
Appendix483

Baseline acquisition function details484

Max entropy selects the points that maximize the predictive entropy485

↵px,Mq “ Hpy|x,Dtrainq
“ ´

ÿ

c

ppy “ c|x,Dtrainq logpppy “ c|x,Dtrainqq

BatchBALD BatchBALD [Kirsch et al., 2019] tries to find a batch of points that has the highest486

mutual information with respect to the model parameters. BALD is the non-batched version of487

BatchBALD. Formally488

↵BatchBALDptx1, . . . , xBu, pp!qq
“ Hpy1, . . . , yBq ´ Epp!qrHpy1, . . . , yB |!qs

Filtered active submodular selection (FASS) FASS [Wei et al., 2015] samples the � ˆ B most489

uncertain points B1 and then subselect B points that are as representative of B1 as possible. For the490

measure of uncertainty, FASS uses entropy Hpy|x,Dtrainq. To measure the representativeness of B491

to B
1, FASS tries to choose B to maximize the following function492

fpBq “
ÿ

yPY

ÿ

iPV y

max
sPBXV y

wpi, sq

Here V y Ñ B
1 is the set of points in B

1 with predicted label, y and wpi, sq “ d ´ ||xi ´ xs||22 is the493

similarity function between points indexed by i, s where xi, xs P X and d is the maximum distance494

between two points. The idea here is that if a point in B already exists that is close to some point495

x1 P B
1, then fpBq will favor adding points to the batch that are close to points other than x1, thus496

increasing the batch diversity. Note that FASS is equivalent to Max Entropy if � “ 1.497

Bayesian Coresets In Pinsler et al. [2019], they try to build a batch such that the log posterior after498

acquiring that batch best approximates the complete data log posterior (i.e. the log posterior after499

acquiring the entire pool set). Their approach closely follows the general Bayesian Coreset [Campbell500

and Broderick, 2018] approach which constructs a weighted subset of data that approximates the501

full dataset. Crucially [Pinsler et al., 2019] assume that the posterior predictive distribution Yp502

of a point p is independent of that of the corresponding distribution Yp1 of another point p1 – an503

assumption we do not make. We show in the next section why avoiding such an assumption lets us504

more effectively minimize the error with respect to the test distribution versus just optimizing for505

maxmizing information gain for the model posterior. As [Pinsler et al., 2019] require a variable batch506

size whereas all other methods (including ours) use a fixed batch size, for fairness of comparison, if507

the batch for this approach is smaller than the batch size being used, we fill the rest of the batch with508

random points. In practice, we only observe this being necessary for CIFAR.509

Batch Active learning by Diverse Gradient Embeddings (BADGE) BADGE [Ash et al., 2019]510

tries to acquire points that are distant in hallucinated gradient space (for diversity) as well as have a511

high impact on the parameters of the final output layer (as a proxy for uncertainty).512

Random The points are selected uniformly at random from the unlabeled pool. Thus ↵px,Mq is513

the uniform distribution.514
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Motivating example 2515

Suppose we have a model distribution with 10 possible models !1, . . . ,!10 with equal prior probabil-516

ity of being the true model (ppwiq “ 0.1 for @i). Let the datapoints be x1, . . . , xL with their labels517

taking 4 possible values. We define pkij “ ppyi “ j|xi,!kq as the probability of the jth class for the518

ith datapoint given by the kth model. Let519

pk1j “ 1; j “ k, 1 § k § 3

pk14 “ 1; 4 § k § 10

pki1 “ 1, p10i2 “ 1; 1 § k § 9, 2 § i § L

!1 !2 !3 !4 !5 !6 !7 !8 !9 !10

x1 1 2 3 4 4 4 4 4 4 4
x2 . . . xL 1 1 1 1 1 1 1 1 1 2

Table 2: Labels that the different points xi take with probability 1 under different models. The
columns are the different models !k, and the rows are the different points.

520

Given that we have no other information about the models, we update the posterior probabilities for521

the models as follows – if a model !k outputs label l for a point x but after acquisition, the label for522

x is not l, then we know that is not the correct model and thus its posterior probability is 0 (so it is523

eliminated). Otherwise we have no way of distinguishing between the remaining models so they all524

have equal posterior probability. Then for x1 the mutual information is525

Iry1,!|x1,Dtrains
“ Hry1|x1s ´ Epp!|DtrainqrHry1|x1,!ss “ 0.94

For x2 . . . xL, Iry2´L,!|x2...L,Dtrains “ 0.325. However selecting x1 would decrease the expected526

posterior entropy Hry2´L|x2...L, x1, y1,Dtrains from 0.325 to only 0.287. Acquiring any of x2...L527

instead of x1, however, would decrease that entropy to 0, which would cause a much larger decrease528

in the expected posterior entropy averaged over x1...L if L is large enough. The detailed calculations529

are in the later subsection.530

While x2...L may not contribute much to the entropy of the joint predictive distribution or to the MI531

with respect to the model parameters compared to x1, collectively they will be weighted L ´ 1 times532

more than x1 when looking at the accuracy. We should thus expect a well-calibrated model to have533

a higher uncertainty, and thus make a lot more errors on x2...L, if x1 is acquired versus if any of534

x2...L are acquired. For instance, in the above example, as L increases, the expected error rate would535

approach « 0.7 ˆ p1{7 ˆ 6{7q ˆ 2 “ 0.17 (0.7 as 0.3 of the times the value of x1 would also fix536

what the true model is reducing error rate on all x to 0) if x1 is acquired as the errors for x2...L are537

correlated, whereas the rate would approach 0 were any of x2...L to be acquired.538

Derivation for Example 2539

For x1, the mutual information between the predicted label y1 and model parameters is:540

Iry1,!|x1,Dtrains
“ Hry1|x1s ´ Epp!|DtrainqrHry1|x1,!ss

“ Hr
10ÿ

k“1

ppy1|x1,!kqpp!kqs ´
10ÿ

k“1

pp!kqHrppy1|x1,!kqs

“ ´p3 ˆ p 1

10
ˆ logp 1

10
qq ` 7

10
ˆ logp 7

10
qq

´ 10 ˆ 1

10
ˆ p´p1 ˆ logp1q ` 0 ˆ logp0qqq

“ 0.940
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For x2...L,541

Iry2´L,!|x2...L,Dtrains

“ ´p 9

10
ˆ logp 9

10
q ` 1

10
ˆ logp 1

10
qq

´ 10 ˆ 1

10
p´p1 ˆ logp1q ` 0 ˆ logp0qqq

“ 0.325

After acquiring x1, assuming the true label for x1 is 1, then we update the posterior over the model542

parameter such that p1pw1q|y1“1 “ 1 and p1pwkq|y1“1 “ 0 for 1 † k § 10. Then the expected543

averaged posterior entropy for x1...L is:544

1

L ´ 1

Lÿ

i“2

Hryi|xis|y1“1

“ 1

L ´ 1

Lÿ

i“2

Hr
10ÿ

k“1

ppyi|xi,!kqp1p!kq|y1“1s

“ 1

L ´ 1
ˆ pL ´ 1q ˆ p´p1 ˆ logp1q ` 0 ˆ logp0qqq

“ 0

Similarly, we could compute the case where the true label for x1 is 2-4:545

1

L ´ 1

Lÿ

i“2

Hryi|xis|y1“2 “ 0

1

L ´ 1

Lÿ

i“2

Hryi|xis|y1“3 “ 0

1

L ´ 1

Lÿ

i“2

Hryi|xis|y1“4

“ 1

L ´ 1
ˆ pL ´ 1q ˆ p´p6

7
logp6

7
q ` 1

7
logp1

7
qqq

“ 0.41

The expectation of the averaged posterior entropy with respect to predicted label for y1 (since we546

don’t know the true label) is:547

Hry2´L,!|x2...L, x1, y1Dtrains

“ Ey1„ppy1|Dtrainqr 1

L ´ 1

Lÿ

i“2

Hryi|xis|y1s

“ 1

10
ˆ 0 ` 1

10
ˆ 0 ` 1

10
ˆ 0 ` 7

10
ˆ 0.41

“ 0.287

Further statistical background548

A divergence ⇤ between two distributions is a measure of the discrepancy or difference between549

two distributions P,Q. A key property of a divergence is that it is 0 if and only if P,Q are the same550

distribution. In this paper, we will be using the KL divergence and the MMD, which are respectively551

defined as552

DKLpP ||Qq “ ´
ÿ

xPX
P pxq logpQpxq

P pxq q

MMD2
kpP,Qq “ EkpX,X 1q ` kpY, Y 1q ´ 2kpX,Y q
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where k is a kernel in the Reproducing Kernel Hilbert Space (RKHS) H and µk is the mean embedding553

of the distribution into H as per the kernel k. We can then use the notion of divergence to define the554

dependency d between a set of random variables X1:n as follows555

dpX1:nq “ ⇤pP1:n,biPiq

where P1:n is the joint distribution of X1:n, Pi the marginal of Xi with bPi being the product of556

marginals. For DKL the dependency is exactly MI as defined above. For MMD the dependency is557

the Hilbert-Schmidt Independence Criterion (HSIC).558

Proof of Proposition 1559

k˚ is positive semidefinite (psd) and symmetric as the sum of psd symmetric matrices is also psd560

symmetric.561

Proof of Proposition 2562

We show here that563

{dHSICpk1, k3, . . . , kdq ` {dHSICpk2, k3, . . . , kdq
“ {dHSICpk1 ` k2, k3, . . . , kdq

but the extension to the arbitrary sums is straightforward. Here {dHSIC is the estimator for dHSIC564

which is the d-variable version of HSIC. It is defined as565

dHSIC “ 1

n2

nÿ

a“1

nÿ

b“1

⇧d
j“1k

jpXj
ia
, Xj

ib
q`

1

n2d
⇧d

j“1

nÿ

a“1

nÿ

b“1

kjpXj
ia
, Xj

ib
q ´ 2

nd`1

nÿ

a“1

⇧d
j“1

nÿ

b“1

kjpXj
ia
, Xj

ib
q

where kj is the kernel of the jth random variable and Xj
i is the ith observation for the jth random566

variable. The estimator {dHSIC is defined as [Sejdinovic et al., 2013a]567

{dHSIC “ 1

n2

nÿ

a“1

nÿ

b“1

⇧d
j“1k

jpxj
ia
, xj

ib
q`

1

n2d
⇧d

j“1

nÿ

a“1

nÿ

b“1

kjpxj
ia
, xj

ib
q ´ 2

nd`1

nÿ

a“1

⇧d
j“1

nÿ

b“1

kjpxj
ia
, xj

ib
q

As dHSIC reduces to HSIC when d “ 2, the proof for HSIC also follows. Using the definition568

of {dHSIC above,569

{dHSICpk1, k3, . . . , kdq ` {dHSICpk2, k3, . . . , kdq “
1

n2

nÿ

a“1

nÿ

b“1

k1px1
ia , x

1
ibq

dπ

j“3

kjpxj
ia
, xj

ib
q
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` 1

n2d

nÿ

a“1

p
nÿ

b“1

k1px1
ia , x

1
ibqq

dπ

j“3

nÿ

b“1

kjpxj
ia
, xj

ib
q

´ 2

nd`1
p

nÿ

a“1

nÿ

b“1

k1px1
ia , x

1
ibqq

dπ

j“3

nÿ

a“1

nÿ

b“1

kjpxj
ia
, xj

ib
q

` 1

n2

nÿ

a“1

nÿ

b“1

k2px2
ia , x

2
ibq

dπ

j“3

kjpxj
ia
, xj

ib
q

` 1

n2d

nÿ

a“1

p
nÿ

b“1

k2px2
ia , x

2
ibqq

dπ

j“3

nÿ

b“1

kjpxj
ia
, xj

ib
q

´ 2

nd`1
p

nÿ

a“1

nÿ

b“1

k2px2
ia , x

2
ibqq

dπ

j“3

nÿ

a“1

nÿ

b“1

kjpxj
ia
, xj

ib
q

“
” 1

n2

nÿ

a“1

nÿ

b“1

k1px1
ia , x

1
ibq

dπ

j“3

kjpxj
ia
, xj

ib
q

` 1

n2

nÿ

a“1

nÿ

b“1

k2px2
ia , x

2
ibq

dπ

j“3

kjpxj
ia
, xj

ib
q
ı

`
” 1

n2d

nÿ

a“1

p
nÿ

b“1

k1px1
ia , x

1
ibqq

dπ

j“3

nÿ

b“1

kjpxj
ia
, xj

ib
q

` 1

n2d

nÿ

a“1

p
nÿ

b“1

k2px2
ia , x

2
ibqq

dπ

j“3

nÿ

b“1

kjpxj
ia
, xj

ib
q
ı

´
” 2

nd`1
p

nÿ

a“1

nÿ

b“1

k1px1
ia , x

1
ibqq

dπ

j“3

nÿ

a“1

nÿ

b“1

kjpxj
ia
, xj

ib
q

` 2

nd`1
p

nÿ

a“1

nÿ

b“1

k2px2
ia , x

2
ibqq

dπ

j“3

nÿ

a“1

nÿ

b“1

kjpxj
ia
, xj

ib
q
ı

“ 1

n2

nÿ

a“1

nÿ

b“1

pk1px1
ia , x

1
ibq ` k2px2

ia , x
2
ibqq

dπ

j“3

kjpxj
ia
, xj

ib
q

` 1

n2d

nÿ

a“1

” nÿ

b“1

pk1px1
ia , x

1
ibq

` k2px2
ia , x

2
ibqq

ı dπ

j“3

nÿ

b“1

kjpxj
ia
, xj

ib
q

´ 2

nd`1

” nÿ

a“1

nÿ

b“1

pk1px1
ia , x

1
ibq

` k2px2
ia , x

2
ibqq

ı dπ

j“3

nÿ

a“1

nÿ

b“1

kjpxj
ia
, xj

ib
q

“ {dHSICpk1 ` k2, k3, . . . , kdq

7.1 Further scaling to large batch sizes570

To scale to large batch sizes, instead of adding points to the batch to be acquired one at a time, we571

can add points in minibatches of size L. While this comes at the cost of possible diversity in the572
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batch, we find that the tradeoff is acceptable for the datasets we experimented with. This gives a final573

computation cost of Op |DU |m2B¨C
L q where C is the number of classes. By contrast the corresponding574

runtime for BatchBALD is OpDU | ¨B ¨C ¨m ¨m1q where m1 is the number of sampled configurations575

of y1:n´1. For all experiments with ICAL, we were able to use L “ 1 without any scaling difficulties.576

For ICAL-pointwise, we used L “ B
15 only for CIFAR-10 and CIFAR-100. As alluded to previously,577

ICAL-pointwise can accommodate much larger L compared to ICAL before its performance degrades,578

allowing for much greater scaling. We evaluate this aspect of ICAL-pointwise in the Appendix.579

The final algorithm is given in Algorithm 1.580

7.2 Algorithm581

Algorithm 1 Information Condensing Active Learning (ICAL) (M, T,Dtrain,DU , B,K, r, L)
Train M on Dtrain

repeat

B “ tu
while |B| † B do

Y U “ the predictive distribution for x P DU according to M

R “ Set of r randomly selected points from DU

x1 “ argmaxx ↵ICALpB Y txu, HSICq with the optimizations as specified in Section 5.1
and 5.2
B “ B Y tx1u

end while

Dtrain “ Dtrain Y B

Retrain M on Dtrain

until T iterations reached
Return M

ICAL-pointwise582

To evaluate the marginal dependency increase if a candidate point x is added to batch B, we sample583

a set R from the pool set DU and compute the pairwise dHSIC of both B and B
1 “ B Y txu584

with respect to each point in R. Let the resulting vectors (each of length |R|) with the dHSIC585

scores be dB and dB1 . Then the marginal dependency increase statistic Mx for point p is Mx “586
1

|R|
∞

i maxppdiB1 {diBq, 1q where i is the ith element of the vector. When then modify the ↵ICAL as587

follows - ↵1
ICALpBY txuq “ ↵ICALpBY txuq ¨ pMx ´1q and use the point with the highest value of588

↵1
ICAL as the point to acquire. Note that as we want to get as accurate an estimate of Mx as possible,589

we ideally want to choose as large a set R as possible. In general, we also want to choose |R| to be590

greater than the number of classes. This makes ICAL-pointwise more memory intensive compared to591

ICAL. We also tried another criterion for batch selection based on the minimal-redundancy-maximal-592

relevance Peng et al. [2005] but that had significantly worse performance compared to ICAL and593

ICAL-pointwise.594

Figure 6: Relative performance of ICAL and ICAL-pointwise on smaller datasets (EM-
NIST,FashionMNIST,MNIST and CIFAR10) with parameters set to equivalent computation cost
In Figure 6, we analyze the performance of ICAL versus ICAL-pointwise when their parameters595

are set such that computational cost is about the same. As can be seen they are broadly similar with596
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ICAL-pointwise having a slight advantage in earlier acquisitions and ICAL being slightly better in597

later ones.598

We also analyze the relative performance as the mini-batch size L changes in Figure 7. In the Figure,599

iter “ B
L is the number of iterations taken to build the entire acquisition batch (note that the actual600

acquisition happens after the entire batch has been built). ICAL-pointwise requires more computation601

time than ICAL in small L setup, however if time is the major constraint, ICAL-pointwise is to be602

preferred as its performance degrades more slowly as L, the size of the minibatch, increases. As the603

performance usually peaks at L “ 1, if one is trying to get the best performance or if memory is a604

constraint, then ICAL is to be preferred.605

Figure 7: Relative performance of ICAL and ICAL-pointwise on CIFAR100 with different mini-batch
size L. iter “ B

L is the number of iterations taken to build the entire acquisition batch of size B
(note that the actual acquisition happens after the entire batch has been built)
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Diversity of acquired samples in repeated-MNIST606

To check if ICAL’s acquisition batches are diversed enough, we plot the number of times different607

number of copies of a same sample has been acquired by each method. As shown in figure 8,608

our method (as well as BatchBALD, BayesCoreset and Random) successfully avoided acquiring609

redundant copies of the same sample, whereas FASS and Max Entropy acquired up to 3 copies of the610

same replica in most acquisitions. This proves that the batched active learning strategies are better in611

diversity.612

Figure 8: Frequencies where different numbers of copies (1-3) of a same sample has been acquired
by each method.

Further CIFAR-10 and CIFAR-100 results613

Further CIFAR results are in Table 1. For CIFAR-100, Random has a high p-value but that is mainly614

because it performs a bit better in the beginning vs. all other methods but its performance quickly615

degrades and it is far below ICAL in the final iteration.616

Runtime and memory considerations617

BatchBALD runs out of memory on CIFAR-10 and CIFAR-100 and thus we are unable to compare618

against it for those two datasets. For the MNIST-variant datasets, ICAL takes about a minute for619

building the batch to acquire (batch sizes of 5 and 10). For CIFAR-10 (batch size 3000), with L “ 1,620

the runtime is about 20 minutes but it scales linearly with 1{L (Figure 10). Thus it is only 5 minutes621

for L “ 30 ( iter “ 100) which is already sufficient to give comparable performance to L “ 1622

(Figure 9). For CIFAR-100 (batch size 3000), the performance does degrade with high L but as we623

mentioned previously, ICAL-pointwise holds up a lot better in terms of performance with high L624

(Figure 7) and thus if time is a strong consideration, that variant should be used instead.625
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Figure 9: CIFAR10 performance with different L. iter “ B
L is the number of iterations taken to build

the entire acquisition batch of size B (note that the actual acquisition happens after the entire batch
has been built)

Figure 10: Runtime of ICAL on CIFAR10 with different minibatch size L.


