS(i)(W0) + 4ρℓ(W0; z).

Combining the above three inequalities together, we get∥∥Wt+1 −W
(i)
t+1

∥∥2
2

≤ 8ρη2(1 + 1/p)

n2

t∑
j=0

(
ρηjLS(W0) + ℓ(W0; zi) + ρηjLS(i)(W0) + ℓ(W0; z

′
i)
) t∏

j̃=j+1

1 + p

1− 2ηϵj̃

≤ 8ρη2(1 + 1/p)

n2

t∏
j̃=1

1 + p

1− 2ηϵj̃

t∑
j=0

(
ρηjLS(W0) + ℓ(W0; zi) + ρηjLS(i)(W0) + ℓ(W0; z

′
i)
)

=
4ρη2(1 + 1/p)

n2

t∏
j̃=1

1 + p

1− 2ηϵj̃

(
ρηt(t+ 1)

(
LS(W0) + LS(i)(W0)

)
+ 2(t+ 1)

(
ℓ(W0; zi)

+ ℓ(W0; z
′
i)
))

≤
8ρη2c0(1 + 1/p)(1 + t)

(
ρηt+ 2

)
n2

t∏
j̃=1

1 + p

1− 2ηϵj̃
,
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where we used ℓ(W0; z) ≤ c0 for any z ∈ Z . If we further choose p = 1/t, then there holds∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤ 8ρη2c0e(1 + t)2(ρηt+ 2)

n2

t∏
j̃=1

1

1− 2ηϵj̃
, (A.10)

where we used (1 + 1/t)t ≤ e.

Now, we prove by induction to show∥∥Wt+1 −W
(i)
t+1

∥∥
2
≤

2ηeT
√
2c0ρ(ρηT + 2)

n
. (A.11)

(A.11) with k = 0 holds trivially. Assume (A.11) holds with all k ≤ t, i.e., for all k ≤ t∥∥Wk −W
(i)
k

∥∥
2
≤

2ηeT
√

2c0ρ(ρηT + 2)

n
. (A.12)

and we want to show it holds with k = t+ 1 ≤ T . Recall that ϵk = cxBσ′′
mc

( cxBσ′
mc−1/2 (1 + ηρ)

∥∥Wk −
W

(i)
k

∥∥
2
+ cxBσ′

√
2ηTc0

mc−1/2 +
√
2c0

)
. From (A.12), for any j̃ ≤ t, we know

ϵj̃ ≤ ϵ′ :=
cxBσ′′

mc

(2√2c0ρ(ρηT + 2)ηeT (1 + ηρ)cxBσ′

nmc−1/2
+

cxBσ′
√
2ηTc0

mc−1/2
+
√
2c0

)
.

Putting the above inequality back into (A.10), we get∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤ 8ρη2c0e(1 + t)2(ρηt+ 2)

n2

( 1

1− 2ηϵ′

)t

.

If m is large enough such that 2ηϵ′ ≤ 1/(t+ 1), then we can show( 1

1− 2ηϵ′

)t

≤
( 1

1− 1/(t+ 1)

)t

≤ e. (A.13)

Then there holds∥∥Wt+1 −W
(i)
t+1

∥∥
2
≤

2ηe(1 + t)
√
2ρc0(ρηt+ 2)

n
≤

2ηeT
√

2ρc0(ρηT + 2)

n
. (A.14)

Now, we discuss the conditions on m. Suppose m satisfies the following conditions

m ≥ C1

( (ηT )2(1 + ηρ)
√

ρ(ρηT + 2)

n

) 2
4c−1

,m ≥ C2(ηT )
3

4c−1 and m ≥ C3

(
ηT

) 1
c

,

where C1 = (8ec2xBσ′Bσ′′
√
2c0)

2
4c−1 , C2 =

(
4
√
2c0c

2
xBσ′Bσ′′

) 3
4c−1 and C3 = (8

√
2c0cxBσ′′)1/c.

Then it is easy to verify that

2ηcxBσ′′

mc

(2√2c0ρ(ρηT + 2)ηeT (1 + ηρ)cxBσ′

nmc−1/2
+

cxBσ′
√
2ηTc0

mc−1/2
+

√
2c0

)
≤ 1

T
≤ 1

1 + t
,

which ensures that 2ηϵ′ ≤ 1/(t+ 1), and then (A.14) holds. The proof is completed.

We can combine Theorem A.6 and Lemma A.2 together to get the upper bound of the generalization
error.

Proof of Theorem 1. Eq.(A.9) with p = 1/t and Eq.(A.13) imply∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤ 2e2η2(1 + t)

n2

t∑
j=0

(∥∥∇ℓ(Wj ; zi)
∥∥2
2
+
∥∥∇ℓ(W

(i)
j ; z′i)

∥∥2
2

)

≤ 4e2η2ρ(1 + t)

n2

t∑
j=0

(
ℓ(Wj ; zi) + ℓ(W

(i)
j ; z′i)

)
,
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where in the last inequality we used self-bounding property of the smooth loss (Lemma A.1). Now,
taking an average over i ∈ [n] and using E

[
ℓ(Wj ; zi)

]
= E

[
ℓ(W

(i)
j ; z′i)

]
, we have

1

n

n∑
i=1

E
∥∥Wt+1 −W

(i)
t+1

∥∥2
2
≤ 4e2η2ρ(1 + t)

n3

t∑
j=0

( n∑
i=1

E
[
ℓ(Wj ; zi)

]
+ E[ℓ(W(i)

j ; z′i)
])

=
8e2η2ρ(1 + t)

n3

t∑
j=0

n∑
i=1

E
[
ℓ(Wj ; zi)

]
=

8e2η2ρ(1 + t)

n2

t∑
j=0

E
[
LS(Wj)

]
.

Combining the above stability bounds with Lemma A.2 together, we get

E[L(Wt)−LS(Wt)] ≤
4e2η2ρ2t

n2

t−1∑
j=0

E
[
LS(Wj)

]
+
(16e2η2ρ2tE[LS(Wt)]

n2

t−1∑
j=0

E
[
LS(Wj)

]) 1
2

≤ 4e2η2ρ2t

n2

t−1∑
j=0

E
[
LS(Wj)

]
+

4eηρ

n

t−1∑
j=0

E
[
LS(Wj)

]
,

where in the last inequality we used LS(Wt) ≤ 1
t

∑t−1
j=1 LS(Wj) (Richards & Kuzborskij, 2021).

The proof is completed.

A.2 PROOFS OF OPTIMIZATION BOUNDS

Before giving the proofs of optimization error bounds, we first introduce the following lemma on the
bound of GD iterates.

Lemma A.7. Suppose Assumptions 1 and 2 hold, and η ≤ 1/(2ρ). Assume (4) and (5) hold. Then
for any t ∈ [T ], there holds

1 ∨ E[∥W∗
1

ηT
−Wt∥22]

≤
(8e2η3ρ2t2

n2
+

8eη2tρ

n

)t−1∑
s=0

E
[
LS(Ws)

]
+ 2E

[
∥W∗

1
ηT

−W0∥22
]
+ 2ηT

[
L(W∗

1
ηT

)− L(W∗)
]
.

Proof. For any W,W̃ ∈ Rmd and α ∈ [0, 1], define W(α) := W̃ + α(W − W̃). Note that

λmin

(
∇2LS(W(α))

)
≥ −max

i
{∥∇2f(xi)∥2}

( 1

n

n∑
i=1

|fW(α)(xi)− yi|
)

≥ −c2xBσ′′

mc

1

n

( n∑
i=1

(
|fW(α)(xi)− f

W̃
(xi)|+ |f

W̃
(xi)− fW0

(xi)|+ |fW0
(xi)− yi|

))
≥ −c2xBσ′′

mc

( Bσ′cx
mc−1/2

∥W(α)− W̃∥2 +
Bσ′cx
mc−1/2

∥W̃ −W0∥2 +
√
2LS(W0)

)
≥ −c2xBσ′′

mc

( Bσ′cx
mc−1/2

∥W − W̃∥2 +
Bσ′cx
mc−1/2

∥W̃ −W0∥2 +
√
2c0

)
.

Then for any t ∈ [T ], let W̃ = Wt, and define

g(α) :=LS(W(α)) +
c2xBσ′′

mc

α2

2

( Bσ′cx
mc−1/2

∥W −Wt∥2 +
Bσ′cx
mc−1/2

∥Wt −W0∥2 +
√
2c0

)
× (1 ∨ E[∥W −Wt∥22]).
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It is obvious that g′′(α) ≥ 0. Then g(α) is convex in α ∈ [0, 1]. Now, by convexity we know

g(1)− g(0) = LS(W) +
c2xBσ′′

2mc

( Bσ′cx
mc−1/2

∥W −Wt∥2 +
Bσ′cx
mc−1/2

∥Wt −W0∥2 +
√
2c0

)
× (1 ∨ E[∥W −Wt∥22])− LS(Wt)

≥ ⟨W −Wt,∇LS(Wt)⟩ = g′(0).

Rearranging the above inequality we get

LS(Wt) ≤ LS(W) +
c2xBσ′′

2mc

( Bσ′cx
mc−1/2

∥W −Wt∥2 +
Bσ′cx
mc−1/2

∥Wt −W0∥2 +
√
2c0

)
× (1 ∨ E[∥W −Wt∥22])− ⟨W −Wt,∇LS(Wt)⟩. (A.15)

Combining (A.15) with the smoothness of the loss we can get

LS(Wt+1) ≤ LS(Wt) + ⟨∇LS(Wt),Wt+1 −Wt⟩+
ρ

2
∥Wt+1 −Wt∥22

≤ LS(Wt)− η⟨∇LS(Wt),∇LS(Wt)⟩+
ρ

2
∥Wt+1 −Wt∥22

≤ LS(Wt)− η(1− ηρ

2
)∥∇LS(Wt)∥22

≤ LS(Wt)−
η

2
∥∇LS(Wt)∥22

≤ LS(W) +
c2xBσ′′

2mc

( Bσ′cx
mc−1/2

∥W −Wt∥2 +
Bσ′cx
mc−1/2

∥Wt −W0∥2 +
√
2c0

)
× (1 ∨ E[∥W −Wt∥22])− ⟨W −Wt,∇LS(Wt)⟩ −

η

2
∥∇LS(Wt)∥22,

where in the third inequality we used the update rule (2) and ηρ ≤ 1.

According to the equality 2⟨x− y, x− z⟩ = ∥x− y∥22 + ∥x− z∥22 − ∥y − z∥22, we know

−⟨W −Wt,∇LS(Wt)⟩ −
η

2
∥∇LS(Wt)∥22 =

1

η
⟨W −Wt,Wt+1 −Wt⟩ −

1

2η
∥Wt+1 −Wt∥22

=
1

2η

(
∥W −Wt∥22−∥Wt+1 −W∥22

)
.

Then there holds

LS(Wt+1) ≤ LS(W) +
c2xBσ′′

2mc

( Bσ′cx
mc−1/2

∥W −Wt∥2 +
Bσ′cx

√
2ηTc0

mc−1/2
+

√
2c0

)
× (1 ∨ E[∥W −Wt∥22]) +

1

2η

(
∥W −Wt∥22 − ∥Wt+1 −W∥22

)
. (A.16)

The above inequality with W = W∗
1

ηT

implies

1

t

t−1∑
s=0

E[LS(Ws)] +
E
[
∥Wt −W∗

1
ηT

∥22
]

2ηt

≤ E[L(W∗
1

ηT
)] +

E
[
∥W∗

1
ηT

−W0∥22
]

2ηt
+

c2xBσ′′

2mct

t−1∑
s=0

( Bσ′cx
mc−1/2

E[∥W∗
1

ηT
−Ws∥2]

+
Bσ′cx

√
2ηTc0

mc−1/2
+
√
2c0

)
× (1 ∨ E[∥W∗

1
ηT

−Ws∥22]).
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Combined the above inequality with Theorem 1 implies

E
[
∥Wt −W∗

1
ηT

∥22
]

2ηt

≤ 1

t

t−1∑
s=0

[
L(W∗

1
ηT

)−E[L(Ws)]
]
+
E
[
∥W∗

1
ηT

−W0∥22
]

2ηt
+
(4e2η2ρ2t

n2
+
4eηρ

n

) t−1∑
s=0

E
[
LS(Ws)

]
+
c2xBσ′′

2mct

t−1∑
s=0

( Bσ′cx
mc−1/2

E[∥W∗
1

ηT
−Ws∥2]+

Bσ′cx
√
2ηTc0

mc−1/2
+
√
2c0

)
(1 ∨ E[∥W∗

1
ηT

−Ws∥22])

≤ L(W∗
1

ηT
)−L(W∗)+

E
[
∥W∗

1
ηT

−W0∥22
]

2ηt
+
(4e2η2ρ2t

n2
+
4eηρ

n

) t−1∑
s=0

E
[
LS(Ws)

]
+
c2xBσ′′

2mct

t∑
s=0

( Bσ′cx
mc−1/2

E[∥W∗
1

ηT
−Ws∥2]+

Bσ′cx
√
2ηTc0

mc−1/2
+
√
2c0

)
(1 ∨ E[∥W∗

1
ηT

−Ws∥22]),

(A.17)
where in the second inequality we used L(W∗

1
ηT

)−L(Ws) ≤ L(W∗
1

ηT

)−L(W∗) since L(Ws) ≥
L(W∗) for any s ∈ [t− 1].

On the other hand, using Lemma A.4 we can obtain

∥W∗
1

ηT
−Ws∥2 ≤ ∥W∗

1
ηT

−W0∥2 + ∥Ws −W0∥2 ≤
√

2ηTc0 + ∥W∗
1

ηT
−W0∥2. (A.18)

Then we know( Bσ′cx
mc−1/2

E[∥W∗
1

ηT
−Ws∥2]+

Bσ′cx
√
2ηTc0

mc−1/2
+
√
2c0

)
(1 ∨ E[∥W∗

1
ηT

−Ws∥22])

≤
( Bσ′cx
mc−1/2

(2
√
2ηTc0 + ∥W∗

1
ηT

−W0∥2) +
√
2c0

)
(1 ∨ E[∥W∗

1
ηT

−Ws∥22]).

Plugging the above inequality back into (A.17) yields

E
[
∥Wt −W∗

1
ηT

∥22
]

2ηt

≤
E
[
∥W∗

1
ηT

−W0∥22
]

2ηt
+

b̃(
√
2ηTc0 + ∥W∗

1
ηT

−W0∥2)

mct

t∑
s=0

(1 ∨ E[∥W∗
1

ηT
−Ws∥22])

+
(4e2η2ρ2t

n2
+

4eηρ

n

) t−1∑
s=0

E
[
LS(Ws)

]
+ L(W∗

1
ηT

)− L(W∗),

where b̃ =
c2xBσ′′

2

( 2Bσ′cx
mc−1/2 +

√
2c0

)
.

Multiplying both sides by 2ηt yields

E
[
∥Wt −W∗

1
ηT

∥22
]

≤ E
[
∥W∗

1
ηT

−W0∥22
]
+

2b̃η(
√
2ηTc0 + ∥W∗

1
ηT

−W0∥2)

mc

t∑
s=0

(1 ∨ E[∥W∗
1

ηT
−Ws∥22])

+
(8e2η3ρ2t2

n2
+

8eη2ρt

n

) t−1∑
s=0

E
[
LS(Ws)

]
+ 2ηT

[
L(W∗

1
ηT

)− L(W∗)
]
.
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Let x = maxs∈[T ] E[∥W∗
1

ηT

−Ws∥22] ∨ 1. Then the above inequality implies

x ≤ E
[
∥W∗

1
ηT

−W0∥22
]
+

2b̃ηT (
√
2ηTc0 + ∥W∗

1
ηT

−W0∥2)

mc
x

+
(8e2η3ρ2t2

n2
+

8eη2ρt

n

) t−1∑
s=0

E
[
LS(Ws)

]
+ 2ηT

[
L(W∗

1
ηT

)− L(W∗)
]
.

Without loss of generality, we assume η ≤ 1. Condition (5) implies m ≥
(
4b̃ηT (

√
2ηTc0+∥W∗

1
ηT

−

W0∥2)
) 1

c . Then there holds
2b̃ηT (

√
2ηTc0+∥W∗

1
ηT

−W0∥2)

mc ≤ 1
2 . Hence

x ≤
(16e2η3ρ2t2

n2
+
16eη2tρ

n

) t−1∑
s=0

E
[
LS(Ws)

]
+2E

[
∥W∗

1
ηT

−W0∥22
]
+2ηT

[
L(W∗

1
ηT

)−L(W∗)
]
.

It then follows that

1 ∨ E[∥W∗
1

ηT
−Wt∥22]

≤
(16e2η3ρ2t2

n2
+
16eη2tρ

n

) t−1∑
s=0

E
[
LS(Ws)

]
+2E

[
∥W∗

1
ηT

−W0∥22
]
+2ηT

[
L(W∗

1
ηT

)−L(W∗)
]
.

This completes the proof.

Now, we can give the proof of Theorem 2.

Proof of Theorem 2. Recall that b̃ = c2xBσ′′
2

( 2Bσ′cx
mc−1/2 +

√
2c0

)
. Eq. (A.16) with W = W∗

1
ηT

implies

1

T

T−1∑
s=0

E[LS(Ws)]

≤ E[LS(W
∗
1

ηT
)]+

b̃(
√
2ηTc0+∥W∗

1
ηT

−W0∥2)

mcT

T−1∑
s=0

1 ∨ E[∥W∗
1

ηT
−Ws∥22]+

∥W∗
1

ηT

−W0∥22
2ηT

,

(A.19)
where in the last inequality we used (A.18).

Further, by monotonic decrease of {LS(Wt)}, we know

E[LS(WT )]

≤ E[LS(W
∗
1

ηT
)]+

b̃(
√
2ηTc0+∥W∗

1
ηT

−W0∥2)

mcT

T−1∑
s=0

1 ∨ E[∥W∗
1

ηT
−Ws∥22] +

∥W∗
1

ηT

−W0∥22
2ηT

.

Note that Lemma A.7 shows

1 ∨ E[∥W∗
1

ηT
−Wt∥22]

≤
(16e2η3ρ2t2

n2
+
16eη2tρ

n

)t−1∑
s=0

E
[
LS(Ws)

]
+2E

[
∥W∗

1
ηT

−W0∥22
]
+2ηT

[
L(W∗

1
ηT

)−L(W∗)
]
.

Combining the above two inequalities together, we get

E[LS(WT )]

≤ E[LS(W
∗
1

ηT
)] +

2b̃(
√
2ηTc0 + ∥W∗

1
ηT

−W0∥2)

mc

((8e2η3ρ2T 2

n2
+

8eη2Tρ

n

) T−1∑
s=0

E
[
LS(Ws)

]
+ ∥W∗

1
ηT

−W0∥22 + ηT
[
L(W∗

1
ηT

)− L(W∗)
])

+
∥W∗

1
ηT

−W0∥22
2ηT

.
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The theorem is proved.

Lemma A.8. Suppose Assumptions 1 and 2 hold. Let {Wt} be produced by (2) with η ≤ 1/(2ρ).
Assume (4) and (5) hold. Then

T−1∑
s=0

E[LS(Ws)]

≤ 4TL(W∗
1

ηT
)− 2ηTL(W∗) +

(2b̃T (√2ηTc0 + ∥W∗
1

ηT

−W0∥2)

mc
+

1

2η

)
∥W∗

1
ηT

−W0∥22.

Proof. Multiplying T over both sides of (A.19) and using Lemma A.7 we get
T−1∑
s=0

E[LS(Ws)]

≤ TL(W∗
1

ηT
) +

b̃(
√
2ηTc0 + ∥W∗

1
ηT

−W0∥2)

mc

T−1∑
s=0

1 ∨ E[∥W∗
1

ηT
−Ws∥22] +

∥W∗
1

ηT

−W0∥22
2η

≤ TL(W∗
1

ηT
)+

b̃T (
√
2ηTc0 + ∥W∗

1
ηT

−W0∥2)

mc

((16e2η3ρ2T 2

n2
+
16eη2Tρ

n

) T−1∑
s=0

E
[
LS(Ws)

]
+ 2∥W∗

1
ηT

−W0∥22 + 2ηT
[
L(W∗

1
ηT

)− L(W∗)
])

+
∥W∗

1
ηT

−W0∥22
2η

.

Condition (5) implies m ≥
(
2b̃T (

√
2ηTc0 + ∥W∗

1
ηT

− W0∥2)
(
16e2η3ρ2T 2

n2 + 16eη2Tρ
n

))1/c
and

m ≥
(
2b̃T (

√
2ηTc0 + ∥W∗

1
ηT

−W0∥2)
)1/c

, there holds

T−1∑
s=0

E[LS(Ws)]

≤ 4TL(W∗
1

ηT
)− 2ηTL(W∗) +

(2b̃T (√2ηTc0 + ∥W∗
1

ηT

−W0∥2)

mc
+

1

2η

)
∥W∗

1
ηT

−W0∥22,

which completes the proof.

A.3 PROOFS OF EXCESS RISK BOUNDS

Proof of Theorem 3. According to Lemma A.8 and noting that b̃ = O(1), we know

T−1∑
s=0

E[LS(Ws)]=O
(
TL(W∗

1
ηT

)+
(T (√ηT+∥W∗

1
ηT

−W0∥2)

mc
+
1

η

)
∥W∗

1
ηT

−W0∥22
)
. (A.20)

The upper bound of the generalization error can be controlled by plugging (A.20) back into Theorem 1

E[L(WT )− LS(WT )]

= O
((η2ρ2T

n2
+

ηρ

n

) T−1∑
s=0

E[LS(Ws)]
)

= O
((η2ρ2T 2

n2
+

ηTρ

n

)(
L(W∗

1
ηT

) +
(√ηT + ∥W∗

1
ηT

−W0∥2
mc

+
1

ηT

)
∥W∗

1
ηT

−W0∥22
)
.

(A.21)
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The estimation of the optimization error is given by plugging (A.20) back into Theorem 2

E[LS(WT )− LS(W
∗
1

ηT
)− 1

2ηT
∥W∗

1
2ηT

−W0∥22]

= O
( (√ηT + ∥W∗

1
ηT

−W0∥2)

mc

[(η3ρ2T 2

n2
+

η2Tρ

n

) T−1∑
s=0

E
[
LS(Ws)

]
+ ∥W∗

1
ηT

−W0∥22

+ ηT
[
L(W∗

1
ηT

)− L(W∗)
]])

= O
((√ηT+∥W∗

1
ηT

−W0∥2)

mc

(η3ρ2T 2

n2
+
η2Tρ

n

)(T (√ηT+∥W∗
1

ηT

−W0∥2)

mc
+
1

η

)
∥W∗

1
ηT

−W0∥22

+
ηT (

√
ηT + ∥W∗

1
ηT

−W0∥2)

mc

(η2ρ2T 2

n2
+

ηTρ

n

)
L(W∗

1
ηT

)

+
(
√
ηT + ∥W∗

1
ηT

−W0∥2)

mc

(
∥W∗

1
ηT

−W0∥22 + ηTΛ 1
ηT

))
, (A.22)

where we used the fact that L(W∗
1

ηT

)− L(W∗) ≤ Λ 1
ηT

.

Combining (A.21) and (A.22) together and noting that the approximation error Λ 1
ηT

= L(W∗
1

ηT

) +

1
2ηT ∥W

∗
1

ηT

−W0∥22 − L(W∗) we get

E[L(WT )− L(W∗)]

=
[
E[L(WT )− LS(WT )

]
+ E

[
LS(WT )−

(
LS(W

∗
1

ηT
) +

1

2ηT
∥W∗

1
ηT

−W0∥22
)]

+
[
L(W∗

1
ηT

) +
1

2ηT
∥W∗

1
ηT

−W0∥22 − L(W∗)
]

=O
(ηTρ

n

(ηρT
n

+1
)(

1+
ηT (

√
ηT+∥W∗

1
ηT

−W0∥2)

mc

)[
L(W∗

1
ηT
)+

( 1

2ηT
+

√
ηT+∥W∗

1
ηT

−W0∥2
mc

)
× ∥W∗

1
ηT
−W0∥22

]
+

(
√
ηT + ∥W∗

1
ηT

−W0∥2)

mc

(
∥W∗

1
ηT

−W0∥22 + ηTΛ 1
ηT

)
+ Λ 1

ηT

)
.

Recalling that ρ = O(m1−2c). If ηTm1−2c = O(n) and ηT (
√
ηT + ∥W∗ − W0∥2) = O(mc),

there holds ηTρ = O(n) and ηT (
√
ηT + ∥W∗

1
ηT

− W0∥2)/mc = O(1). Then from the above
bound we can get

E[L(WT )− L(W∗)] = O
(ηTρ

n

[
L(W∗

1
ηT

) +
1

2ηT
∥W∗

1
ηT
−W0∥22

]
+

1

ηT
∥W∗

1
ηT
−W0∥22 + Λ 1

ηT

)
.

Combining the above bound with the facts L(W∗
1

ηT

) + 1
2ηT ∥W

∗
1

ηT

−W0∥22 = L(W∗) + Λ 1
ηT

and

∥W∗
1

ηT

−W0∥2 ≤
√
ηTΛ 1

ηT
together we get

E[L(WT )− L(W∗)] = O
(ηTρ

n
L(W∗) + Λ 1

ηT

)
.

The proof is completed.

Proof of Corollary 4. Part (a). Case 1. From the definition of the approximation error Λ 1
ηT

, we

know that Λ 1
ηT

≤ 1
2ηT ∥W

∗ −W0∥22. Combining this with Theorem 3, we have

E[L(WT )− L(W∗)] = O
(ηTρ

n
L(W∗) +

1

ηT
∥W∗ −W0∥22

)
.

Without loss of generality, we consider ∥W0∥2 as a constant. To obtain the excess risk rate, we
discuss the following two cases: 2c+ 6µ− 3 > 0 and 2c+ 6µ− 3 ≤ 0.
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For the case 2c+6µ−3 > 0, to ensure conditions (4), (5) and ηT (
√
ηT+∥W∗

1
ηT

−W0∥2) = O(mc)

hold, we set m ≍ (ηT )
3
2c for this case. Then according to Theorem 3 and Assumption 3 we know

E[L(WT )− L(W∗)] = O
(
(ηT )

3−4c
2c n−1 + (ηT )

3−6µ−2c
2c

)
.

If c < 3/4, under the condition ηT ≲ n
c

3−4c and n
c

6µ+2c−3 ≲ ηT , there holds (ηT )
3−4c
2c n−1 +

(ηT )
3−6µ−2c

2c = O(1/
√
n). To ensure the above-mentioned conditions hold simultaneously, we

further require c + µ ≥ 1 such that n
c

3−4c ≳ n
c

6µ+2c−3 . Therefore, if c ∈ [1 − µ, 3/4) and
c+ 3µ > 3/2, we can obtain

E[L(WT )− L(W∗)] = O
( 1√

n

)
with m ≍ (ηT )

3
2c and n

c
6µ+2c−3 ≲ ηT ≲ n

c
3−4c .

If c ≥ 3/4, for any ηT ≥ 1 and n ≥ 1, there holds (ηT )
3−4c
2c n−1 = O(1/

√
n). Similar to before, if

ηT ≳ n
c

6µ+2c−3 , there holds (ηT )
3−6µ−2c

2c = O(1/
√
n). Then we can obtain the excess population

bound O(1/
√
n) with m ≍ (ηT )

3
2c and ηT ≳ n

c
6µ+2c−3 .

Case 2. For the case 2c+ 6µ− 3 ≤ 0, we can choose m ≍ (ηT )
1

c+µ−1/2 to ensure conditions (4),
(5) and ηT (

√
ηT + ∥W∗

1
ηT

−W0∥2) = O(mc) hold. From Theorem 3 we know

E[L(WT )− L(W∗)] = O
(
(ηT )

1−2c+2µ
2c+2µ−1n−1 + (ηT )

3−6µ−2c
2c+2µ−1

)
.

Note 3− 6µ− 2c ≥ 0 and 2c+ 2µ− 1 > 0. Then the term (ηT )
3−6µ−2c
2c+2µ−1 will not converge for any

choice of ηT in this case. The proof of Part (a) is completed.

Part (b). Now, we consider the low noise case, i.e., L(W∗) = 0. Combining the fact Λ 1
ηT

≤
1

2ηT ∥W
∗ −W0∥22, Assumption 3 and Theorem 3 with L(W∗) = 0, we can get

E[L(WT )− L(W∗)] = O
(m1−2µ

ηT

)
.

Similar to part (a), we can set m ≍ (ηT )
3
2c , ηT ≳ n

2c
6µ+2c−3 and obtain

E[L(WT )− L(W∗)] = O
( 1
n

)
.

We can check that this choice of m and ηT satisfies conditions (4) and (5). The proof is completed.

Remark A.1. Several works Charles & Papailiopoulos (2018); Hardt et al. (2016); Lei & Ying
(2020b); Zhou et al. (2022); Mou et al. (2018) studied the stability behavior of stochastic gradient
methods for non-convex losses, which can be applied to two-layer networks. Specifically, to obtain
meaningful stability bounds, Hardt et al. (2016) required a time-dependent step size ηt = 1/t, which
is insufficient to get a good convergence rate for optimization error. Charles & Papailiopoulos
(2018); Lei & Ying (2020b); Zhou et al. (2022) established generalization bounds by introducing
the Polyak-Łojasiewicz condition, which depends on a problem-dependent number. This number
might be large in practice and results in a worse generalization bound. It is hard to provide a direct
comparison with their results since the learning settings are different.

B PROOFS OF THREE-LAYER NEURAL NETWORKS

B.1 PROOFS OF GENERALIZATION BOUNDS

For a matrix W, let Ws;· and Wis denote the s-th row and the (i, s)-th entry of W, respectively.

Lemma B.1 (Smoothness and Curvature). Suppose Assumptions 1 and 2 hold. For any fixed
W = (W(1),W(2)) ∈ Rm×d × Rm×m and any z ∈ Z , there holds

λmax

(
∇2ℓ(W; z)

)
≤ ρW with
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Proof. Let AW(1) = [σ(W
(1)
1;· x), . . . , σ(W

(1)
m;·x)]

⊤ ∈ Rm. Let w̃ = w⊤. We first estimate the
upper bound of ∥∇fW(x)∥2. Note that for any k = 1, . . . ,m
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According to Assumptions 1 and 2, the upper bound of the gradient can be controlled as follows
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For any k, j ∈ [m], we know
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where Bk ∈ R1×m with k-th element is 1 and others are 0. Let the vector u ∈ Rmd+m2

have unit
norm ∥u∥2 = 1 and be composed in a manner matching the parameter W = (W(1),W(2)) so
that u = (u(1),u(2)), where u(1) ∈ Rm×d and u(2) ∈ Rm×m have been vectorised in a row-major
manner with u

(1)
k ∈ R1×d and u

(2)
k ∈ R1×m. Then
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We estimate the above three terms separately. Let W(2)
·k denote the k-th column of W(2).
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where in the third inequality we used
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For the second term in (B.2), we control it by
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Further, according to Cauchy-Schwarz inequality, we can get
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where in the first equality we used
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k=1 u
(1)
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Plugging (B.3), (B.4) and (B.5) back into (B.2) we can get∥∥∇2fW(x)
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For any W,W̃, according to Assumptions 1 ans 2 we can get∣∣fW(x)− f
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Since

∇2ℓ(W; z) = ∇fW(x)∇fW(x)⊤ +∇2fW(x)
(
fW(x)− y

)
. (B.8)

Then for any W ∈ Rmd+m2

, we can upper bound the maximal eigenvalue of the Hessian by
combining (B.1), (B.6) and (B.7) with W̃ = 0 together
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Note that ∇fW(x)∇fW(x)⊤ is positive semi-definite, then from (B.6), (B.8) and (B.7) with W̃ = 0
we can get
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The proof is completed.

Let B1 = max
{
B2

σ′Bσ′′c2x, Bσ′Bσ′′c2x, 2Bσ′′Bσcx, Bσ′′B2
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.

Lemma B.2. Suppose Assumptions 1 and 2 hold. Let {Wt} and {W′
t} be produced by GD iterates

with T iterations based on S and S′, respectively. Let C > 0 be a constant. Assume η ≤ 1/(2ρ̂) and
(6) hold. Then for any c ∈ (1/2, 1] and any t = 0, . . . , T there holds

∥Wt −W0∥2 ≤
√
2c0ηt

and

∥∇ℓ(Wt; z)−∇ℓ(W′
t; z)∥2 ≤ ρ̂∥Wt −W′

t∥2.

Proof. We will prove by induction to show ∥Wt −W0∥2 ≤ ηtm2c−1. Further, we can show that
ρW = O(1) for any W produced by GD iterates if m satisfies (6). Then by assuming η ≤ 1/(2ρ̂)
we can prove that ∥Wt −W0∥2 ≤

√
2c0ηt.
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It’s obvious that ∥Wt −W0∥2 ≤ ηtm2c−1 with t = 0 holds trivially. Assume ∥Wt −W0∥2 ≤
ηtm2c−1. According to the update rule (2) we know
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where in the third inequality we used (B.1), the last inequality used (B.7) with W̃ = 0. If m is large
enough such that( B2
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then from (B.9) we know that ∥Wt+1 −W0∥2 ≤ η(t+1)m2c−1. The first part of the lemma can be
proved. Now, we discuss the conditions on m such that (B.10) holds. Let x = ∥Wt−W0∥2+∥W0∥2.
To guarantee (B.10), it suffices that the following three inequalities hold
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It’s easy to verify that (B.11) holds if m ≳ max{(ηT )
4
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2 } ,
which can be ensured by (6). Hence, if c ∈ (1/2, 1] and (6) holds, we have ∥Wt−W0∥2 ≤ ηtm2c−1

for all t = 0, 1, . . . , T .

Recall that
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Then from Lemma B.1 we know
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Note that (6) implies m ≳ (ηT )4 + ∥W0∥
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2 . By using ∥Wt∥2 ≤ ηtm2c−1 + ∥W0∥2 we can
verify that

ρWt ≤ 4B2(1 + 2B1) := ρ̂ for any t = 0, . . . , T.
Hence, we know that ℓ is ρ̂-smooth when the parameter space is the trajectory of GD. Then for any
t = 0, . . . , T and any Wt,W

′
t produced by GD iterates, there holds
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In addition, by the smoothness of ℓ we can get for any j = 0, . . . , T − 1
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Rearranging and summing over j yields
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Note that the update rule of GD (2) implies

Wt+1 = W0 − η

t∑
j=0

∇LS(Wj).

Combining the above two equations together and noting that ηρ̂ ≤ 1/2, we obtain
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The proof is completed.

The almost co-coercivity of the gradient operator for three-layer neural networks is given as follows.
Recall that S(i) = {z1, . . . , zi−1, z

′
i, zi+1, zn} is the set formed from S by replacing the i-th element

with z′i. For any W, we have
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Lemma B.3. Suppose η ≤ 1/(8ρ̂) where ρ̂ = 4B2(1 + 2B1). Assume (6) holds. Then
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(1 + ηρ̂)∥Wt −W

(i)
t ∥2 + 2

(√
2c0ηT + ∥W0∥2

)
+

√
2c0

)
.

Proof. For any W ∈ B
(
0, 2(

√
2c0ηT + ∥W0∥2)

)
, defining the following two functions

G1(W) = LS\i(W)− ⟨∇LS\i(W
(i)
t ),W⟩, G2(W) = LS\i(W)− ⟨∇LS\i(Wt),W⟩.

Note that

⟨Wt−W
(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )⟩=

(
G1

(
Wt

)
−G1

(
W

(i)
t

))
+
(
G2

(
W

(i)
t

)
−G2

(
Wt

))
.

(B.13)

Hence, it is enough to lower bound G1

(
Wt

)
−G1

(
W

(i)
t

)
and G2

(
W

(i)
t

)
−G2

(
Wt

)
.

Note that for any Wt, Lemma B.1 implies that ∥Wt∥2 ≤
√
2c0ηt+ ∥W0∥2. Then there holds∥∥Wt − η∇G1(Wt)

∥∥
2
≤

∥∥Wt

∥∥
2
+ η

∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥
2

≤
∥∥Wt

∥∥
2
+ ηρ̂

∥∥Wt −W
(i)
t

∥∥
2

≤
√
2c0ηt+ ∥W0∥2 + 2ηρ̂

(√
2c0ηt+ ∥W0∥2

)
≤ 2

(√
2c0ηt+ ∥W0∥2

)
,

where in the last inequality we used ηρ̂ ≤ 1/8. Similarly, we can show that
∥∥W(i)

t −
η∇G2(W

(i)
t )

∥∥
2
≤ 2(

√
2c0ηT +∥W0∥2). Hence, we know Wt−η∇G1(Wt) ∈ B

(
0, 2(

√
2c0ηT +

∥W0∥2)
)

and W
(i)
t − η∇G2(W

(i)
t ) ∈ B

(
0, 2(

√
2c0ηT + ∥W0∥2)

)
. On the other hand, similar to

Lemma B.2, we can show that G1(W) and G2(W) is 8ρ̂-smooth for any W ∈ B
(
0, 2(

√
2c0ηT +

∥W0∥2)
)
. Combining the above results, we can get

G1(Wt − η∇G1(Wt)) ≤ G1(Wt)− η
(
1− 4ηρ̂

)
∥∇G1(Wt)∥22, (B.14)

G2(W
(i)
t − η∇G2(W

(i)
t )) ≤ G2(W

(i)
t )− η

(
1− 4ηρ̂

)
∥∇G2(W

(i)
t )∥22. (B.15)

29



Under review as a conference paper at ICLR 2024

If we can further show that

G1(Wt − η∇G1(Wt)) ≥ G1(W
(i)
t )− ϵ̃t

2
∥Wt −W

(i)
t − η∇G1(Wt)∥22, (B.16)

G2(W
(i)
t − η∇G2(W

(i)
t )) ≥ G2(Wt)−

ϵ̃t
2
∥W(i)

t −Wt − η∇G2(Wt)∥22, (B.17)

with ϵ̃t = C3,T

(
B3

(√
ηT+∥W0∥2

m2c− 1
2

+m1−2c
)(
(1+ηρ̂)∥Wt−W

(i)
t ∥2+2

(√
2c0ηT+∥W0∥2

)
+
√
2c0

)
,

where C3,T = 4B1

(
2c0ηTm

−3c+
(
m

1
2−2c+m

1
2−3c

)√
2c0ηT+m1−3c+m

1
2−2c

)
. Then combining

(B.14), (B.15), (B.16) and (B.17) together yields

G1(Wt)−G1(W
(i)
t ) ≥ η

(
1− 4ηρ̂

)
∥∇G1(Wt)∥22 −

ϵ̃t
2
∥Wt −W

(i)
t − η∇G1(Wt)∥22,

G2(W
(i)
t )−G2(Wt) ≥ η

(
1− 4ηρ̂

)
∥∇G2(Wt)∥22 −

ϵ̃t
2
∥W(i)

t −Wt − η∇G2(Wt)∥22.

Plugging the above two inequalities back into (B.13) yields

⟨Wt −W
(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )⟩ = G1(Wt)−G1(W

(i)
t ) +G2(W

(i)
t )−G2(Wt)

≥2η
(
1−4ηρ̂

)∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2
−ϵ̃t

∥∥Wt−W
(i)
t −η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2
.

The desired result has been proved.

Now, we give the proof of (B.16) and (B.17). For α ∈ [0, 1], let W(α) = αWt + (1− α)W
(i)
t −

αη
(
∇LS\i(Wt) −∇LS\i(W

(i)
t )

)
. For any α ∈ [0, 1], it’s obvious that ∥W(α)∥2 ≤ 2(

√
2c0ηt +

∥W0∥2) by using Lemma B.2. Combining this observation with (B.8) we can obtain

λmin

(
∇2LS\i(W(α))

)
≥ −max

j∈[n]
∥∇2fW(α)(xj)∥op

∣∣fW(α)(xj)− yj
∣∣

≥ −CW(α) max
j∈[n]

(∣∣fW(α)(xj)− f
W

(i)
t
(xj)

∣∣+ ∣∣f
W

(i)
t
(xj)− f0(xj)

∣∣+ ∣∣f0(xj)− yj
∣∣)

≥ −CW(α)

(( B2
σ′cx

m2c− 1
2

∥W(α)∥2 +
Bσ′Bσ

m2c−1

)(
∥W(α)−W

(i)
t ∥2 + ∥W(i)

t ∥2
)
+

√
2c0

)
≥ −CW(α)

(
B3

(√ηT + ∥W0∥2
m2c− 1

2

+m1−2c
)(
∥Wt −W

(i)
t ∥2 + η∥∇ℓ(Wt)− ℓ(W

(i)
t )∥2

+ ∥W(i)
t ∥2

)
+
√
2c0

)
≥ −ϵ̃t, (B.18)

where the second inequality is due to (B.6), the third inequality is according to (B.1) and in the last
inequality we used Lemma B.2. Similarly, let W̃(α) = αW

(i)
t +(1−α)Wt−αη

(
∇LS\i(W

(i)
t )−

∇LS\i(Wt)
)
, we can also control λmin

(
∇2LS\i(W̃(α))

)
by −ϵ̃t.

Let ∆ =
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2
. We define

g1(α) = G1(W(α)) +
ϵ̃tα

2

2
∆, g2(α) = G2(W̃(α)) +

ϵ̃tα
2

2
∆.

From (B.18) we know that g′′1 (α) ≥ 0 for any α ∈ [0, 1]. Hence, g1 is convex on [0, 1]. Then from
the convexity of g1 we can get that

0 = g′1(0) ≤ g1(1)− g1(0) ≤ G1(Wt − η∇G1(Wt)) +
ϵ̃t
2
∆−G1(W

(i)
t ),

which completes the proof of (B.16). We can also show g2(α) is convex on [0, 1] and prove (B.17) in
a similar way. The proof is completed.

Based on Lemma B.1, Lemma B.2 and Lemma B.3, we can establish the following uniform stability
bounds for three-layer neural networks.
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Theorem B.4 (Uniform Stability). Suppose Assumptions 1 and 2 hold. Let S and S(i) be constructed
in Definition 2. Let {Wt} and {W(i)

t } be produced by (2) with η ≤ 1/(8ρ̂) based on S and S(i),
respectively. Assume (6) holds. Then, for any t ∈ [T ], there holds∥∥Wt −W

(i)
t

∥∥
2
≤

2eηT
√

2c0ρ̂(ρ̂ηT + 2)

n
.

Proof. Similar to (A.7), by the update rule Wt+1 = Wt − η∇LS(Wt) we know∥∥Wt+1 −W
(i)
t+1

∥∥2
2

≤ (1 + p)
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2

+
2η2(1 + 1/p)

n2

(∥∥∇ℓ(Wt; zi)
∥∥2
2
+

∥∥∇ℓ(W
(i)
t ; z′i)

∥∥2
2

)
. (B.19)

From Lemma B.3 we know∥∥Wt −W
(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2

=
∥∥Wt −W

(i)
t

∥∥2
2
+ η2

∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2

− 2η
〈
Wt −W

(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )

〉
≤

∥∥Wt −W
(i)
t

∥∥2
2
+ η2

∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2

− 4η2
(
1− 4ηρ̂

)∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )

∥∥2
2

+ 2ηϵ̃t
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2
.

Note 4ηρ̂ ≤ 1/2 implies 1− 4(1− 4ηρ̂) < 0 and condition (6) ensures that 2ηϵ̃t < 1 for any t ∈ [T ].
Then from the above inequality we can get

(1− 2ηϵ̃t)
∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )

)∥∥2
2
≤

∥∥Wt −W
(i)
t

∥∥2
2
. (B.20)

Now, plugging (B.20) back into (B.19) we have∥∥Wt+1−W
(i)
t+1

∥∥2
2
≤ 1 + p

1−2ηϵ̃t

∥∥Wt−W
(i)
t

∥∥2
2
+
2η2(1+1/p)

n2

(∥∥∇ℓ(Wt; zi)
∥∥2
2
+
∥∥∇ℓ(W

(i)
t ; z′i)

∥∥2
2

)
.

Applying the above inequality recursively and noting that W0 = W
(i)
0 we get∥∥Wt+1 −W

(i)
t+1

∥∥2
2
≤ 2η2(1 + 1/p)

n2

t∑
j=0

(∥∥∇ℓ(Wj ; zi)
∥∥2
2
+
∥∥∇ℓ(W

(i)
j ; z′i)

∥∥2
2

) t∏
j̃=j+1

1 + p

1− 2ηϵ̃j̃

≤ 2η2(1 + 1/p)(1 + p)t

n2(1− 2ηϵ̃j)t

t∑
j=0

(∥∥∇ℓ(Wj ; zi)
∥∥2
2
+

∥∥∇ℓ(W
(i)
j ; z′i)

∥∥2
2

)
.

Let p = 1/t and note that (1 + 1/t)t ≤ e, we have∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤ 2eη2(1 + t)

n2

t∑
j=0

(∥∥∇ℓ(Wj ; zi)
∥∥2
2
+
∥∥∇ℓ(W

(i)
j ; z′i)

∥∥2
2

) t∏
j̃=j+1

1

1− 2ηϵ̃j̃
.

(B.21)

According to Lemma B.1 and Lemma A.1, Assumption 2 and noting that ∥Wj −W0∥2 ≤
√
2c0ηj

for any j ≤ t, we know

∥∇ℓ(Wj ; z)∥22 ≤ 2∥∇ℓ(Wj ; z)−∇ℓ(W0; z)∥22 + 2∥∇ℓ(W0; z)∥22
≤ 2ρ̂2∥Wj −W0∥22 + 4ρ̂ℓ(W0; z) ≤ 4c0ρ̂(ρ̂ηj + 1).

Similarly, we have

∥∇ℓ(W
(i)
j ; z)∥22 ≤ 4c0ρ̂(ρ̂ηj + 1).
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Combining the above three inequalities together, we get∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤

8c0eη
2(1 + t)2ρ̂

(
ρ̂ηt+ 2)

)
n2

t∏
j̃=j+1

1

1− 2ηϵ̃j̃
.

Similar to the proof of Theorem A.6, we can derive the following stability result by induction∥∥Wt+1 −W
(i)
t+1

∥∥
2
≤

2eηT
√
2c0ρ̂(ρ̂ηT + 2)

n
.

Here, the condition 1
(1−2ηϵ̃j)t

≤
(

1
1−1/(t+1)

)t

≤ e is ensured by condition (6), i.e.,

m≳
(
(ηTBT )

2 +
(ηT )

7
2BT

n

) 1

5c− 1
2 +

(
(ηT )

3
2B2

T +
(ηT )3BT

n

) 1
4c−1+

(
(ηT )2BT +

(ηT )
7
2

n

) 1
5c−1

+
(
(ηT )

3
2BT +

(ηT )3

n

) 1

4c− 3
2

with BT =
√
ηT + ∥W0∥2. The proof is the same as Theorem A.6. We omit it for simplicity.

We can combine Theorem B.4 and Lemma A.2 together to get the upper bound of the generalization
error.

Proof of Theorem 5. The proof is similar to that of Theorem 1. From (B.21) we know that∥∥Wt+1 −W
(i)
t+1

∥∥2
2
≤ 4e2η2ρ̂(1 + t)

n2

t∑
j=0

(
ℓ(Wj ; zi) + ℓ(W

(i)
j ; z′i)

)
,

where we used the self-bounding property of the smooth loss (Lemma A.1).

Then, taking an average over i ∈ [n] and noting that E
[
ℓ(Wj ; zi)

]
= E

[
ℓ(W

(i)
j ; z′i)

]
, we have

1

n

n∑
i=1

E
∥∥Wt+1 −W

(i)
t+1

∥∥2
2
≤ 8e2η2ρ̂(1 + t)

n2

t∑
j=0

E
[
LS(Wj)

]
.

Combining the above stability bounds with Lemma A.2 together and noting that LS(Wt) ≤
1
t

∑t−1
j=1 LS(Wj) (Richards & Kuzborskij, 2021), the desired result is obtained.

B.2 PROOFS OF OPTIMIZATION BOUNDS

To show optimization error bounds, we first introduce the following lemma on the bound of GD
iterates.
Lemma B.5. Suppose Assumptions 1 and 2 hold, and η ≤ 1/(8ρ̂). Assume (6) and (7) hold. Then
for any t ∈ [T ], there holds

1 ∨ E[∥W∗
1

ηT
−Wt∥22]

≤
(16e2η3t2ρ̂2

n2
+
16eη2tρ̂

n

) t−1∑
s=0

E
[
LS(Ws)

]
+2∥W∗

1
ηT
−W0∥22+2ηT

[
L(W∗

1
ηT

)− L(W∗)
]
.

Proof. For any W ∈ Rmd and α ∈ [0, 1], define W(α) := Wt + α(W −Wt). Similar to (B.18),
according to Lemma B.1 we can show that

λmin

(
∇2LS(W(α))

)
≥−CW(α)

(( B2
σ′cx

m2c−1/2
∥W(α)∥2+

Bσ′Bσ

m2c−1

)(
∥W−Wt∥2+∥Wt∥2

)
+
√
2c0

)
,

where CW(α) =
B2

σ′Bσ′′c2x
m3c

∥∥W(α)(2)
∥∥2
2
+

(
Bσ′Bσ′′c2x

m2c− 1
2

+ 2Bσ′′Bσ′Bσcx

m3c− 1
2

)
∥W(α)(2)∥2 + Bσ′′B2

σ

m3c−1 +

2B2
σ′cx

m2c− 1
2

. Let ĈW = 4B1

(
m−3c(∥W∥22+4c0ηT+2∥W0∥22)+m

1
2−2c(∥W∥2+

√
2c0ηT+∥W0∥2)

)
.

According to Lemma B.2, we can verify that CW(α) ≤ ĈW for any α ∈ [0, 1].

32



Under review as a conference paper at ICLR 2024

Now, let

g(α) :=LS(W(α))+
α2ĈW

2

(( B2
σ′cx

m2c−1/2
∥W(α)∥2 +

Bσ′Bσ

m2c−1

)(
∥W−Wt∥2+∥Wt∥2

)
+
√
2c0

)
× (1 ∨ E[∥W −Wt∥22]).

It is obvious that g(α) is convex in α ∈ [0, 1]. Similar to the proof of Lemma A.7, by convexity of g
and smoothness of the loss we can show that

1

t

t−1∑
s=0

E[LS(Ws)] +
E
[
∥Wt −W∥22

]
2ηt

≤ E[LS(W)] +
E
[
∥W−W0∥22

]
2ηt

+
ĈW

2t

t−1∑
s=0

(( B2
σ′cx

m2c−1/2
∥W(α)∥2 +

Bσ′Bσ

m2c−1

)(
E[∥W−Ws∥2]

+
√
2c0ηT + ∥W0∥2

)
+
√
2c0

)
(1 ∨ E[∥W −Ws∥22]). (B.22)

Combining the above inequality with Theorem 5 and let W = W∗
1

ηT

, we have

E
[
∥Wt −W∗

1
ηT

∥22
]

2ηt

≤ 1

t

t−1∑
s=1

[
L(W∗

1
ηT

)− E[L(Ws)]
]
+

∥W∗
1

ηT

−W0∥22
2ηt

+
(4e2η2tρ̂2

n2
+
4eηρ̂

n

) t−1∑
s=0

E
[
LS(Ws)

]
+

1

2t

t−1∑
s=0

ĈW∗
1

ηT

(( B2
σ′cx

m2c−1/2
∥W(α)∥2+

Bσ′Bσ

m2c−1

)(
E[∥W∗

1
ηT
−Ws∥2]+

√
2c0ηT+∥W0∥2

)
+
√
2c0

)
× (1 ∨ E[∥W∗

1
ηT

−Ws∥22])

≤ L(W∗
1

ηT
)− L(W∗) +

∥W∗
1

ηT

−W0∥22
2ηt

+
(4e2η2tρ̂2

n2
+

4eηρ̂

n

) t−1∑
s=0

E
[
LS(Ws)

]
+

1

2t

t−1∑
s=0

ĈW∗
1

ηT

(( B2
σ′cx

m2c−1/2
∥W(α)∥2+

Bσ′Bσ

m2c−1

)(
∥W∗

1
ηT
−Ws∥2+

√
2c0ηT+∥W0∥2

)
+
√
2c0

)
× (1 ∨ E[∥W∗

1
ηT

−Ws∥22]), (B.23)

where in the second inequality we used L(W∗
1

ηT

)−L(Ws) ≤ L(W∗
1

ηT

)−L(W∗) since L(Ws) ≥
L(W∗) for any s ∈ [t− 1].

According to Lemma B.2 we can get

∥W∗
1

ηT
−Ws∥2 ≤ ∥W∗

1
ηT

−W0∥2 + ∥Ws −W0∥2 ≤ ∥W∗
1

ηT
−W0∥2 +

√
2c0ηT . (B.24)

Then there holds( B2
σ′cx

m2c−1/2
∥W(α)∥2+

Bσ′Bσ

m2c−1

)(
∥W∗

1
ηT

−Ws∥2 +
√

2c0ηT + ∥W0∥2
)
+

√
2c0

≤
( B2

σ′cx
m2c−1/2

(2
√

2c0ηT + 2∥W0∥2 + ∥W∗
1

ηT
−W0∥2) +

Bσ′Bσ

m2c−1

)
(2
√
2c0ηT + ∥W0∥2

+ ∥W∗
1

ηT
−W0∥2) +

√
2c0. (B.25)
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Plugging the above inequality back into (B.23) and multiplying both sides by 2ηt yields

E
[
∥Wt −W∗

1
ηT

∥22
]

≤ ∥W∗
1

ηT
−W0∥22+ηĈW∗

1
ηT

(( B2
σ′cx

m2c−1/2
(2
√
2c0ηT + ∥W0∥2+∥W∗

1
ηT
−W0∥2)+

Bσ′Bσ

m2c−1

)
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√
2ηTc0 + ∥W0∥2 + ∥W∗

1
ηT

−W0∥2) +
√
2c0

) t−1∑
s=0

(1 ∨ E[∥W∗
1

ηT
−Ws∥22])

+
(8e2η3t2ρ̂2

n2
+

8eη2tρ̂

n

) t−1∑
s=0

E
[
LS(Ws)

]
+ 2ηT

[
L(W∗

1
ηT

)− L(W∗)
]
.

Let x = maxs∈[T ] E[∥W∗
1

ηT

−Ws∥22] ∨ 1. Then the above inequality implies

x ≤ ∥W∗
1

ηT
−W0∥22+ηT ĈW∗

1
ηT

(( B2
σ′cx

m2c−1/2 (2
√
2c0ηT + ∥W0∥2+∥W∗

1
ηT
−W0∥2)+

Bσ′Bσ

m2c−1

)
× (2

√
2ηTc0+∥W0∥2+∥W∗

1
ηT
−W0∥2)+

√
2c0

)
x+

(8e2η3t2ρ̂2
n2

+
8eη2tρ̂

n

) t−1∑
s=0

E
[
LS(Ws)

]
+ 2ηT

[
L(W∗

1
ηT

)− L(W∗)
]
.

Note that condition (7) implies that ηT ĈW∗
1

ηT

(
(

B2
σ′cx

m2c−1/2 (2
√
2c0ηT + ∥W0∥2 + ∥W∗

1
ηT

−W0∥2) +
Bσ′Bσ

m2c−1 )(2
√
2ηTc0 + ∥W0∥2 + ∥W∗

1
ηT

−W0∥2) +
√
2c0

)
≤ 1

2 . Then there holds

x ≤
(16e2η3t2ρ̂2

n2
+

16eη2tρ̂

n

) t−1∑
s=0

E
[
LS(Ws)

]
+ 2∥W∗

1
ηT
−W0∥22 + 2ηT

[
L(W∗

1
ηT

)− L(W∗)
]
.

It then follows that

1 ∨ E[∥W∗
1

ηT
−Wt∥22]

≤
(16e2η3t2ρ̂2

n2
+
16eη2tρ̂

n

) t−1∑
s=0

E
[
LS(Ws)

]
+2∥W∗

1
ηT
−W0∥22+2ηT

[
L(W∗

1
ηT

)−L(W∗)
]
.

This completes the proof.

Proof of Theorem 6. Combining (B.25) and (B.22) with W = W∗
1

ηT

together yields

1

T

T−1∑
s=0

E[LS(Ws)]

≤E[LS(W
∗
1

ηT
)]+

∥W∗
1

ηT

−W0∥22
2ηT

+

ĈW∗
1

ηT

2T

T−1∑
s=0

(( B2
σ′cx

m2c−1/2
(2
√
2c0ηT+∥W0∥2+∥W∗

1
ηT
−W0∥2)

+
Bσ′Bσ

m2c−1

)(
E[∥W∗

1
ηT

−Ws∥2] + 2
√

2c0ηT + ∥W0∥2
)
+

√
2c0

)
(1 ∨ E[∥W∗

1
ηT

−Ws∥22])

≤ E[LS(W
∗
1

ηT
)] +

1

2T
ĈW∗

1
ηT

B̂W∗
1

ηT

T−1∑
s=0

1 ∨ E[∥W∗
1

ηT
−Ws∥22] +

∥W∗
1

ηT

−W0∥22
2ηT

, (B.26)

where B̂W∗
1

ηT

=
( B2

σ′cx
m2c−1/2 (2

√
2c0ηT+∥W∗

1
ηT

−W0∥2)+ Bσ′Bσ

m2c−1

)
(2
√
2ηTc0+∥W0∥2+∥W∗

1
ηT

−

W0∥2) +
√
2c0 and in the last inequality we used (B.24).
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By monotonic decrease of {LS(Wt)} and Lemma B.5, we further know

E[LS(WT )] ≤ E[LS(W
∗
1

ηT
)] +

ĈW∗
1

ηT

B̂W∗
1

ηT

2T

T−1∑
s=0

1 ∨ E[∥W∗
1

ηT
−Ws∥22] +

∥W∗
1

ηT

−W0∥22
2ηT

≤ E[LS(W
∗
1

ηT
)] + ĈW∗

1
ηT

B̂W∗
1

ηT

((8e2η3T 2ρ̂2

n2
+
8eη2T ρ̂

n

)T−1∑
s=0

E
[
LS(Ws)

]
+ ∥W∗

1
ηT

−W0∥22 + ηT
[
L(W∗

1
ηT

)− L(W∗)
])

+
∥W∗

1
ηT

−W0∥22
2ηT

,

which completes the proof.

Recall that CT,n = ηT + η3T 2/n2.

Lemma B.6. Suppose Assumptions 1 and 2 hold. Let {Wt} be produced by (2) with η ≤ 1/(8ρ̂).
Assume (6) and (7) hold. Then

T−1∑
s=0

E[LS(Ws)] ≤ 2TL(W∗
1

ηT
)− ηTL(W∗) +

(
1 +

1

2η

)
∥W∗

1
ηT

−W0∥22.

Proof. Multiplying T over both sides of (B.26) and using Lemma B.5 we get
T−1∑
s=0

E[LS(Ws)] ≤ TL(W∗
1

ηT
)+ĈW∗

1
ηT

B̂W∗
1

ηT

((8e2η3T 2ρ̂2

n2
+
8eη2T ρ̂

n

)T−1∑
s=0

E
[
LS(Ws)

]
+ ∥W∗

1
ηT

−W0∥22 + ηT
[
L(W∗

1
ηT

)− L(W∗)
])

+
∥W∗

1
ηT

−W0∥22
2η

. (B.27)

Condition (7) implies ĈW∗
1

ηT

B̂W∗
1

ηT

(
4e2η3T 2ρ̂2

n2 +4eη2T ρ̂
n

)
≤ 1/2 and ĈW∗

1
ηT

B̂W∗
1

ηT

≤ 1. Then there

holds
T−1∑
s=0

E[LS(Ws)] ≤ 2TL(W∗
1

ηT
)− ηTL(W∗) +

(
1 +

1

2η

)
∥W∗

1
ηT

−W0∥22,

which completes the proof.

B.3 PROOFS OF EXCESS POPULATION BOUNDS

Proof of Theorem 7. Note ρ̂ = O(1). According to Theorem 5 and Lemma B.6 we know

E[L(WT )− LS(WT )] = O
((η2T 2

n2
+

ηT

n

)(
L(W∗

1
ηT

) +
1

ηT
∥W∗

1
ηT

−W0∥22
)
. (B.28)

The estimation of the optimization error is given by combining Lemma B.6 and Theorem 6 together

E[LS(WT )− LS(W
∗
1

ηT
)− 1

2ηT
∥W∗

1
ηT

−W0∥22]

= O
((η2T 2

n2
+
ηT

n

)(
L(W∗

1
ηT

)+
1

2ηT
∥W∗

1
ηT
−W0∥22

)
+

1

ηT
∥W∗

1
ηT
−W0∥22 + Λ 1

ηT

))
,

where we used the fact that ĈW∗
1

ηT

B̂W∗
1

ηT

≤ 1/ηT implied by condition (7) and L(W∗
1

ηT

) −

L(W∗) ≤ Λ 1
ηT

.
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Combining the above two inequalities together we get

E[L(WT )− L(W∗)]

=
[
E[L(WT )− LS(WT )

]
+ E

[
LS(WT )−

(
LS(W

∗
1

ηT
) +

1

2ηT
∥W∗

1
ηT

−W0∥22
)]

+
[
L(W∗

1
ηT

) +
1

2ηT
∥W∗

1
ηT

−W0∥22 − L(W∗)
]

= O
(ηT

n

(ηT
n

+1
)[

L(W∗
1

ηT
)+

1

2ηT
∥W∗

1
ηT
−W0∥22

]
+

1

ηT
∥W∗

1
ηT
−W0∥22 + Λ 1

ηT

)
.

Since n ≳ ηT , we further have

E[L(WT )−L(W∗)] = O
(ηT

n

[
L(W∗

1
ηT

)+
1

2ηT
∥W∗

1
ηT
−W0∥22

]
+

1

ηT
∥W∗

1
ηT
−W0∥22 + Λ 1

ηT

)
.

Finally, note that L(W∗
1

ηT

)+ 1
2ηT ∥W

∗
1

ηT

−W0∥22 = L(W∗)+Λ 1
ηT

and ∥W∗
1

ηT

−W0∥22 ≤ ηTΛ 1
ηT

,
we have

E[L(WT )− L(W∗)] = O
(ηT

n
L(W∗) + Λ 1

ηT

)
.

The proof is completed.

Proof of Corollary 8. Part (a). From the definition of the approximation error Λ 1
ηT

and Theorem 7
we can get

E[L(WT )− L(W∗)] = O
(ηT

n
L(W∗) +

1

ηT
∥W∗ −W0∥22

)
.

For the case c ∈ [9/16, 1], to ensure conditions (6) and (7) hold, we choose m ≍ (ηT )4 for this case.
Then according to Theorem 7 and Assumption 3, there holds

E[L(WT )− L(W∗)] = O
(ηT

n
+ (ηT )3−8µ

)
.

Here, the condition µ ≥ 1/2 ensures that 3− 8µ < 0. Hence, the bound will vanish as ηT tends to
0. Further, if n

1
2(8µ−3) ≲ ηT ≲

√
n (the existence of ηT is ensured by µ ≥ 1/2), then there holds

ηT/n = O(n−1/2) and (ηT )3−8µ = O(n−1/2). That is

E[L(WT )− L(W∗)] = O
( 1√

n

)
.

For the case c ∈ (1/2, 9/16), we choose m ≍ (ηT )
1

4c−2 , and n
2c−1

2µ+4c−3 ≲ ηT ≲
√
n. From

Theorem 7 and Assumption 3 we have

E[L(WT )− L(W∗)] = O
( 1√

n

)
.

The first part of the theorem is proved.

Part (b). For the case c ∈ [9/16, 1], by choosing m ≍ (ηT )4 and ηT ≳ n
1

8µ−3 , from Theorem 7 and
Assumption 3 we have

E[L(WT )− L(W∗)] = O
( 1
n

)
.

For the case c ∈ (1/2, 9/16), by choosing m ≍ (ηT )
1

4c−2 and ηT ≳ n
4c−2

4c+2µ−3 , from Theorem 7 and
Assumption 3 we have

E[L(WT )− L(W∗)] = O
( 1
n

)
.

The proof is completed.
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B.4 MORE DISCUSSION ON RELATED WORKS

Richards & Rabbat (2021) derived a lower bound on the minimum eigenvalue of the Hessian for the
three-layer NN, where the first layer activation is linear, and the second activation is smooth. They
proved the weak convexity of the empirical risk scales with m

1
2−2c when optimizing the first and

third layers of weights with Lipschitz and convex losses. We train the first and the second layers of
the network with general smooth activation functions for both layers. Our result shows that the weak
convexity of the least square loss scales with m

1
2−2c.
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