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Abstract

Non-negative tensor low-rank decompositions based on the
Kullback-Leibler (KL) divergence minimization form non-
convex optimization problems with the associated instability
being a longstanding issue. This study introduces an informa-
tion geometric analysis of such decompositions in order to
enhance their stability. The key idea behind our analysis is to
consider the tensor ranks as hidden variables and employ the
EM algorithm and its information geometric view. We reveal
that the instability in tensor decomposition arises from hidden
variables breaking the flatness of the model manifold — the
set of low-rank tensors. Consequently, we reformulate the ten-
sor low-rank decomposition as iterative projections onto a flat
model manifold of tensors without hidden variables, i.e., a set
of rank-1 tensors, in higher-order tensor space than the origi-
nal given tensor. This analysis bridges information geometry
and tensor decomposition, resulting in a novel algorithm that
ensures a monotonic decrease in the KL divergence regardless
of the low-rank structure for which we presently consider the
CP, Tucker, and Tensor Train decompositions.

1 Introduction

A tensor is a versatile data structure that describes multi-
dimensional data and is widely used in computer vision (Pana-
gakis et al. 2021), signal processing (Sidiropoulos et al. 2017),
and data mining (Mgrup 2011). Tensor low-rank decomposi-
tion, which approximates a given tensor with a linear com-
bination of a small number of bases, enables a variety of
applications such as density estimation (Novikov, Panov, and
Oseledets 2021) and regression (Hendrikx et al. 2019). In
many applications where the data are nonnegative, nonneg-
ative tensor decompositions are often used to impose the
non-negativity on the decomposed representation (Shashua
and Hazan 2005) while promoting parts-based representa-
tions (Lee and Seung 1999). Tensor factorization requires
optimizing the error between the input tensor and the recon-
structed low-rank tensor. Although various error functions
are developed, the KL divergence error is often used because
it leads to improved robustness to outliers and noise when
compared to the least square error (Gao et al. 2019).
However, both the KL-divergence and least-squares-based
low-rank decompositions require non-convex optimization
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in most cases (Hillar and Lim 2013), and instability of the
algorithms for such decompositions has been an issue in the
tensor community. Existing multiplicative update (MU) meth-
ods (Kim, Cichocki, and Choi 2008) require careful discus-
sion of convergence, and the batch gradient methods require
tuning of the learning rate and batch size, and do not guaran-
tee monotonically decreasing of the KL divergence (Glasser
et al. 2019).

Recently, novel tensor modelings that avoid instability
have been established (Ghalamkari and Sugiyama 2021,
2023) by understanding nonnegative tensor decompositions
via information geometry (Amari 2016), which is the ge-
ometry of probability distributions. Information geometry
introduces the concepts of flatness in the coordinate system
of probability distributions, which is useful in order to formu-
late a problem as a convex optimization. Since normalized
nonnegative tensors naturally correspond to joint discrete
distributions (Vora, Gurumoorthy, and Rajwade 2021), non-
negative tensor decompositions can be described by infor-
mation geometry. By formulating the decomposition so that
the model manifold, i.e., the set of decomposed tensors, is
flat, the Legendre decomposition (Sugiyama, Nakahara, and
Tsuda 2018) and many-body decompositions (Ghalamkari,
Sugiyama, and Kawahara 2023) have been developed which
stably obtain the globally optimal solution by convex op-
timization. These decompositions are essentially different
from conventional low-rank decompositions as they do not
impose any low-rank structure on the tensor.

In contrast to these geometric-based tensor models, the
geometry of traditional low-rank decompositions remains un-
charted. In this study, we attempt to stabilize the nonnegative
tensor low-rank decomposition by describing its information
geometry. Specifically, we focus on the fact that the non-
flatness of the low-rank manifold, i.e., the set of low-rank
tensors, leads to difficulties in the optimization, and refor-
mulate the tensor low-rank decomposition as stable iterative
projections between flat manifolds within a higher-order ten-
sor space. Interestingly, this projection can be viewed as a
generalized rank-1 approximation of a higher-order tensor,
and we prove that any rank-1 approximation optimizing the
KL divergence is a convex problem regardless of the low-rank
structure.

Our analysis provides a novel algorithm for tensor low-
rank decompositions that monotonically reduces the KL di-



vergence by iterative convex rank-1 approximations of higher-
order tensors. In addition, given the closed-form formulas
for the best rank-1 approximations, each projection in higher-
order space can update all parameters simultaneously without
the gradient method for popular low-rank decompositions
such as Tucker (Kim and Choi 2007) and Tensor Train decom-
position (Oseledets 2011), which provides a generalization
of the existing Expectation-Maximization based CP decom-
position (Huang and Sidiropoulos 2017; Yeredor and Haardt
2019).

Finally, we show experimentally that this algorithm per-
forms competitively in terms of better solutions and speed
of convergence compared to the conventional multiplicative
updates and batched gradient approaches.

2 Preliminaries
2.1 Information Geometry

Information geometry is the geometry of the space in which
each point is a probability distribution. In the following, we
introduce information geometry for discrete distributions for
our analysis of non-negative low-rank tensor decompositions.

Flatness and projections in information geometry Let
S(D) be the set of the entire discrete probability distribution
p(w) with D discrete random variables w = (wq,...,wp) €
Q for sample space 2. In Euclidean space, the geodesic, i.e.,
the path to minimize the distance, is a straight line. In the
space S(D), two geodesics can be introduced: e-geodesics
and m-geodesics. For two points, p,q € S(D), e- and m-
geodesics are defined as

{re[logre =tlogp + (1 —t)logq+ ¢(t) },

{refre=tp+(1—1t)q},
respectively, where 0 < ¢ < 1 and ¢(¢) is a normalizing
factor to make r, a distribution. Let U be a manifold in S(D).
We say that U is an e(m)-flat manifold if the e(m)-geodesics
between any two points in U are included in . For a given
distribution p (q), the projection to find ¢(p)€ U minimizing
the KL-divergence D(p, q) is called m(e)-projection from p
onto U. The m(e)-projection onto an e(m)-flat manifold is
in general a convex optimization problem (Amari 2021).

em-algorithm Let M be a e-flat and D be a m-flat man-
ifold in S(D). We find the nearest two points on M and
D by iterating the m-projection from ¢ € D onto M and
the e-projection from point r € M onto D. This procedure
is called the em-algorithm. More specifically, given an ini-
tial point of ¢; € D, the em-algorithm iteratively updates
distributions by the following m- and e-step, respectively,

rp = argmin D(¢n,7), Qgni1 = argrgin D(q,r), (1)
q€

remM
where the iteration n = 1,2, ... continues until convergence.
Although the flatness of D and MM makes the solution of
each step unique, the convergence point (¢, 7o) Of the
algorithm depends on the initial value ¢;. The expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin
1977), a well-known method for maximum likelihood es-
timation with hidden variables, is a particular case of the
em-algorithm (Hino, Akaho, and Murata 2024).

2.2 Non-negative tensor decomposition

Non-negative tensors as discrete distributions The nor-
malized nonnegative tensor 7 € R71 > *Ip can be regarded
as a joint discrete distribution whose index set is the sample
space. More specifically, the element 7;, . ;,, corresponds to
a value of the distribution p(x; = 41,...,2p = ip) whose
sample space is the index set Q; = [I1] X - -+ X [Ip]. Thus,
the tensor 7 is a point in S (D). In the following, the indices
of the tensor 7 are written as ¢ = (i1,...,ip) € €y for
tq € [Id]

Tensor low-rank approximation We can extract features
from tensor-formatted data by approximating the tensor with
a low-rank structure. There are multiple possible choices to
assume for the low-rank structure of the data. Although we
address three typical low-rank structures, CP, Tucker, and
Tensor Train decomposition, the generalization of the follow-
ing discussion to any low-rank structure is straightforward.
For k € {CP, Tucker, Train} and a given D-th order ten-
sor T, the approximation by a low-rank structure can be
formulated as,

Ti=Pi=) Ri. )
Here, the (D + V”“)-th order tensor R* is defined as,
D
ReS =[] 40 3
d=1
. (d)
Tucker d
Riper = g, [T A%, )
d=1
D
ain d
RZ’I'I‘I: = H gT(“d)_lid’l‘d’ (5)
d=1
for VOP = 1, yTucker — p yTain — p 1, and
r = (ri,...,ryx). Let Qg be the set of indices . That
is,r € Qg = [R1] X - -+ x [Ry«], where the degree of free-
dom of the index (Ry, ..., Ry+) is a hyperparameter called

CP, Tucker, and train rank of the tensor P*, respectively, ac-
cording to k. We assume that the tensor 7 is a normalized
nonnegative tensor and discuss the approximation in terms
of the KL divergence. Since the total sum of tensors is invari-
ant in the KL divergence optimization (Ho and Van Dooren
2008), it holds that Z" R’fr = 1. Thus the tensor R¥ is also

identical to a distribution in S(D + V'*). More specifically,

k
Ril ..... iDLk corresponds to

g(x1 =1d1,...,xp =ip,h1 =7r1,.. ., hyr = Tye).

Since the low-rank tensor P¥ is a marginalization of the
random variables A1, ..., hyx, we can regard the indices r
as a hidden variable.

As a result, the tensor low-rank decomposition is a max-
imum likelihood estimation of distribution 7~ with a model
that has V* hidden variables. We define the low-rank mani-
fold as a set of low-rank tensors:

B = {P"|Pi=) ®i 1,
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Figure 1: The tensor low-rank decomposition (left) can be
viewed as the em-algorithm between the e-flat rank-1 man-
ifold M and the m-flat manifold D in the higher dimen-
sional space (right). The solid (dashed) arrows denote the
m(e)-projection.

and the maximum likelihood estimation corresponds to
the m-projection onto B”. However, the manifold B is
not e-flat, and consequently the m-projection requires non-
convex optimization, except for the rank-1 approximation,
ie., (Ry,...,Ryx) = (1,...,1), where the m-projection be-
comes convex optimization as the sum of the hidden variables
>, disappears in the definition of the model manifold mak-
ing it e-flat (Ghalamkari and Sugiyama 2022; Ghalamkari,
Sugiyama, and Kawahara 2023). We call such a set of rank-1
tensors, i.e., tensors represented by a product without hidden
variables, a rank-1 manifold. We also refer to the approxi-
mation of a given tensor by a tensor in a rank-1 manifold as
rank-1 approximation.

3 Information geometry of
tensor low-rank approximations

We want to find a low-rank tensor P* that optimizes the KL
divergence from the given tensor 7 € S(D).

P* = argmin D(T, P¥) (6)

PreBk

However, the low-rank decomposition in S(D) is unstable
due to the non-convex optimization caused by hidden vari-
ables in the definition of the model manifold B*. Therefore,
we reformulate the problem to a rank-1 decomposition in the
higher-order tensors space S(D + V'*). Specifically, instead
of a non-flat model manifold B* ¢ S (D), we consider the
rank-1 manifold M* = {R | Rs, = RE.}, which is an e-
flat manifold in S(D + V*) as shown in Proposition 1. Thus,
the m-projection from any point in S(D 4 V*) to M* isa
convex optimization problem as we show in Theorem 1. We
also define the set of tensors D that yields the given tensor
T by marginalization, that is,

p={Q|} Qum=Ti},
which is called the data manifold. The data manifold is m-flat
in S(D+V*) as seen in Proposition 2. The tensor 7~ € S(D)
corresponds to the manifold D C S(D + V). As we see in
Proposition 3, it holds that

D(T,P*) < D(Q,R)

Figure 2: An example of a tensor tree structure represented
by the tensor network diagram where the nodes represent
factor tensors and edges connecting nodes represent mode
products.

for any tensor @ € D and low-rank tensor Pk = > Rir €
M. Instead of minimizing the objective function D(7, P*)

directly, the em-algorithm between D and MP* minimizes
D(Q,R) for Q € D in e-step and R € MF in m-step in
S(D+Vk), iteratively. The e-flatness of data manifold D and
m-flatness of the rank-1 manifold M guarantees the unique-
ness and convexity of the e-step and m-step, respectively.
Finally, we show that the em-algorithm between D and ME
decreases the objective function D(7, P*) monotonically in
Theorem 2. Despite the convergence of the proposed algo-
rithm, the solution depends on the initial value, and global
convergence is not guaranteed.

We have now reduced the non-convex low-rank decom-
position for a D-th order tensor to the iterative convex e-
projection and m-projection in a (D + V*)-th order tensor
space as seen in Figure 1. We note that the CP decomposition
based on the EM algorithm has been developed in (Huang
and Sidiropoulos 2017). Our work generalizes the method for
various low-rank structures inspired by the above information
geometric analysis.

From here on, we discuss the specific procedures for these
projections.

e-projection onto the data-manifold The Proposition 4
shows that the e-projection from R € M onto D is given as

_ 7;,Rzr
B Zr ’R’iT' .

m-projection onto the model-manifold This projection
is a rank-1 approximation optimizing the KL divergence,
which can be exactly solved by the natural gradient method
without initial value dependency regardless of the low-rank
structure on P (Ghalamkari, Sugiyama, and Kawahara 2023).
In addition, when we impose a CP, Tucker, or Train structure
on the tensor P, the destination of each m-projection can
be given by a closed-form solution. More specifically, for
the CP structure defined in Equation (3), the destination of
m-projection from Q € D onto M is given as:

A 2ieq)t Oir ®)
tar PP (Y ieq, Qi )1—1/D’
i€ =

Qir (7)




where p =%, >, cq,. Qir, and for the Tucker structure
defined in Equation (4), the destination is given as:

G, — ZieQI Qir (dy Zi€Q>d ZreQ}f Qi"'
" Zieﬂz Z’I‘GQR Qir, far ZiGQI ZreQ)zd Qir
©

and for the Train structure defined in Equation (5), the desti-
nation is given as:

(d) B Ziesz}d Zresz};"‘“l Qir
11 - 9
Tq—1%4Td Zieﬂz ZTGQ}; Qi'r‘

where the symbol 2 with upper indices refers to the index set
for all indices other than the upper indices, e.g.,

g (10)

0 = [0 x - x [Lg1] % [Lga] % -+ x [Ip),
Q}zd,d—l _ [Rl] Ko X [Rd—Q] X [Rd-&-l} X e X [RV]

Please refer to Section A for these proofs. Inserting Equa-
tion (7) into Equations (8), (9), and (10) yields the simulta-
neous update rule for all parameters.

Moreover, we obtain the projection destination of the m-
step in closed form for any tree low-rank structure (Liu, Long,
and Zhu 2018) by combining Equations (8), (9), and (10).
As an example of the tensor tree structure given in Figure 2,
the objective function in the m-projection can be decoupled
as

D( QTucker7 RTucker) + D(QTrain7 RTrain)

Tucker — .
where we define QU = >, . Qi and
QTrain

o rare = D Q;r. We can optimize both decou-
1112717275 A . . .
pled terms by the closed-form solution given in Equations (9)
and (10). We provide theoretical support for this procedure,
including normalization conditions, in Section C.
We call the proposed algorithm em-NTF and summarize
the procedure in Algorithm 1 in the Appendix.

4 Numerical Experiments

While our framework can be applied to general low-rank
structures, we here numerically examine the effectiveness
of the proposed em-Tucker and em-Train decomposition by
comparing to KLNTDMU (Kim, Cichocki, and Choi 2008;
Marmoret and Cohen 2020) and MPS (Glasser et al. 2019), re-
spectively. The proposed em-Tucker(Train) and the baseline
KLNTDMU(MPS) are the same model optimizing the same
objective function with different methods. KLNTDMU is
based on the multiplicative update rule, and MPS is based on
the batch-gradient method. We used two datasets, DMFT (Si-
monoff 2003) and Hayesroth (Hayes-Roth and Hayes-Roth
1977), whose tensor sizes are (9,7,2,3,6) and (4,4,4,4),
respectively. We defined the (Ry,...,Ry)as (2,...,2) for
DMFT and (5, . ..,5) for Hayesroth. For simplicity, we eval-
uated the negative log-likelihood — ", 7; log P; instead of
the KL divergence. We note that minimizing the negative
likelihood is identical to minimizing the KL divergence.
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Figure 3: Experimental results for DMFT dataset (top),
Hayesroth dataset (bottom).

Experiments for em-Tucker We repeated em-Tucker and
KLNTDMU for two datasets five times with random ini-
tialization and plotted the negative log-likelihood at each
iteration at the left of Figure 3. We verify that em-Tucker
is able to find a comparable solution as fast as the baseline
KLNTDMU.

Experiments for em-Train Since MPS requires learning
rate tuning, we compared the objective function for each iter-
ation while varying the learning rate. In contrast to the MPS,
where monotonic decrease of the objective function is not
guaranteed, we can see that the proposed em-Train monotoni-
cally decreases the error function and simultaneously updates
all parameters in each iteration, resulting in finding better
solutions, as seen in the right of Figure 3.

5 Conclusion

We revealed that non-negative tensor low-rank decomposi-
tion can be understood as maximum likelihood estimation
with a model that has hidden variables corresponding to ten-
sor ranks, and these hidden variables cause instability in the
KL divergence minimization. To avoid this issue, inspired
by information geometry, we reformulate non-negative ten-
sor low-rank decomposition as iterative projections among
flat manifolds, the set of rank-1 tensors and data manifold,
in a higher order tensor space than the original tensor. Our
analysis not only bridges information geometry and tensor
low-rank decomposition but also forms a novel optimiza-
tion framework, em-NTF. Although the proposed em-NTF
is guaranteed to converge through iterative convex optimiza-
tions, i.e., e-step and m-step, the convergence point is not
guaranteed to be a globally optimal solution. We also note
that the higher-order tensor Q € D is sparse if the tensor T is
sparse, as we see in Equation (7), which makes our algorithm
scalable.
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Appendix

A Proofs
A.1 Dual flat structure in non-negative low-rank
decomposition

We prove the flatness of the data manifold D and rank-1 man-
ifold M in S(D + V'*). In addition, based on the flatness of
the rank-1 manifold, we show that any rank-1 approximation
that optimizes the KL divergence is a convex optimization
problem. Furthermore, we show the convergence of the pro-
posed em-NTD in Theorem 2.

Proposition 1. Regardless of low-rank structure, rank-1 ten-
sor space is e-flat manifold.

Proof. We consider K-th order tensors R that can be fac-

torized with L factor tensors Z1,..., ZF as
L
=11z (an
=1
where v(l) is a subset of indices v = (vy,...,vx). We can

immediately confirm that the above equation becomes rank-1
CP, Tucker, and train decomposition when we define v(l)
appropriately. Since no sum for any indices appears in Equa-
tion (11), approximating a tensor in the form of Equation (11)
is a rank-1 approximation. Thus, we define the set of rank-1
factorized tensors

L
M= {R | Ry = Hzf,(l)} (12)

=1
as a manifold in S(K). For two tensors R', R? in the mani-
fold M, we consider its e-geodesics U satisfying
logUy, = tlog Ry + (1 — t) log R2 + ¢(t)

where ¢(t) is appropriately defined normalizing factor. We
represent the above equation by factor tensors as

L
logU, = tlogHZvl(‘é) +(1—-1) logHZi(é + ()

l l
logH lej(l Zi(l Y b(t)

= 1., 20 form = 1,2, 1f we

regard each term (Zl(l)) (Zi(é))k as a factor, we can see
the e-geodesics U belongs to the manifold M. Thus, the
manifold M is e-flat. O
Proposition 2. For any tensor T € S(D), the data manifold
D={Q|>, Qir =T} ism-flatin S(D + V).

Proof.  For any two tensors Q' Q2 in the data manifold D,
we consider its m-geodesics,

uir = tQ},,-

where we define Ry} =

+ (1 - t)Q'%r'

Taking summing over indices 7, we can see the m-geodesics
belong to the subspace D as follows:

=t +(1-t)T;
Thus, U;,- € D and the manifold D is m-flat. O

Theorem 1. Any rank-1 non-negative decomposition opti-
mizing the KL divergence is a convex optimization problem
regardless of the low-rank structure.

Proof. We consider factorization in the form of Equa-
tion (11). Specifically, for D-th order given non-negative
tensor 7, we optimize the following problem as

R =argmin D(T,R) (13)

ReEM

where the model space M is introduced in Equation (12).
Since the model manifold M is e-flat as shown in Proposi-
tion 1, the optimization in Equation (13) is a m-projection
onto e-flat manifold, which is always a convex problem. Even
if the tensor 7 is not normalized, it is straightforward to show
that this optimization is still convex by the general relation
D(AT,AR) = AD(T,R) for any positive value . O
Proposition 3. For given tensor T € S(D) and a low-rank
tensor P € S(D) such that P; = ZT‘GQR Rir where the

tensor R is in a e-flat manifold M C S(D + V), the KL
divergence from T to P satisfies following inequality

D(T.P) < D(Q,R) (14)
forany tensor Q e D ={Q |3, Qi =T} CS(D+V).
Proof.
D(T,P)= ) Tilog TR
7,69[ Z r
Q R'I/f‘
Z Tilog T; — Z T: log 79”
1€Q; 1€Q; reQr Ti

gZﬁbAQ:Z%mﬂf

1€Qr 1€Q 7€EQR
=) TilogTi— > > Qir
1€Qr 1€Qr rEQR
- Z Z Qir 10g7;
1€Qr rEQR
=3 Y Qg
1€Q 7€EQR
= D(Qv R)

where the following relation, called the Jensen inequal-
ity (Jensen 1906), is used:

M M
f (Z Amxm> <Y Anf(@m) (15)
m=1 m=1

for any convex function f : R — R and real numbers
A1, ..., A that satisfies Z%Zl Am = 1. 0



Proposition 4. The optimal e-projection from a tensor R €
S(D + V) onto the data manifold D = {Q | Y, Qir =
Ti} € S(D+ V) is given as

IriR'i,r
Z’I’EQR Rir

Proof. We prove this proposition by the fact that Equa-
tion (16) is the equality condition for Proposition 3. Specifi-
cally, we put Equation (16) into the KL divergence D(T, Q),
then we obtain,

Qir = (16)

Z Z er er

ir

1€Qr r€EQR
TRW E
= Z ’Elog% = D(T,P).
1€Qg *

We used the relation Zr Rir = P;. Since Jensen’s inequality
in Equation (15) shows

D(T,P) < D(Q,R), an

the tensor Q in Equation (16) is optimal. g

Theorem 2. For a given tensor T in S(D), the em-algorithm
between the data manifold D and the model manifold M
monotonically decreases the KL divergence D(T , P) where
the tensor P has low-rank structure such as P; = ZT Rir.

Proof. The e-step in iteration ¢ updates R!~! by optimal
R! to minimized the KL divergence D(Q, R) such as

D(T,P") =D(Q"",R") < D(Q" ", R"1)

where the low-rank tensor P’ can be written as P! =
>, RE,.. We used Proposition 3 for the left equal sign. The

m-step in iteration ¢ updates R* by R!*! to minimizes the
KL divergence D(Q, R). Thus, it holds that

D(Qt,Rt) S D(Qtfl’Rt)

Again, the e-step in iteration ¢ + 1 updates R! by optimal
R to minimized the KL divergence D(Q, R) such as

D(T,Pt+1) _ D(Qt’Rt-‘rl) S D(Qt,Rt)

for the low-rank tensor Pt = 3" RLF!. Combining the

above three relations, we obtain

D(T,P*) = D(Q", R™")
D(Q",R")
D(Q!RY) =
Thus, it holds that D(7,P!™t) < D(T,P!). The algo-
rithm converges, and the objective function monotonically
decreases. O

IN A

D(T,PY)

A.2 Proofs for closed-form exact m-projections
onto rank-1 manifolds

Theorem 3 (Optimal m-projection onto MCP (Huang and

Sidiropoulos 2017)). For a given non-negative tensor Q €

RI I xR igs projection destination onto the e-flat man-

ifold M = {R | Rir = A4y ... Air } can be written as

D icavd Qir
Agjz' = D 2 i—i/p> H= Z Z Qir
M (Zieﬂ>d Qw) 1€Q; r€EQR

Proof. Please refer to the original paper by Huang and
Sidiropoulos (2017). O
Theorem 4 (The closed form of the optimal m-projection
onto MTUKY " For a given non-negative tensor Q &
RO I xR xBo g projection destination onto the
e-flat manifold M = {R | Riy = GrAi,r, - - Aiprp } can
be written as

Lico, Lir A@ _ 2icay! Loreayt Qir

Gr =

Yicas 2arcan Qr. T Yico, Zreﬂ}: Qir

Proof. This projection minimizes the KL divergence from
the tensor Q onto the manifold M. Thus, the objective func-
tion can be written as

( RTucker Z Z er log RiT:cker (18)
1€Q reQpr
where
Tucker _ (1) (D)
Rzl Cziyrl rp gT”lmTDAzlrl e AiDrD'

We optimize the above objective function with normalizing
condition Y ;. ,cq, Rip" = 1. Then, we consider
the following Lagrange function:

£=3" 3" Qilogg,All) ... AL")

1€Qr rEQR

(T ¥ sl A, 1)
i€Q rEQR
To decouple the normalizing condition, we introduce scaled
factor matrices A(%) as
j(d) Agjld (d)
A, = @ where @, = ZAZ-W, (19)
o ,

and the scaled core tensor,
Gr = Gra® .. af).

Arp
171 Tucker __
The normalizing condition Y, o > ,cq, Qil“ =1
guarantees the normalization of the core tensor G as

> Gr=1 (20)

The tensor RT1keT can be represented with the above intro-
duced tensors as
Rglcker gr A(l

2171 "7 ZDTD

_ G AN, . AD)

Zl""l - iDTD"



We optimize G and A( ) instead of G and AE l . Thus the
Lagrange function can be written as

E Z Z erlOggT 717"1" 7DT)’D
1€Q rEQR
>0 (St -1)

Sz

d 1 Td
2D
The condition
oc_ ot _
oG, 9 A(d)

1dTd
leads equations

~ 1 ~
g'r' = X Z Qi'm Aijld = )\(d) Z Z er

1€Qr Td Q}d reQ};

The values of Lagrange multipliers are identified by the nor-
malizing conditions (19) and (20) as

ASY) Q A9 \d
1€{l; rellr 1€ IreQy

O

Theorem 5 (The closed form of the optimal
m-projection onto M™™), For a given non-
negative tensor Q € RI;OX XX Ry X Rp—1
its projection destination onto the e-flat mamfold

- = {R | Rir g7,(11'r‘1gr1127‘2 . gﬁg Lip) can be
written as
G _ Zieﬂ}d Zreﬂ}gvd“ Qir
Td—1taTd ZiEQI Zreﬂ}{l Qir
ford=1,....D, assuming ro =rp = 1.

Proof. This projection minimizes the KL divergence from
the tensor Q onto the manifold M. Thus, the objective func-

tion can be written as
( RTram Z Z er IOg RTram
1€Qr rEQR

where

Train (1) (2) (D)
R .ipT1...TD T gl1rlg7‘112r2 G

TD-1iD"

We optimize the above objective function with normalizing
condition D ;o D can R = 1. Then, we consider
the following Lagrange function:

(D)
L= Z Z Qir IOg gzlrlgrl’LQTz te gTDfliD

1€Qr reEQR

1) ~(2) (D)
= A <Z Z gb171g7"1l272 gTD 1ip 1)

1€Q rEQR

To decouple the normalizing condition, we introduce scaled
core tensors GV, ..., G(P~1 that are normalized over r4_;

and 74 as
U )
d) Td—1 d
gTd 1%dTd (d) g"'d—lid,rd’

where we define

gg) = Z Zgrd ﬂdrdgrfil 11)’

Td—1 fid

with g., = 1. We assume 79 = rp = 1. Using the scaled
core tensors, the tensor QT can be written as

Train _ ~D (2) (D)
Q ~ipTi..TD T gi1T1gT1i2T2 Y

TD—1iD
_ 51 52 (D)
- gi1T1gT1i27‘2' grD 19D
with
s _ L oo
gTD 11D (D_1)grD,1iD- (22)
rD-1

The matrix Q D) is normalized, satisfying
Yt 2in Qﬁgzlm = 1. Thus, the Lagrange func-
tion can be written as

_ 5(1) A(2) 5(D)
L= Z Z Q":T log gi1T1gT’1i2T2 gTD—liD

1€Q reQr
D-1
5(d
DR DID B
d=1 Td—1 1d
—\D Z ng T ) (23)
TD—1 ld
The critical condition
oL —0
—a =
agrd l'ld'r'd

leads the equation

1
gﬁj) ligra v Z Z era

Ara ieQ)? req)td?

where the values of multipliers A(¥) are identified by the
normalizing conditions in Equation (22) as

MNP =D0 D Qi

1€Q; TGQ}?d

B Additonal remarks
B.1 Technical detail for tree low-rank structures

We here show how to decouple the m-projection for a tensor
tree structure into solvable m-projections. In the following,
we discuss the decomposition with low-rank structure as



Algorithm 1: em-NTF for CP, Tucker, or Train decomposition

input
Initialize R € S(D +V);

repeat

Pi > Rir:

Qir — 7;7?/17'/ Zr Rir;

Update R using Equations (8), (9), or (10);
until Convergence;

return Low-rank tensor P;

:Tensor 7 € S(D), and tensor-rank (R, ..., Ry)

/I e-step
/l m-step

Algorithm 2: em-NTF for general low-rank decomposition

input
Initialize R € S(D +V);
repeat

Pi > Rir:

Qir — 7;7?/17'/ Zr Rir;

until Convergence;
return Low-rank tensor P;

:Tensor 7 € S(D), and tensor-rank (R, ..., Ry)

Update R by many-body approximation (Ghalamkari, Sugiyama, and Kawahara 2023);

/I e-step
/l m-step

described in Figure 2 as an example, while the generalization
to arbitrary tree low-rank structures is straightforward. When
we decouple the m-projection, we need to guarantee that the
normalizing condition

Y Ri=1 (24)

1€Qr TEQR
is satisfied where we define
r = g7'17'275A1171 Bzz7201576D1373H73r574 Talyg- (25)
We decouple the Lagrange function into independent parts.
More specifically, we define a single root tensor and in-
troduce normalized factors that sums over the edges that lie
below from the root. Although the choice of the root tensor is
not unique, we let tensor G be the root tensor and introduce

. 1 ~ 1

Aiﬂ‘l = 7"41'17’17 Bi2?”2 = TBi2T27 (26)
1 T2

~ R - 1

07'57‘6 = jC(T‘E,Ts’ D1313 - TDi37'37 27)
T5 T3

n 1 / deeM

Ei4T4 = ?Ei4T47 HT3T4T6 = h, HT’3T4T6 (28)

T4 "6

where each normalizer is defined as

ary = E Ailrla T2 E Blzrw
E 576 76’ E D13737
E E7,4r47 hre = § dT3 er4Hr3T47’67

374
then it holds that
=D Bisr,
i

Z AilTl Z CT5T5
i1

= Z DZ';T'; = Z Ei4r4 Z HT3T4’I“G - ]-
i3 n

T3T4

We define the tensor G as C;Tlrﬂs = @y, bryCr;Gryryry and
putting Equations (26) and (27) into Equations (25) and (24),
we obtain the normalizing condition for the root tensor G as

Z g~7'1r2'r‘5 =1

T1r2Ts

Then, the tensor Q can be written as

Rir = g’l‘1T2’l‘5 Ailrl Bigrg CT5T5Di3T3HT3T6T4ET4i4' (29)
The above approach to reduce scaling redundancy is illus-

trated in Figure 4. Finally, the original optimization problem
with the Lagrange function

-3 S ovimme A (10T ¥ w)
1€Qr reQpr 1€Qr reEQp
is equivalent to the problem with the Lagrange function

L= ETucker + £Train

where

ETucker —

Z Z Qir log érlrgrsfziilrl Bizrgérsm
1€Qr reEQR
g < Z g~T17‘2r5 - ) + Z)\ <Z Azlrl - )
+Y A2 (Zéim - 1) +Y A <Zérm - 1) ,
T2 2 T5 6

T1T2T5
which is equivalent to the Lagrange function for the Tucker



Figure 4: We normalize all tensors except for the root tensor,
which is enclosed in a bold line. We then push the normalizer
of each tensor, a, b, ¢, d, e, and h on the root tensor. The root
tensor absorbs scaling redundancy. This procedure decouples

the Lagrangian £ into two independent problems, £k and
ETrain

decomposition given in Equation (21) and

L:Train == Z Z Qir log 7'27“37"47“6 DiaTg Ei47"4

1€Qr reEQR

+) oA (Z Diyry — 1) +Y N (Z B, — 1)
3 i3 T4 iq

+ Z)\Z-é (Z 7:[7“37'47“6 - 1) )
re

374

which is also equivalent to the Lagrange function for the
Train decomposition given in Equation (23) assuming G (P)
is a normalized uniform tensor. For simplicity, we define

tensors
Tucker _ 3
Qi1i2T1T27‘5 - 2 : Z Qir,

0314 T3T4TG

Train _
Qi3i47"3r4r6 - er,

G192 T1T2T5

then, solve these independent m-projections by the closed-
form solution by Equations (9) and (10) for given tensors
Qmucker and QTrin respectively, and multiply solutions to
get optimal tensor Q as Equation (29), which satisfied the
normalizing condition in Equation (24).

B.2 em-NTF for general non-negative tensors

Non-negative tensor factorization optimizing the KL diver-
gence is frequently used beyond density estimation and in
various fields such as sound source separation (Kirbiz and
Giinsel 2014), computer vision (Kim, Cichocki, and Choi
2008; Phan and Cichocki 2008), and data mining (Chi and
Kolda 2012; Takeuchi et al. 2013; Krompal et al. 2013; Er-
mis, Acar, and Cemgil 2015). Although the given tensor 7 is
not necessarily normalized in such applications, the proposed
framework can be used for them as follows. First, we obtain
the total sum of the input tensor y# =, 7; and then perform

the factorization on the normalized tensor 7 by dividing all el-
ements of 7 by . Finally, all elements of the resulting tensor
‘P are multiplied by y. This procedure is justified by the prop-
erty of the KL divergence, Dy 1, (uP, uT) = pDrr(P,T),
where p is any positive value.

C Algorithms

We here provide the proposed algorithm. For CP, Tucker, and
Tensor Train decomposition, we directly apply the closed
form given in Equations (8), (9) and (10), which is sum-
marized in Algorithm 1. For tensor tree decomposition, we
decouple the m-step into solvable low-rank parts and update
each part as we discussed in Sections 3 and B.1.

If we assume a low-rank structure that includes loops in the
tensor network representation, such as tensor ring decompo-
sition (Zhao et al. 2016), we perform the m-step by a natural
gradient method since the closed-form update is no longer
available as seen in Algorithm 2. In this case, the m-step
is called a many-body approximation and still convex opti-
mization. Please refer to the original paper by Ghalamkari,
Sugiyama, and Kawahara (2023) for the procedure for many-
body approximation.



