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Supplementary material main contributions:

1. Details on the localization, motion estimation and registration procedures, as well as a
discussion on the importance of our denoising step

2. An illustration and evaluation of the localization method on a synthetic toy dataset
3. Comparison between our 3d localization features and waveforms’ shape features
4. Neuropixels 1.0 localization and registration results
5. Videos to illustrate the performance of our improved registration method

1 Localization and optimization

1.1 Localization and optimization details

The individual waveform neural network denoiser we use to get clean waveforms and un-
biased amplitudes is defined in YASS [8]. For each type of probe, the neural network
can be trained following instructions at https://github.com/paninski-lab/yass/wiki/
Neural-Networks---Loading-and-Retraining.

This neural network is an individual waveform denoiser. It denoises the signal on each channel
separately. When trained, it expects the input waveform’s minimum to be found at a timepoint
close to a given value. For example, if trained with waveforms that have their minima around
timepoint 41, it will return a clean waveform that takes its minimum close to timepoint 41 as well. It
uses this information to remove collisions: If a waveform takes its minimum around 60, it will be
automatically treated as a collision and the output will be a waveform taking its minimum around 41.
For good accuracy across channels, we upsample and align waveforms before denoising to correct
for micro-time shifts between channels. This process removes “close" collisions. However, if a
“far away" neuron (for example, localized at a very different z-position) fires simultaneously, the
signal will be equal to the sum of the collided waveform and noise, and the denoiser will return the
denoised waveform instead of detecting it as a collision. It is important to discard this waveform
when computing localization.

To remove these “far away" collisions, we need to first run a de-duplication step (implemented in
many spike sorters such as YASS [8] and Kilosort [10]), to get an estimate of the localization and its
main channel, giving a set Cm of relevant channels.

For each denoised waveform wn, we find its max channel mcwn
∈ Cm and perform localization

using the denoised amplitudes recorded at channels {mcwn
− k/2, ...,mcwn

+ k/2} by minimizing
f(x, y, z, α) =

∑
c∈Cwn

(ptpc− α√
(x−xc)2+(z−zc)2+y2

)2 over {x, y, z, α}. We optimize this function

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/paninski-lab/yass/wiki/Neural-Networks---Loading-and-Retraining
https://github.com/paninski-lab/yass/wiki/Neural-Networks---Loading-and-Retraining


Algorithm 1: Localization
Input : N detected events wn ∈ W , de-duplicated, each associated with a main channel mcm

and its surrounding channels Cm, the number of waveform-specific channels K, an initial value
for y, yinit;

for wn ∈ W do
Get wn’s waveform on channels Cm;
Align wn’s waveform on mcm;
Denoise wn’s waveform using NN-denoiser [8];
Find wn’s main channel mcwn

among Cm using denoised waveforms;
Get the peak-to-peak amplitudes ptpn of wn denoised waveforms on channels
Cwn

= {mcwn
− k/2, ...,mcwn

+ k/2};
Consider f(x, y, z, α) =

∑
c∈Cwn

(ptpc − α√
(x−xc)2+(z−zc)2+y2

)2;

Find an estimate of the global minimizer of f , xwn , ywn , zwn , αwn using least-squares
optimization with a center-of-mass initialization ;

end
Output: Spatial locations {xwn

, ywn
, zwn

} and “brightnesses" αwn
feature for every waveform

wn ∈ W

using least-squares optimization after using center-of-mass as a simple quick initialization. The
function we optimize is non-convex, but we show in section 1.2. that this optimization method is
suited to the task. The whole procedure is summarized in Algorithm 1.

k, the number of channels used for localizing denoised waveforms, is the only hyperparameter of our
model. Choosing k to be small will lead to “flat" clusters (exhibiting small standard deviation along
z-axis and high standard deviation along x-axis), and loss of precision along the z-axis, while choosing
a large k will allow small amplitude, noisy channels to be taken into account when localizing, which
will spread out the clusters and lead to a loss in precision. The set of “relevant" channels Cm has to
be larger than k.

1.2 Evaluating optimization on a toy dataset

We validated the method on a toy dataset. We reproduced the position of 80 channels, for both
NP1.0 and NP2.0, and randomly assigned {x, y, z} positions of 1000 neurons drawn from a Gaussian
distribution. We then fix α = 500 and compute the corresponding amplitudes on each channel using
ptpc,n = α

dc,n
where dc,n is the distance of {xn, yn, zn} to channel c. We use our localization method

to infer the corresponding locations, and show that our model can accurately recover {xn, yn, zn}
locations (Fig. 1).

1.3 Reliable estimation of spikes amplitudes using the neural network denoiser

To explore the quality of our amplitude estimation using the neural network denoiser described in
section 2.2, we selected 170 clean templates obtained after running YASS [6] on a Neuropixels 2.0
dataset, added background signal taken randomly from the same dataset to get simulated waveforms,
and computed amplitudes before and after denoising. Fig. 2 shows a scatter plot of the true template
amplitudes vs. the waveform amplitudes (in blue) and the denoised waveform amplitudes (in red).
Denoised amplitudes are much closer to the true amplitudes of the templates, as desired.

1.4 Localizations without denoising

To further illustrate the importance of the denoising step on localization, Fig. 3 (analogous to Fig. 3
in the main text) shows the inferred features and associated GMM clusters for localizations without
denoising. The clusters of locations appear noisier and more spread out. Moreover, we see that many
collided spikes belonging to different units are located in single clusters, since there is no way to
disambiguate collisions with the amplitude-based localization method.
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Figure 1: Simulated toy data localization. We sampled {x, z, y} spike locations from a Gaussian
distribution, and computed the amplitudes on each channel using the simple point model. We compare
the true locations vs. our model’s inferred locations. (A) shows results with channels following
Neuropixels 2.0 geometry. Left shows the simulated {x, z} locations (blue) and the channel positions
(orange). The three scatter plots show inferred {z, x, y} vs true {z, x, y}. Dashed red line corresponds
to “x = y" and the green one to the regression line. Correlation coefficients are reported on the
top left of each scatter plot. The orange lines on the third scatter plot indicate the x position of the
channels. Panel (B) is similar with channels reproducing the geometry of Neuropixels 1.0 probes.
Panel (C) shows similar scatter plots for the inferred {x, z} positions of Center of Mass method,
for both Neuropixels 2.0 (left) and Neuropixels 1.0 (right). Our method recovers {x, y, z} positions
accurately. The Center of Mass method fails at recovering {x, z}; it localizes inside the convex-hull
of the electrode locations, and “shrinks" positions to the center of the probe. The stair-like pattern on
the z scatterplots indicate that it tends to localize very close to the channels. We did not compare
with Hurwitz et al. method [5] as it does not rely on amplitudes only for localization.
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Figure 2: Denoiser’s output waveforms have close to true amplitudes. Scatter plot of the true
template amplitudes vs simulated waveform amplitudes (in blue) and the denoised waveforms
amplitudes (in red). (See text for simulation details.) Green line indicates y = x. Overall, denoised
amplitudes are much closer to the true amplitudes.
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Figure 3: Denoising lead to sharper clusters and disambiguate collided spikes. We use the same
convention as the main text Fig. 3 in this figure. (A) {x, z} locations of spikes detected from 200
seconds of NP 2.0 recording, inferred by the center of mass baseline (left), our method (second to
left), and our method without the denoising step (middle). The two scatter plots on the right of the
figure represent z vs. y and α. The four colored boxes frame spikes that are shown in panel B, and
the yellow, blue, and red color of the spikes represent GMM cluster assignments, using {x, z, α} as
features for our method with and without denoising. The number of clusters has been chosen by
hand to reflect the shape of the point clouds in each box. The boxes in each column are not the same
size, as we are trying to match spikes localized in the same z-area, which depends on the localization
method. (B) Waveforms corresponding to each box and cluster, for our method with (right) and
without (left) denoising. The many non-centered waveforms in the left column show collided spikes
that have not been localized properly without denoising.
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2 Comparing features

Figure 4 shows a comparison of our localization features {x, y, z, α} to the first two principal
components of the waveforms, and an additional “spread" feature, equal to the trace of the covariance
of the distribution of each spike amplitudes across channels. This feature should be informative of y
location, as the maximum amplitude can’t help distinguish between a low-amplitude, close spike and
a high-amplitude, far away spike.

Some clusters are better separated by α than any other features, indicating that it contains information
about the shape or location of the waveforms that is not contained by other single features.

Figure 4: Comparing localization and shape features. Scatter plots showing our inferred {x, z}
locations of spikes detected from 200 seconds of NP 2.0 recording (left), {y, z} locations (second to
left), {α, z} (third to left), the first two Principal Components of the waveforms vs. z (fourth and fifth
to left), and the spread of each waveform vs. z (right). Spikes are colored by maximum peak-to-peak
amplitude. The spread of each waveform is calculated as the covariance of the distribution of the
denoised amplitude over the set of selected channels. We expect spread to be informative about y, as a
far away high-amplitude spike will be seen on multiple channels with low detected amplitude, giving
high spread, whereas a small or high amplitude spike close to the channels will correspond to a low
spread value. Y is determined by the amplitudes. The point clouds inside the red box (around depth
300) are only separated by α, and not by the Principal Components of the waveforms, the spread
or the maximum amplitude, suggesting that α contains additional information useful for clustering.
This figure shows scatter plots corresponding to the same spikes as the main text Figure 3, and the
red box corresponds to Box 4.
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3 Comparison of image denoising techniques

Due to the limitations of the point neuron model and the sparse number of observations, the local-
ization methods provide a partial picture of the spatial layout of spiking units. To generate a dense
localization images for image based registration, we utilize three different denoising techniques: 1)
Gaussian smoothing, Poisson denoising [9] (ours), and Deep interpolation (DI) [7].

• Gaussian smoothing involves blurring the localization images by a Gaussian filter to infill
gaps. Here we used a kernel size of 5µ m.

• DI is a neural-network based denoising algorithm that takes noisy samples from the original
raw data as inputs to train a spatio-temporal nonlinear interpolation model. We applied deep
interpolation to a small patch of NP 2.0 raster image (depth 70-582µm and time 1-512s),
with one of the network architectures provided by the authors (“unet_single_256"). The
network is trained with 5 steps per epoch (total of 7 epochs), with batch size of 1 and
“pre_post_frame" set to 1.

• Poisson denoising models the observed localization image as having been corrupted by
Poisson salt-and-pepper noise, with the likelihood of observing a spike proportional to its
amplitude. Since this process models the noise variance to be proportional to its mean, we
first apply the Anscombe transformation [1] to stabilize noise variance prior to denoising the
transformed localization image by BM3D [4] or non-local-means [3]. After the transformed
image is “denoised" we apply the inverse Anscombe transformation to yield the "Poisson
denoised" localization image.

The three approaches to image denoising have slightly different effects on downstream motion
estimation. Figure 5 shows the comparison of the probe displacements for the first 512 seconds,
estimated by localization images denoised by Gaussian filtering, DI, and Poisson denoising. The
estimates are similar, but there is a drastic difference in the run-time (178 for Deep Interpolation
vs. 0.27 seconds for Poisson denoising), suggesting that our Poisson denoiser is both effective and
efficient. Furthermore, the motion estimate curves yielded by DI outputs of localization images shows
dampened peak-to-trough amplitudes of motion in the simulated NP 2.0 datasets, indicating that DI
may be slightly over-smoothing the images, obscuring fine details that may be useful for precise
motion estimation.
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Figure 5: Comparing the effects of different image denoising techniques for motion estimation
A: The displacement estimates obtained from our localization images without denoising as well
as Poisson denoising, Gaussian smoothing, and Deep Interpolation denoising, compared with the
displacement estimates obtained using Center of Mass localization and Hurwitz method of localization
with Poisson denoising. B: The displacement estimates are superimposed on top of the estimates
from our localization method + Poisson denoising to examine subtle differences between the methods.
Displacement estimates using our localization method yield similar outputs whether we use image
based registration or point cloud based registration. Our localization with Poisson denoising yields
slightly “peakier" displacement estimates versus denoising with Deep Interpolation. Gaussian blurring
yields noisier estimates of displacement than the other denoising methods.
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4 Additional details on point-cloud registration

Algorithms 2 and 3 outline the detailed steps of the point-cloud registration technique (in the rigid
case, for simplicity), with Figure 6 providing an illustration.

Algorithm 2: Point-cloud registration
Input : Localization coordinates, amplitudes and spikes times {xwn

, zwn
, ywn

, ptpmcwn
, twn
}

for wn ∈ W; threshold distance doutlier for removing outliers; the maximum merge distance
dmerge for agglomerative clustering; grid search range G and stride stride;

// Preprocessing
for T = 1, 2 . . . ,max(twn

) do
Generate point cloud PCT (x, y, z, ptp, n) from wn ∈ W , T ≤ twn

< T + 1:
Remove outliers: remove wn if its average distance to k nearest neighbors is greater

than doutlier
Run agglomerative clustering with dmerge: Recursively merge pairs of clusters -

{x, y, z, ptp} are averaged when merged, and n represents the number of spikes in the
cluster

end
// Run modified iterative closest point
for T = 1, 2 . . . ,max(twn) do

for T ′ = 1, 2 . . . ,max(twn) do
// Initialize with grid search
Find ∆zT,T ′ ∈ range(−G,G, stride) such that computeLoss(PCT ,PCT ′ ,∆zT,T ′) is

minimized.
Run iterative closest point [2] to update ∆zT,T ′ such that
computeLoss(PCT ,PCT ′ ,∆zT,T ′) is minimized, with maximum iteration maxIter

end
end
Estimate global z positioning of each time bin of data using method in [12]: pz(T );
Output: Motion estimate for each one-second of data pz(T ).

Algorithm 3: computeLoss
Input : A pair of point clouds PCT (x, y, z, ptp, n), PCT ′(x, y, z, ptp, n); z-displacement
∆zT,T ′ ; a threshold distance dthreshold for filtering out pairs of points

Shift PCT ′(x, y, z, ptp, n) in z-direction by ∆zT,T ′

// Distance from PCT (x, y, z, ptp, n) to PCT ′(x, y, z, ptp, n)
Update L: Add average L2-distance (in x, y, and z dimensions) from points in
PCT (x, y, z, ptp, n) to their nearest neighbors in PCT ′(x, y, z, ptp, n), weighted by ptp and n,
after discarding pairs of points with L2-distance greater than dthreshold

// Filter PCT ′(x, y, z, ptp, n)
Mask out points in PCT ′(x, y, z, ptp, n) that are not selected as nearest neigbors of
PCT (x, y, z, ptp, n) in the previous step

// Distance from PCT ′(x, y, z, ptp, n) to PCT (x, y, z, ptp, n)
Update L: Add average L2-distance (in x, y, and z dimensions) from points in
PCT ′(x, y, z, ptp, n) to their nearest neighbors in PCT (x, y, z, ptp, n), weighted by ptp and n,
after discarding pairs of points with L2-distance greater than dthreshold

Output: Loss L.
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Figure 6: Visualization of point-cloud registration on NP 2.0 recording. Visualization of unregis-
tered point clouds (A), unregistered point clouds zoomed in to depth 1400 - 1800µm (B), compressed
(i.e. outlier removal & hierarchical clustering) point clouds (C), and registered compressed point
clouds (D). Colors represent which second of data each spike is from (red: 1st second, blue: 850th
second). Orange squares represent the recording sites of the NP 2.0 probe. Smaller dots represent
the original spikes, and larger ones represent the means of the hierarchical clusters. Here we register
the blue point cloud to the red one by shifting −33.04µm in the z-direction, and we see that the two
point clouds overlap to a greater extent after registration.
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5 Neuropixels 1.0 results

5.1 Spike localization

To demonstrate that the localization model is robust to different types of probes, we show improve-
ments over previous localization methods on a Neuropixels 1.0 dataset. Fig. 7 shows locations
inferred by Center of Mass, Hurwitz et al. [5], and our method, and corresponding clusters obtained
using Gaussian Mixture Model on the location features. For the Hurwitz et al. method, channels
within 50 µm from the main channel are included (10 observed amplitudes) and amplitude jitter is
set to 0 µV .

5.2 Motion estimation and registration

We evaluate registration performance to demonstrate that motion estimation is robust to the localiza-
tions that arise from Neuropixels 1.0 probes geometry. The quantitative and qualitative results are
shown in Fig. 8.
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Figure 7: Inferred 3D spatial features yield improvements in Neuropixels 1.0 waveform clus-
tering (analogous to figure 3 in main text) (A) shows center of mass, Hurwitz et al. and our
localization results, with added features Y, α for our method. Spikes in each box correspond to the
waveforms in panel (B), with blue, red and yellow colors corresponding to Gaussian Mixture Model
clustering with the number of components reflecting the cloud points shape. The many non-centered
waveforms in the left column of Panel (B) show collided spikes that have not been localized properly
by the Hurwitz et al. method, which often spatially separates similar waveforms, while failing to
isolate different units. On the other hand, our location-based clusters correspond to similar units for
boxes 1 and 3, without corruption from poorly localized collided spikes. Nonetheless, some units here
show signs of oversplitting (e.g., boxes 2 and 4), indicating room for potential further improvement.
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Figure 8: Improved localization enables better motion correction and registration of Neuropix-
els 1.0 data (analogous to figure 5 in main text) (A) We apply the existing registration tech-
nique [12] on time-binned image representations of data to estimate the amount of z, x, and y motion
for all three localization techniques. We show the motion estimate for each localization technique,
with and without Poisson denoising. Poisson denoising significantly improves the noise jitter in mo-
tion estimation. (B) Visualizing z-direction raster plots of the unregistered and registered recordings
(after Poisson denoising) shows stabilization of motion effects for all three methods with nominal
improvements by our method over others. Green arrows denote areas of the raster plot that have
been well stabilized using our localization versus the localization of Hurwitz et al. (C, E, F, G)
Visualizing the average image after registration using our localization shows significant decrease in
image entropy (as a measure of localization “sharpness") over compared methods. (D) Additionally,
our localization affords the highest average correlation of registered images to the average image
and the lowest RMSE. Note that CoM method’s high average correlation after registration should be
contrasted with its high values prior to registration. Since this localization provides highly blurred
images, the average correlation after registration is vacuously high.
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6 Supplementary videos

6.1 Supplementary Datoviz video for figure 1 in main text (Web link: video-figure-1.mp4)

Datoviz [11] is a high-performance interactive data visualization library that we use to visualize our
localizations and spike sorting output along the probe, and inspect the clusters in 3-d. In this example
video, we are showing four different panels. The first one displays the spikes’ 3-d locations {x, y,z}
along the probe, colored by post spike-sorting clusters. The second panel shows the same features,
colored by maximum amplitude. The third one shows the same features colored by α feature, while
the last one displays {x, z,α} along the probe, colored by maximum amplitude.

This interactive plot allows us to scroll along the probe, zoom to inspect clusters (do the spike-sorting
units have well-defined clusters, do they correspond to two different clusters, is one cluster separated
in two different units?), aggregate spikes in time, and look at different time points in the recordings.
The latter provides a good way to visualize the 3-d displacement of the probe.

6.2 Supplementary video for figure 4 in the main text (Web link: video-figure-4.mp4)

This video shows the zoomed regions of the Neuropixels probe that correspond to the anatomical
regions of cortex, hippocampus and thalamus. Screenshot of this video is shown in figure 9. In each
frame top left panel shows the sparse localization image of detected spikes and their spatial positions
after having been projected along the depth (y) axis. Top right panel is analogous to top left panel but
shows the projection along the horizontal axis (x). Middle panels show the localization images after
having gone through Poisson denoising [9]. Bottom panels show the Poisson denoised images after
motion estimation and registration.

Figure 9: Video representation of Poisson denoising, and motion estimation in zoomed regions
of cortex, hippocampus, and thalamus in Neuropixels 2.0 data. This is a screenshot of supple-
mentary video for figure 4 in main text showing a frame that corresponds to the hippocampal zoomed
region. In each frame top left panel shows the sparse localization image of detected spikes and their
spatial positions after having been projected along the depth (y) axis. Top right panel is analogous
to top left panel but shows the projection along the horizontal axis (x). Middle panels show the
localization images after having gone through Poisson denoising [9]. Bottom panels show the Poisson
denoised images after motion estimation and registration. Note that in all anatomical regions, the
motion has been mitigated in the registered panel.
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6.3 Supplementary video for figure 5 in main text (Web link: video-figure-5.mp4)

This video compares the localization images and the registration performance using all three compared
methods (ours, Hurwitz et al. and CoM) in both Neuropixels 1.0 and 2.0 datasets. Screenshot of this
video is shown in figure 10.

Figure 10: Video representation of Poisson denoising, and motion estimation using compared
localization methods in both Neuropixels 1.0 and 2.0 data. This is a screenshot of supplementary
video for figure 5 in main text showing a frame that corresponds to the cortical zoomed region using
localization and registration guided by our technique in Neuropixels 2.0 data. Subsequent frames
show comparisons with Hurwitz et al. and CoM in both Neuropixels 1.0 and 2.0 data. In each frame
top left panel shows the sparse localization image of detected spikes and their spatial positions after
having been projected along the depth (y) axis. Top right panel is analogous to top left panel but
shows the projection along the horizontal axis (x). Middle panels show the localization images after
having gone through Poisson denoising [9]. Bottom panels show the Poisson denoised images after
motion estimation and registration. Note that the periodic horizontal motion visible in the middle
(unregistered) panels is mitigated in the bottom panels after registration, demonstrating that the
estimated motion corresponds well to the underlying motion. Also note that our proposed method
yields a more stabilized registration. Since the CoM method compresses localization to a narrow strip,
features that could be used to guide a fine resolution registration are lost, causing an underestimation
of motion.
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7 Datasets

For reproducibility of our experiments, datasets used in our paper can be found
here : https://github.com/flatironinstitute/neuropixels-data-sep-2020/blob/
master/doc/cortexlab1.md
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