
A Appendix481

A.1 Relevance to NeurIPS482

The ML community is deeply motivated by a desire to have a positive impact on the world. This483

desire is reflected in recent efforts in the ML community, such as NeurIPS’s requirement for the484

inclusion of broader impacts statements for all submitted papers in 2020, the Resistance AI Workshop485

at NeurIPS 2020 which investigated how AI concentrates power, and the Navigating the Broader486

Impacts of AI Research at NeurIPS 2020 which sought to understand the impacts of ML research as a487

whole on society. Understanding what the social impact of a paper, let alone the discipline, is difficult.488

Merely looking at various benchmarks or broader impact statements, for example, is insufficient.489

This paper attempts to begin to bridge this gap by seeking to understand the value commitments in490

papers published at NeurIPS and a closely related conference, ICML. As such, this paper is highly491

relevant to the NeurIPS audience. While research into core technical ML topics – reinforcement492

learning, deep learning, optimization, etc. – are vital to NeurIPS and the wider ML community, so is493

research on where these research areas stand with regard to societal impact, both in a positive and494

negative manner, as well as the benefits they bring and to whom.495

A.2 Additional Methodological Details496

A.2.1 Data Sources497

To determine the most-cited papers from each conference, we rely on the publicly-available Semantic498

Scholar database, which includes bibliographic information for scientific papers, including citation499

counts.6 Using this data, we chose the most cited papers from each of 2008, 2009, 2018, 2019500

published at NeurIPS and ICML.501

Like all bibliographic databases, Semantic Scholar is imperfect, and thus our selection includes502

one paper that was actually published in 2010, and one that was retracted from NeurIPS prior to503

publication (see §A.8 for details). In addition, the citations counts used to determine the most cited504

papers reflect a static moment in time, and may differ from other sources.505

Because all data used for this paper (aside from the actual annotations, which we contribute) have506

been previously published at NeurIPS or ICML, we chose not to seek permission to annotate this507

data from the original authors. Similarly, although it is possible that the original papers may contain508

personally identifying information or offensive content, we rely on the fact that the original authors509

contributed their work to the same community to which our own work is directed, and we thus believe510

that the potential harm from this is minimal.511

A.2.2 Defining elite university512

To determine the list of elite universities, we follow Ahmed and Wahed [4], and rely on the QS World513

University Rankings for the discipline of computer science. For 2018/19, we take the top 50 schools514

from the CS rankings for 2018. For 2008/09, we take the top 50 schools from the CS rankings for515

2011, as the closest year for which data is available.516

A.2.3 Defining big tech517

We used Abdalla and Abdalla’s [2] criterion to what is considered "big tech", which is comprised of:518

Alibaba, Amazon, Apple, Element AI, Facebook, Google, Huawei, IBM, Intel, Microsoft, Nvidia,519

Open AI, Samsung, and Uber. Furthermore, we added DeepMind to this list. We considered all other520

companies as "non-big tech."521

A.3 Annotations522

We include the annotations of all papers in the supplementary zip file. To present a birds-eye view of523

the value annotations, we present randomly selected examples of annotated sentences in section §A.7.524

In addition, we present the frequency of occurrence for all values (prior to grouping) in Figure A.1525

below.526

6http://s2-public-api.prod.s2.allenai.org/corpus/
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Figure A.1: Value occurrences across papers.

A.4 Experiments with Using Text Classification to Identify Values527

Although it was not our primary purpose in annotating highly-cited papers, we include here a brief528

report on using these data as potential training data for classifiers that could in principle be used529

to estimate the prevalence of these values in a larger set of ML papers. This is something that we530

should approach with great caution for several reasons: i) we only have a relatively small set of531

annotated examples representing highly imbalanced classes; ii) these annotations are taken from a532

non-random set of papers, and any models trained on these data may not generalize to all papers;533

and iii) based on our experiences annotating these papers, we expect that many would be difficult to534

detect automatically, at least without considerably more training data.535

To test the potential of this approach, while avoiding any biases that might be introduced by pretrained536

language models, we make use of simple regularized logistic regression classifiers operating on537

unigram features. We trained models separately for each value (for all values that had at least 20538

relevant sentences, using all relevant sentences for the higher-order grouped values), treating each539

sentence as an instance with a binary label (present or not), tokenizing each sentence using spaCy540

and converting each to a binary feature representation indicating the presence or absence of each541

word in the vocabulary (any word occurring at least twice in the corpus). These choices were not542

tuned. We randomly selected 300 sentences to use as a held out test set (using the same test set for543

each value), and trained a model using the remaining data, using 5-fold cross validation to tune the544

regularization strength.545

F1 scores on the test set for the various models are shown in Figure A.2 (right), and can generally be546

seen to be unimpressive. The F1 score for most values is on the order of 0.5 or less, and some values,547

even relatively common ones, such as Unifying Ideas, ended up with an F1 score of 0. The most548

highly-weighted features for most classifiers were quite reasonable, but this is evidently a relatively549

difficult task, at least given this amount of data. The exceptions to this poor performance included the550

Performance-related valeus (Performance, Accuracy, and State-of-the-art), as well as Effectivenss,551

and Facilitating Use, all of which had F1 scores greater than 0.75, and most of which were typically552

represented by a relatively small set of terms (e.g., "accurate", "accuracy", "accurately", "inaccurate",553

"accuracies", "errors").554

Although the poor performance of these classifiers means we should interpret any use of them with555

caution, we explore applying them to a broader set of papers for the sake of completeness. To do so,556

we download pdfs of all papers published at NeurIPS and ICML for the years 2008 through 2020,557

convert these to text using pdftotext, and extract sentences from this text, excluding references, as558

well as very short sentences (less than 6 tokens) or lines without alphabetic characters. Note that559

due to the difficulty of automatically parsing papers into sections, these textual representations are560

not limited to the abstract, introduction, discussion, and conclusion (as were our annotations), thus561

we would expect most values to occur more frequently, especially those that are likely to occur in562

sections about experiments and results.563
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Figure A.2: Proportion of papers in from 2008–2020 (combining NeurIPS and ICML) predicted
to have at least one sentence expressing each value (left), and estimated performance (F1) of the
corresponding classifiers (right). Note that the overall performance of most classifiers is generally
poor, indicating that the estimates on the left should be treated as unreliable in most cases. Grey bars
represent the grouped values. Classifier were not trained for values with less than 20 representative
sentences.

We then apply the classifiers trained above to each sentence in each paper. For each value, we then564

compute the proportion of papers (combining NeurIPS and ICML for this entire time period) that had565

at least one sentence predicted to exhibit that value. The overall proportions are shown in Figure A.2566

(left). As can be seen, the relative prevalence of values is broadly similar to our anntoated sample,567

though many are predicted to occur with greater frequency, as expected. However, to reiterate, we568

should be highly skeptical of these findings, given the poor performance of the classifiers.569

Finally, as an additional exploration, we focus on the Performance-related values (Performance,570

Accuracy, and State-of-the-art), which represent the overall most prevalent group in our annotations,571

and were relatively easy to identify using classification, and plot the estimated frequency over time572

for both conferences (For NeurIPS, which has better archival practices, we extend the analysis back to573

1987). We should again treat these results with caution, given all the caveats above, as well as the fact574

that we are now applying these classifiers outside the temporal range from which the annotations were575

collected. Nevertheless, the results, shown in Figure A.3, suggest that these values have gradually576

become more common in NeurIPS over time, reinforcing the contingent nature of the dominance of577

the current set of values. Further investigation is required, however, in order to verify this finding.578
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Figure A.3: Proportion of papers per year (of those published in ICML and NeurIPS) that are
classified as having at least one sentence expressing Performance, Accuracy, or State-of-the-art, (top,
middle, and bottom), based on simple text classifiers trained on our annotations. Bands show ±2
standard deviations, reflecting the changing overall number of papers per year.

A.5 Code and Reproducibility579

We include, in the supplementary zip file, the code used for all data analysis; in particular, we include580

the code used to run the text classification experiments and generate all figures in the paper. The text581

classification experiments were run on a 2019 Macbook Air.582

A.6 Potential Negative Societal Impacts583

Because this paper relies only on manual annotation of papers already published at NeurIPS and584

ICML, we believe that the potential negative societal impacts of carrying out these annotations and585

sharing them are minimal. However, we still briefly comment on this here.586

First, in terms of the specific concerns highlighted in the NeurIPS call for papers, we believe our587

annotation work poses no risk to living beings, human rights concerns, threats to livelihoods, etc.588

Similarly, all annotators are co-authors on this paper, thus there was no risk to participants, beyond589

what we chose to take on for ourselves.590

One area of potential concern might be in terms of unintentionally casting certain authors in a negative591

light, or unintentionally contributing to harmful tensions within the ML community. In order to592

minimize the risk of the former, we have chosen to include randomly selected examples but omit593

author attributions from quoted sources in the main paper. However, we do include a full list of594

cited papers below, so as to both acknowledge this work, but not draw attention to any one particular595

source.596

Although our intention is to broaden the conversation, we do acknowledge that some authors may597

perceive our work as being not representative of the type of work they would like to see at NeurIPS,598

and possibly detrimental to the conference. However, because of the prominence of machine learning599

today, we feel it is especially important to have these conversations at the premier venues, and hope600

that our paper will be the basis for useful conversations and future work.601
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A.7 Random Examples602

The list below contains 100 random examples drawn from the annotated data, along with the set of603

annotated values for each. These sentences were annotated for values within the context of the entire604

paper.605

• The problem of minimizing the rank of a matrix variable subject to certain constraints arises606

in many fields including machine learning, automatic control, and image compression. Used607

in practice/Popular608

• Locality-sensitive hashing [6] is an effective technique that performs approximate nearest609

neighbor searches in time that is sub-linear in the size of the database Approximation,610

Building on recent work, Effectiveness, Fast611

• In the finitecase, analysis of optimization and generalization of fully-trained nets is of course612

an open problem Formal description/analysis, Generalization613

• So to achieve adversarial robustness, a classifier must generalize in a stronger sense. Gener-614

alization, Robustness615

• Robustness to label corruption is similarly improved by wide margins, such that pre-training616

alone outperforms certain task-specific methods, sometimes even after combining these617

methods with pre-training. Performance, Robustness, Understanding (for researchers)618

• RBMs have been particularly successful in classification problems either as feature extractors619

for text and image data (Gehler et al., 2006) or as a good initial training phase for deep neural620

network classifiers (Hinton, 2007). Building on recent work, Flexibility/Extensibility,621

Successful622

• Our theoretical analysis naturally leads to a new formulation of adversarial defense which623

has several appealing properties; in particular, it inherits the benefits of scalability to large624

datasets exhibited by Tiny ImageNet, and the algorithm achieves state-of-the-art performance625

on a range of benchmarks while providing theoretical guarantees. Robustness, Scales up,626

Security, Theoretical guarantees627

• The current paper focuses on the training loss, but does not address the test loss. General-628

ization629

• This result is significant since stochastic methods are highly preferred for their efficiency630

over deterministic gradient methods in machine learning applications. Efficiency631

• Ranking, which is to sort objects based on certain fac- tors, is the central problem of632

applications such as in- formation retrieval (IR) and information filtering. Applies to real633

world, Used in practice/Popular634

• This subspace is important, because, when projected onto this subspace, the means of the635

distributions are well-separated, yet the typical distance between points from the same636

distribution is smaller than in the original space. Important637

• Overall, the existence of such adversarial examples raises concerns about the robustness of638

current classifiers. Identifying limitations, Robustness639

• We have shown that biased compressors if naively used can lead to bad generalization, and640

even non-convergence. Formal description/analysis, Generalization641

• Bartlett and Mendelson [2002] provide a generalization bound for Lipschitz loss functions.642

Building on classic work, Generalization643

• The principal advantage of taking this “lateral” approach arises from the fact that compact644

representation in trajectory space is better motivated physically than compact representation645

in shape space Realistic world model646

• In this paper, we show that gradient descent on deep overparametrized networks can obtain647

zero training loss Formal description/analysis, Theoretical guarantees648

• Moreover, web queries often have different meanings for different users (a canonical example649

is the query jaguar ) suggesting that a ranking with diverse documents may be preferable.650

Diverse output, User influence651
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• We include human performance estimates for all benchmark tasks, which verify that sub-652

stantial headroom exists between a strong BERT-based baseline and human performance.653

Learning from humans, Performance654

• Inthis paper we propose a simple and fast algorithmSVP(Singular Value Projec-tion) for rank655

minimization under affine constraints (ARMP) and show that SVPrecovers the minimum656

rank solution for affine constraints that satisfy arestrictedisometry property(RIP). Fast,657

Novelty, Simplicity658

• We use standard formalization of multiclass classification, where data consists of sample x659

and its label y (an integer from 1 to k). Building on classic work660

• A number of recent work has shown that the low rank solution can be recovered exactly via661

minimizing the trace norm under certain conditions (Recht et al., 2008a; Recht et al., 2008b;662

Candes Recht, 2008). Building on recent work663

• This difficulty has necessitated the use of a heuristic inference procedure, that nonetheless664

was accurate enough for successful learning. Accuracy, Successful665

• We illustrate such potential by measuring search space properties relevant to architecture666

search. Quantitative evidence (e.g. experiments)667

• Deep architectures consist of feature detector units arranged in layers. Lower layers detect668

simple features and feed into higher layers, which in turn detect more complex features.669

Simplicity670

• This makes the updates hard to massively parallelize at a coarse, dataparallel level (e.g., by671

computing the updates in parallel and summing them together centrally) without losing the672

critical stochastic nature of the updates. Large scale, Parallelizability / distributed673

• This suggests future work on model robustness should evaluate proposed methods with674

pretraining in order to correctly gauge their utility, and some work could specialize pre-675

training for these downstream tasks. Robustness676

• Adversarial training remains among the most trusted defenses, but it is nearly intractable on677

largescale problems. Scales up, Security678

• For complex robots such as humanoids or light-weight arms, it is often hard to model the679

system sufficiently well and, thus, modern regression methods offer a viable alternative680

[7,8]. Realistic world model681

• In contrast to prior work that operates in this goal-setting model, we use states as goals682

directly, which allows for simple and fast training of the lower layer. Reduced training683

time, Simplicity684

• Meanwhile, using less resources tends to produce less compelling results (Negrinho Gordon,685

2017; Baker et al., 2017a). Requires few resources686

• This finding represents an exciting opportunity for defense against neural fake news: the687

best models for generating neural disinformation are also the best models at detecting it.688

Applies to real world689

• Our strong empirical results suggest that randomized smoothing is a promising direction690

for future research into adversarially robust classification. Quantitative evidence (e.g.691

experiments), Robustness, Security692

• We then turn our attention to identifying the roots of BatchNorm’s success. Successful,693

Understanding (for researchers)694

• We also report the results of large-scale experiments comparing these three methods which695

demonstrate the benefits of the mixture weight method: this method consumes less resources,696

while achieving a performance comparable to that of standard approaches. Large scale,697

Performance, Requires few resources698

• This paper does not cover the the generalization of over-parameterized neural networks to699

the test data. Avoiding train/test discrepancy, Generalization700

• While there has been success with robust classifiers on simple datasets [31, 36, 44, 48],701

more complicated datasets still exhibit a large gap between “‘standard” and robust accuracy702

[3, 11]. Applies to real world, Robustness, Successful703
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• In this paper, we have shown theoretically how independence between examples can make704

the actual effect much smaller. Novelty, Theoretical guarantees705

• We provide empirical evidence that several recently-used methods for estimating the proba-706

bility of held-out documents are inaccurate and can change the results of model comparison.707

Accuracy, Building on recent work, Quantitative evidence (e.g. experiments)708

• This agreement is robust across differentarchitectures, optimization methods, and loss709

functions Robustness710

• Unfortunately, due to the slow-changing policy in an actor-critic setting, the current and711

target value estimates remain too similar to avoid maximization bias. Accuracy712

• As a future work, we are pursuing a better understanding of probabilistic distributions on713

the Grassmann manifold. Understanding (for researchers)714

• We also view these results as an opportunity to encourage the community to pursue a more715

systematic investigation of the algorithmic toolkit of deep learning and the underpinnings of716

its effectiveness. Effectiveness, Understanding (for researchers)717

• This challenge is further exacerbated in continuous state and action spaces, where a separate718

actor network is often used to perform the maximization in Q-learning. Performance719

• The vulnerability of neural networks to adversarial perturbations has recently been a source720

of much discussion and is still poorly understood. Robustness, Understanding (for re-721

searchers)722

• Most of the evaluation methods described in this paper extend readily to more complicated723

topic models— including non-parametric versions based on hierarchical Dirichlet processes724

(Teh et al., 2006)—since they only require a MCMC algorithm for sampling the latent725

topic assignments z for each document and a way of evaluating probability P(w | z, , m).726

Flexibility/Extensibility, Understanding (for researchers)727

• In a formulation closely related to the dual problem, we have: w^ = argmin w:F (w)c 1 n728

Xn i=1 (hw, xii, yi) (2) where, instead of regularizing, a hard restriction over the parameter729

space is imposed (by the constant c). Formal description/analysis730

• Second, we evaluate a surrogate loss function from four aspects: (a) consistency, (b)731

soundness, (c) mathemat- ical properties of continuity, differentiability, and con- vexity, and732

(d) computational efficiency in learning. Efficiency733

• This leads to two natural questions that we try to answer in this paper: (1) Is it feasible to734

perform optimization in this very large feature space with cost which is polynomial in the735

size of the input space? Performance736

• Despite its pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly737

understood. Understanding (for researchers)738

• We have presented confidenceweighted linear classifiers, a new learning method designed739

for NLP problems based on the notion of parameter confidence. Novelty740

• In addition, the experiments reported here suggest that (like other strategies recently proposed741

to train deep deterministic or stochastic neural networks) the curriculum strategies appear742

on the surface to operate like a regularizer, i.e., their beneficial effect is most pronounced on743

the test set. Beneficence, Quantitative evidence (e.g. experiments)744

• These give further inside into hash-spaces and explain previously made empirical observa-745

tions. Understanding (for researchers)746

• This means that current algorithms reach their limit at problems of size 1TB whenever the747

algorithm is I/O bound (this amounts to a training time of 3 hours), or even smaller problems748

whenever the model parametrization makes the algorithm CPU bound. Memory efficiency,749

Reduced training time750

• Much of the results presented were based on the assumption that the target distribution is751

some mixture of the source distributions. Valid assumptions752

• Empirical investiga- tion revealed that this agrees well with actual training dynamics and753

predictive distributions across fully-connected, convolutional, and even wide residual net-754

work architectures, as well as with different optimizers (gradient descent, momentum,755

mini-batching) and loss functions (MSE, cross-entropy). Generalization, Quantitative756

evidence (e.g. experiments), Understanding (for researchers)757
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• We design a new spectral norm that encodes this a priori assumption, without the prior758

knowledge of the partition of tasks into groups, resulting in a new convex optimization759

formulation for multi-task learning. Novelty760

• Recent progress in natural language generation has raised dual-use concerns. Progress761

• These kernel functions can be used in shallow architectures, such as support vector machines762

(SVMs), or in deep kernel-based architectures that we call multilayer kernel machines763

(MKMs). Flexibility/Extensibility764

• Using MCMC instead of variational methods for approximate inference in Bayesian matrix765

factorization models leads to much larger improvements over the MAP trained models,766

which suggests that the assumptions made by the variational methods about the structure of767

the posterior are not entirely reasonable. Understanding (for researchers)768

• In particular, the deep belief network (DBN) (Hinton et al., 2006) is a multilayer generative769

model where each layer encodes statistical dependencies among the units in the layer770

below it; it is trained to (approximately) maximize the likelihood of its training data.771

Approximation, Data efficiency772

• Furthermore, the learning accuracy and performance of our LGP approach will be compared773

with other important standard methods in Section 4, e.g., LWPR [8], standard GPR [1],774

sparse online Gaussian process regression (OGP) [5] and -support vector regression (-SVR)775

[11], respectively Accuracy, Performance, Quantitative evidence (e.g. experiments)776

• • propose a simple method based on weighted minibatches to stochastically train with777

arbitrary weights on the terms of our decomposition without any additional hyperparameters.778

Efficiency, Simplicity779

• For example, Ng (2004) examined the task of PAC learning a sparse predictor and analyzed780

cases in which an 1 constraint results in better solutions than an 2 constraint. Building on781

recent work782

• Graph Convolutional Networks (GCNs) (Kipf Welling, 2017) are an efficient variant of783

Convolutional Neural Networks (CNNs) on graphs. GCNs stack layers of learned first-order784

spectral filters followed by a nonlinear activation function to learn graph representations.785

Efficiency786

• This is a linear convergence rate. Building on recent work, Efficiency, Quantitative787

evidence (e.g. experiments), Theoretical guarantees788

• However, as we observe more interactions, this could emerge as a clear feature. Building789

on recent work, Data efficiency790

• Here we propose the first method that supports arbitrary low accuracy and even biased791

compression operators, such as in (Alistarh et al., 2018; Lin et al., 2018; Stich et al., 2018).792

Accuracy, Novelty793

• Much recent work has been done on understanding under what conditions we can learn a794

mixture model. Understanding (for researchers)795

• For this reason, we present an extension of the standard greedy OMP algorithm that can be796

applied to general struc- tured sparsity problems, and more importantly, meaningful sparse797

recovery bounds can be obtained for this algorithm. Building on recent work798

• In this paper we show that this assumption is indeed nec-essary: by considering a simple799

yet prototypical exampleof GAN training we analytically show that (unregularized) GAN800

training is not always locally convergent Formal description/analysis801

• Overestimation bias is a property of Q-learning in which the maximization of a noisy value802

estimate induces a consistent overestimation Accuracy803

• This drawback prevents GPR from applications which need large amounts of training804

data and require fast computation, e.g., online learning of inverse dynamics model for805

model-based robot control Fast, Large scale806

• This is problematic since we find there are techniques which do not comport well with807

pre-training; thus some evaluations of robustness are less representative of real-world808

performance than previously thought. Applies to real world, Performance, Robustness809
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• Approximation of this prior structure through simple, efficient hy-perparameter optimiza-810

tion steps is sufficient to achieve these performance gains Approximation, Efficiency,811

Performance, Simplicity812

• The second mysterious phenomenon in training deep neural networks is “deeper networks813

are harder to train.” Performance814

• However, the definition of our metric is sufficiently general that it could easily be used to815

test, for example, invariance of auditory features to rate of speech, or invariance of textual816

features to author identity. Generalization817

• In Sec. 6 we test the proposed algorithm for face recognition and object categorization tasks.818

Applies to real world, Quantitative evidence (e.g. experiments)819

• It is possible to train classification RBMs directly for classification performance; the gradient820

is fairly simple and certainly tractable. Performance821

• Figure 1 contrasts these two approaches. Defining and evaluating models using ODE solvers822

has several benefits: Beneficence823

• They claim to achieve 12‘2 radius of 3 (for images with pixels in [0, 1]). Generalization,824

Robustness825

• Two commonly used penalties are the 1- norm and the square of the 2-norm of w. Used in826

practice/Popular827

• What should platforms do? Video-sharing platforms like YouTube use deep neural networks828

to scan videos while they are uploaded, to filter out content like pornography (Hosseini et829

al., 2017). Applies to real world830

• We mention various properties of this penalty, and provide conditions for the consistency of831

support estimation in the regression setting. Finally, we report promising results on both832

simulated and real data Applies to real world833

• There could be a separate feature for “high school student,” “male,” “athlete,” and “musician”834

and the presence or absence of each of these features is what defines each person and835

determines their relationships. Building on recent work836

• So, the over-parameterized convergence theory of DNN is much simpler than that of RNN.837

Simplicity, Understanding (for researchers)838

• Other threat models are possible: for instance, an adversary might generate comments or839

have entire dialogue agents, they might start with a human-written news article and modify840

a few sentences, and they might fabricate images or video. Learning from humans841

• More generally, we hope that future work will be able to avoid relying on obfuscated842

gradients (and other methods that only prevent gradient descent-based attacks) for per-843

ceived robustness, and use our evaluation approach to detect when this occurs. Generality,844

Robustness845

• For example, the learned linear combination does not consistently outperform either the846

uniform combination of base kernels or simply the best single base kernel (see, for example,847

UCI dataset experiments in [9, 12], see also NIPS 2008 workshop). Performance848

• Our main contributions are: • We analyze GP-UCB, an intuitive algorithm for GP opti-849

mization, when the function is either sampled from a known GP, or has low RKHS norm.850

Optimal851

• For the standard linear setting, Dani et al. (2008) provide a near-complete characterization852

explicitly dependent on the dimensionality. In the GP setting, the challenge is to characterize853

complexity in a different manner, through properties of the kernel function. Building on854

classic work855

• This allows us to map each architecture A to its approximate hyperparameteroptimized856

accuracy Accuracy857

• Unfortunately, they could only apply their method to linear networks. Flexibil-858

ity/Extensibility859

• The strength of the adversary then allows for a trade-off between the enforced prior, and the860

data-dependent features. Understanding (for researchers)861
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• We observe that the computational bottleneck of NAS is the training of each child model862

to convergence, only to measure its accuracy whilst throwing away all the trained weights.863

Accuracy864

• We show that the number of subprob-lems need only be logarithmic in the total number of865

possible labels, making thisapproach radically more efficient than others. Efficiency866

• We establish a new notion of quadratic approximation of the neural network, and connect867

it to the SGD theory of escaping saddle points. Novelty, Unifying ideas or integrating868

components869

• In this work, we decompose the prediction error for adversarial examples (robust error) as870

the sum of the natural (classification) error and boundary error, and provide a differentiable871

upper bound using the theory of classification-calibrated loss, which is shown to be the872

tightest possible upper bound uniform over all probability distributions and measurable873

predictors. Accuracy, Robustness, Theoretical guarantees874

• A limit on the number of queries can be a result of limits on other resources, such as a time875

limit if inference time is a bottleneck or a monetary limit if the attacker incurs a cost for876

each query. Applies to real world, Low cost, Requires few resources877

• Preliminary experiments demonstrate that it is significantly faster than batch alternatives on878

large datasets that may contain millions of training examples, yet it does not require learning879

rate tuning like regular stochastic gradient descent methods. Quantitative evidence (e.g.880

experiments), Reduced training time881

• SuperGLUE is available at super.gluebenchmark.com. Facilitating use (e.g. sharing code)882

A.8 Full List of Cited Papers883

The full list of annotated papers is given below, along with the annotated scores (in square brackets)884

for Discussion of Negative Potential [left] (0 = Doesn’t mention negative potential; 1 = Mentions885

but does not discuss negative potential; 2 = Discusses negative potential) and Justification [right] (0886

= Doesn’t rigorously justify how it achieves technical goal; 1 = Justifies how it achieves technical887

goal but no mention of societal need; 2 = States but does not justify how it connects to a societal888

need; 3 = States and somewhat justifies how it connects to a societal need; 4 = States and rigorously889

justifies how it connects to a a societal need). Note that due to minor errors in the data sources used,890

the distribution of papers over venues and years is not perfectly balanced. For the same reason, the891
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