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ABSTRACT

This work develops a novel framework for communication-efficient distributed
learning where the models to be learnt are overparameterized. We focus on a
class of kernel learning problems (which includes the popular neural tangent ker-
nel (NTK) learning as a special case) and propose a novel multi-agent kernel
approximation technique that allows the agents to distributedly estimate the full
kernel function, and subsequently perform distributed learning, without directly
exchanging any local data or parameters. The proposed framework is a signifi-
cant departure from the classical consensus-based approaches, because the agents
do not exchange problem parameters, and consensus is not required. We analyze
the optimization and the generalization performance of the proposed framework
for the `2 loss. We show that with M agents and N total samples, when certain
generalized inner-product (GIP) kernels (resp. the random features (RF) kernel)
are used, each agent needs to communicate O

(
N2/M

)
bits (resp. O

(
N
√
N/M

)
real values) to achieve minimax optimal generalization performance. Further, we
show that the proposed algorithms can significantly reduce the communication
complexity compared with state-of-the-art algorithms, for distributedly training
models to fit UCI benchmarking datasets. Moreover, each agent needs to share
about 200N/M bits to closely match the performance of the centralized algo-
rithms, and these numbers are independent of parameter and feature dimension.

1 INTRODUCTION

Recently, decentralized optimization has become a mainstay of the optimization research. In de-
centralized optimization, multiple local agents hold small to moderately sized private datasets,
and collaborate by iteratively solving their local problems while sharing some information with
other agents. Most of the existing decentralized learning algorithms are deeply rooted in classical
consensus-based approaches (Tsitsiklis, 1984), where the agents repetitively share the local param-
eters with each other to reach an optimal consensual solution. However, the recent trend of using
learning models in the overparameterized regime with very high-dimensional parameters (He et al.,
2016; Vaswani et al., 2017; Fedus et al., 2021) poses a significant challenge to such parameter
sharing approaches, mainly because sharing model parameters iteratively becomes excessively ex-
pensive as the parameter dimension grows. If the size of local data is much smaller than that of
the parameters, perhaps a more efficient way is to directly share the local data. However, this ap-
proach raises privacy concerns, and it is rarely used in practice. Therefore, a fundamental question
of decentralized learning in the overparameterized regime is:

(Q) For overparameterized learning problems, how to design decentralized algorithms that achieve
the best optimization/generalization performance by exchanging minimum amount of information?

We partially answer (Q) in the context of distributed kernel learning (Vert et al., 2004). We depart
from the popular consensus-based algorithms and propose an optimization framework that does not
require the local agents to share model parameters or raw data. We focus on kernel learning because:
(i) kernel methods provide an elegant way to model non-linear learning problems with complex data
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Table 1: Comparison of the total communication required per node by different algorithms for non-
overparameterized (NOP) and overparameterized (OP) regimes. Please see Appendix B for a detailed dis-
cussion of the algorithms. Here N is entire sample size, UB on M denotes the upper bound on the number of
nodes, M , d is the data dimension, β ≥ 2 is a constant, and T denotes the total communication (iterations)
rounds utilized by the distributed algorithms.

Algorithm Kernel UB on M Communication (Real Values)
NOP OP

DKRR-CM (Lin et al., 2020) Any O
(
N

T+1
2(T+2)

)
O(dTN) O(dTN)

DKRR-RF-CM (Liu et al., 2021) RF O
(
N

T+1
2(T+2)

)
O(T
√
N) O(TNβ)

Decentralized-RF (Richards et al., 2020) RF O(N
1
3 ) O(T

√
N) O(TNβ)

DKLA/COKE (Xu et al., 2020) RF Any M O(T
√
N) O(TNβ)

RF O
(
N
√
N

M

)
O
(
N1+β

M

)
Algorithm 2 (this work) GIP Any M O

(
N2

M

)
O
(
N2

M

)
dependencies as simple linear problems (Vert et al., 2004; Hofmann et al., 2008), and (ii) kernel-
based methods can be used to capture the behavior of a fully-trained deep network with large width
(Jacot et al., 2018; Arora et al., 2019; 2020).

Distributed implementation of kernel learning problems is challenging. Current state-of-the-art algo-
rithms for kernel learning either rely on sharing raw data among agents and/or imposing restrictions
on the number of agents (Zhang et al., 2015; Lin et al., 2017; Koppel et al., 2018; Lin et al., 2020;
Hu et al., 2020; Pradhan et al., 2021; Predd et al., 2006). Some recent approaches rely on specific
random feature (RF) kernels to alleviate some of the above problems. These algorithms reformulate
the (approximate) problem in the parameter domain and solve it by iteratively sharing the (poten-
tially high-dimensional) parameters (Bouboulis et al., 2017; Richards et al., 2020; Xu et al., 2020;
Liu et al., 2021). These algorithms suffer from excessive communication overhead, especially in
the overparameterized regime where the number of parameters is larger than the data size N . For
example, implementing the neural tangent kernel (NTK) with RF kernel requires at least O(Nβ),
β ≥ 2, random features (parameter dimension) using ReLU activation (Arora et al., 2019; Han et al.,
2021)1. For such problems, in this work, we propose a novel algorithmic framework for decentral-
ized kernel learning. Below, we list the major contributions of our work.

[GIP Kernel for Distributed Approximation] We define a new class of kernels suitable for dis-
tributed implementation, Generalized inner-product (GIP) kernel, that is fully characterized by the
angle between a pair of feature vectors and their respective norms. Many kernels of practical impor-
tance including the NTK can be represented as GIP kernel. Further, we propose a multi-agent kernel
approximation method for estimating the GIP and the popular RF kernels at individual agents.

[One-shot and Iterative Scheme] Based on the proposed kernel approximation, we develop two
optimization algorithms, where the first one only needs one-shot information exchange, but requires
sharing data labels among the agents; the second one needs iterative information exchange, but does
not need to share the data labels. A key feature of these algorithms is that neither the raw data
features nor the (high-dimensional) parameters are exchanged among agents.

[Performance of the Approximation Framework] We analyze the optimization and the general-
ization performance of the proposed approximation algorithms for `2 loss. We show that GIP kernel
requires communicating O(N2/M) bits and the RF kernel requires communicating O(N

√
N/M)

real values per agent to achieve minimax optimal generalization performance. Importantly, the re-
quired communication is independent of the function class and the optimization algorithm. We
validate the performance of our approximation algorithms on UCI benchmarking datasets.

In Table 1, we compare the communication requirements of the proposed approach to popular dis-
tributed kernel learning algorithms. Specifically, DKRR-CM (Lin et al., 2020) relies on sharing data
and is therefore not preferred in practical settings. For the RF kernel, the proposed algorithm out-
performs other algorithms in both non-overparameterized and the overparameterized regimes when
T > N/M . In the overparameterized regime, the GIP kernel is more communication efficient
compared to other algorithms. Finally, note that since our analysis is developed using the multi-
agent-kernel-approximation, it does not impose any upper bound on the number of agents in the
network.

1To achieve approximation error ε = O(1/
√
N).
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Notations: We use R, Rd, and Rn×m to denote the sets of real numbers, d-dimensional Euclidean
space, and real matrices of size n×m, respectively. We use N to denote the set of natural numbers.
N (0,Σ) is multivariate normal distribution with zero mean and covariance Σ. Uniform distribution
with support [a, b] is denoted by U [a, b]. 〈a, b〉 (resp. 〈a, b〉H) denotes the inner-product in Euclidean
space (resp. Hilbert space H). The inner-product defines the usual norms in corresponding spaces.
Norm ‖A‖ of matrix A denotes the operator norm induced by `2 vector norm. We denote by [a]i or
[a](i) the ith element of a vector a. [A · a]

(i)
j denotes the (i · j)th element of vector A · a. Moreover,

A(:,i) is the ith column of A and [A]mk is the element corresponding to mth row and kth column.
Notation m ∈ [M ] denotes m ∈ {1, ..,M}. Finally, 1[E] is the indicator function of event E.

2 PROBLEM STATEMENT

Given a probability distribution π(x, y) over X × R, we want to minimize the population loss

L(f) = Ex,y∼π(x,y)[`(f(x), y)], (1)

where x ∈ X ⊂ Rd and y ∈ R denote the features and the labels, respectively. Here, f : X → R
is an estimate of the true label y. We consider a distributed system of M agents, with each agent
m ∈ [M ] having access to a locally available independently and identically distributed (i.i.d) dataset
Nm = {x(i)

m , y
(i)
m }ni=1 with2 (x

(i)
m , y

(i)
m ) ∼ π(x, y). The total number of samples is N = nM . The

goal of kernel learning with kernel function, k(·, ·) : X × X → R, is to find a function f ∈ H
(whereH is the reproducing kernel Hilbert space (RKHS) associated with k (Vert et al., 2004)) that
minimizes (1). We aim to solve the following (decentralized) empirical risk minimization problem

min
f∈H

{
R̂(f) = L̂(f) +

λ

2
‖f‖2H =

1

M

M∑
m=1

L̂m(f) +
λ

2
‖f‖2H

}
, (2)

where λ > 0 is the regularization parameter and L̂m(f) = 1
n

∑
i∈Nm `(f(x

(i)
m ), y

(i)
m ) is the local

loss at each m ∈ [M ]. Problem (2) can be reformulated using the Representer theorem (Schölkopf
et al., 2002) with L̂m(α) = 1

n

∑
i∈Nm `

([
Kα
](i)
m
, y

(i)
m

)
, ∀m ∈ [M ], as

min
α∈RN

{
R̂(α) = L̂(α) +

λ

2
‖α‖2K =

1

M

M∑
m=1

L̂m(α) +
λ

2
‖α‖2K

}
, (3)

where K ∈ RN×N is the kernel matrix with elements k(x
(i)
m , x

(j)
m̄ ), ∀m, m̄ ∈ [M ], ∀i ∈ Nm

and ∀j ∈ Nm̄. The supervised (centralized) learning problem (3) is a classical problem in sta-
tistical learning (Caponnetto & De Vito, 2007) and has been popularized recently due to con-
nections with overparameterized neural network training (Jacot et al., 2018; Arora et al., 2019).
An alternate way to solve problem (2) (and (3)) is by parameterizing f in (2) by θ ∈ RD as
fD(x; θ) = 〈θ, φD(x)〉 where φD : X → RD is a finite dimensional feature map. Here, φD(·)
is designed to approximate k(·, ·) with kD(x, x′) = 〈φD(x), φD(x′)〉 (Rahimi & Recht, 2008).
Using this approximation, problem (2) (and (3)) can be written in the parameter domain with
L̂m,D(θ) = 1

n

∑
i∈Nm `

(
〈θ, φD(x

(i)
m )〉, y(i)

m

)
, ∀m ∈ [M ], as

min
θ∈RD

{
R̂D(θ) = L̂D(θ) +

λ

2
‖θ‖2 =

1

M

M∑
m=1

L̂m,D(θ) +
λ

2
‖θ‖2

}
. (4)

Note that (4) is a D-dimensional problem, whereas (3) is an N -dimensional problem. Since (4) is
in the standard finite-sum form, it can be solved using the standard parameter sharing decentralized
optimization algorithms (e.g., DGD (Richards et al., 2020) or ADMM (Xu et al., 2020) ), which
share D-dimensional vectors iteratively. However, when (4) is overparameterized with very large
D (e.g., D = O(Nβ) with β ≥ 2 for the NTK), such parameter sharing approaches are no longer
feasible because of the increased communication complexity. An intuitive solution to avoid sharing
these high-dimensional parameters is to directly solve (3). However, it is by no means clear if and
how one can efficiently solve (3) in a decentralized manner. The key challenge is that, unlike the

2The techniques presented in this work can be easily extended to unbalanced datasets, i.e., when each agent
has a dataset of different size.
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conventional decentralized learning problems, here each loss term `([Kα]
(i)
m , y

(i)
m ) is not separable

over the agents. Instead, each agent m’s local problem is dependent on k(x
(i)
m , x

(j)
m̄ ) with m 6= m̄.

Importantly, without directly transmitting the data itself (as has been done in Predd et al. (2006);
Koppel et al. (2018); Lin et al. (2020)), it is not clear how one can obtain the required (m·i)th element
of Kα. Therefore, to develop algorithms that avoid sharing high-dimensional parameters by directly
(approximately) solving (3), it is important to identify kernels that are suitable for decentralized
implementation and propose efficient algorithms for learning with such kernels.

3 THE PROPOSED ALGORITHMS

In this section, we define a general class of kernels referred to as the generalized inner product
(GIP) kernels that are suitable for decentralized overparameterized learning. By focusing on GIP
kernels, we aim to understand the best possible decentralized optimization/generalization perfor-
mance that can be achieved for solving (3). Surprisingly, one of our proposed algorithm only shares
O(nN) = O(N2/M) bits of information per node, while achieving the minimax optimal gener-
alization performance. Such an algorithm only requires one round of communication, where the
messages transmitted are independent of the actual parameter dimension (i.e., D in problem (4));
further, there is no requirement for achieving consensus among the agents. The proposed algo-
rithm represents a significant departure from the classical consensus-based decentralized learning
algorithms. We first define a class of kernels that we will focus on in this work.
Definition 3.1. [Generalized inner-product (GIP) kernel] We define a GIP kernel as:

k(x, x′) = g(ψ(x, x′), ‖x‖, ‖x′‖), (5)

where ψ(x, x′) = arccos(xTx′/(‖x‖‖x′‖)) ∈ [0, π] denotes the angle between the feature vectors
x and x′; and g(·, ‖x‖, ‖x′‖) is assumed to be Lipschitz continuous (cf. Assumption 2).
Remark 1. Note that the GIP kernel is a generalization of the inner-product kernels (Schölkopf
et al., 2002), i.e., kernels of the form k(x, x′) = k(〈x, x′〉). Clearly, k(〈x, x′〉) can be represented
as k(〈x, x′〉) = g(ψ(x, x′), ‖x‖, ‖x′‖) for some function g(·). Moreover, many kernels of practical
interest can be represented as GIP kernels, some examples include NTK (Jacot et al., 2018; Chizat
et al., 2019; Arora et al., 2019), arccosine (Cho & Saul, 2009), polynimal, Gaussian, Laplacian,
sigmoid, and inner-product kernels (Schölkopf et al., 2002).

The main reason we focus on the GIP kernels for decentralized implementation is that, this class of
kernels can be fully specified at each agent if the norms of all the feature vectors and the pairwise
angles between them are known at each agent. For example, consider an NTK of a single hidden-
layer ReLU neural network: k(x, x′) = xTx′(π−ψ(x, x′))/2π (Chizat et al., 2019). This kernel can
be fully learned with just the knowledge of norms and the pairwise angles of the feature vectors. For
many applications of interest (Bietti & Mairal, 2019; Geifman et al., 2020; Pedregosa et al., 2011),
normalized feature vectors are used, and for such problems, the GIP kernel at each agent can be
computed only by using the knowledge of the pairwise angles between the feature vectors. We show
in Sec. 3.1 that such kernels can be efficiently estimated by each agent while sharing only a few bits
of information. Importantly, the communication requirement for such a kernel estimation procedure
is independent of the problem’s parameter dimension (i.e., D in (4)), making them suitable for
decentralized learning in overparameterized regime. Next, we define the RF kernel.
Definition 3.2. [Random features (RF) kernel] RF kernel is defined as (Rahimi & Recht, 2008;
Rudi & Rosasco, 2017; Li et al., 2019):

k(x, x′) =

∫
ω∈Ω

ζ̄(x, ω) · ζ̄(x′, ω)dq(ω) (6)

with (Ω, q) being the probability space and ζ̄ : X × Ω→ R.
Remark 2. The RF kernel can be approximated as: k(·, ·) ≈ kP (x, x′) = 〈φP (x), φP (x′)〉,
with φP (x) = 1√

P
[ζ̄(x, ω1), . . . , ζ̄(x, ωP )]T ∈ RP and {ωi}Pi=1 drawn i.i.d. from distribution

q(ω). A popular example of the RF kernels is the shift-invariant kernels, i.e., kernels of the form
k(x, x′) = k(x − x′) (Rahimi & Recht, 2008). The RF kernels generalize the random Fourier
features construction (Rudin, 2017) for shift-invariant kernels to general kernels. Besides the shift-
invariant kernels, important examples of the RF kernels include the inner-product (Kar & Karnick,
2012), and the homogeneous additive kernels (Vedaldi & Zisserman, 2012).
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Algorithm 1 Approximation: Local Kernel Estimation

1: Initialize: Distribution p(ω) over space (Ω, p) and mapping ζ : X × Ω→ R (see Section 3.1)
2: for m ∈ [M ] do
3: Draw P i.i.d. random variables ωi ∈ Rd with ωi ∼ p(ω) for i = 1, . . . , P

4: Compute ζ(x
(i)
m , ωj) ∀i ∈ Nm and j ∈ [P ]

5: Construct the matrix Am ∈ RP×n with the (i, j)th element as ζ(x
(i)
m , ωj)

6: Communicate Am to every other agent and receive Am̄ with m̄ 6= m from other agents
7: If GIP is used, and data is not normalized, then communicate ‖x(i)

m ‖, ∀ i ∈ Nm
8: Estimate the kernel matrix KP locally using (7) for the GIP and (9) for the RF kernel
9: end for

Next, we propose a multi-agent approximation algorithm to effectively learn the GIP and the RF
kernels at each agent, as well as the optimization algorithms to efficiently solve the learning problem.
Our proposed algorithms will follow an approximation – optimization strategy, where the agents first
exchange some information so that they can locally approximate the full kernel matrix K; then they
can independently optimize the resulting approximated local problems. Below we list a number of
key design issues arising from implementing such an approximation – optimization strategy:

[Kernel approximation] How to accurately approximate the kernel K, locally at each agent? For
example, for the GIP kernels, how to accurately estimate the angles ψ(x

(i)
m , x

(j)
m̄ ) at a given agentm,

where j ∈ Nm̄ and m̄ 6= m? This is challenging, especially when raw data sharing is not allowed.

[Effective exchange of local information] How shall we design appropriate messages to be ex-
changed among the agents? The type of messages that gets exchanged will be dependent on the
underlying kernel approximation schemes. Therefore, it is critical that proposed approximation
methods are able to utilize as little information from other agents as possible.

[Iterative or one-shot scheme] It is not clear if such an approximation – optimization scheme should
be one-shot or iterative – that is, whether it is favourable that the agents iteratively share information
and perform local optimization (similar to classical consensus-based algorithms), or they should do
it just once. Again, this will be dependent on the underlying information sharing schemes.

Next, we will formally introduce the proposed algorithms. Our presentation follows the approxi-
mation – optimization strategy outlined above. We first discuss the proposed decentralized kernel
approximation algorithm, followed by two different ways of performing decentralized optimization.

3.1 MULTI-AGENT KERNEL APPROXIMATION

The kernel K is approximated locally at each agent using Algorithm 1. Note that in Step 3, each
agent randomly samples {ωi}Pi=1 from distribution p(ω). This can be easily established via random
seed sharing as in Xu et al. (2020); Richards et al. (2020). In Step 6, each agent shares a locally
constructed matrix Am of size P × n, whose elements ζ(x

(i)
m , ωi) will be defined shortly. The

choices of p(ω) and ζ(·, ·) in Step 1 depend on the choice of kernel. Specifically, we have:

[Approximation for GIP kernel] For the GIP kernel, we first assume that the feature vectors are
normalized (Pedregosa et al., 2011). We then choose p(ω) to be any circularly symmetric distribu-
tion, for simplicity we choose p(ω) asN (0, Id). Moreover, we use ζ(x, ω) = 1[ωTx ≥ 0] such that
Am is a binary matrix with entries {0, 1}. Note that such matrices are easy to communicate. Next,
we approximate the kernel K with KP as

k(x(i)
m , x

(j)
m̄ ) ≈ kP (x(i)

m , x
(j)
m̄ ) = g(ψP (x(i)

m , x
(j)
m̄ ), ‖x(i)

m ‖, ‖x
(j)
m̄ ‖), (7)

where k(x
(i)
m , x

(j)
m̄ ) and kP (x

(i)
m , x

(j)
m̄ ) ∀i ∈ Nm, ∀m ∈ [M ] and ∀j ∈ Nm̄ and ∀m̄ ∈ [M ] are

the individual elements of K and KP , resp., and ψP (x
(i)
m , x

(j)
m̄ ) is an approximation of the angle

ψ(x
(i)
m , x

(j)
m̄ ) evaluated using Am, Am̄ as

ψ(x(i)
m , x

(j)
m̄ ) ≈ ψP (x(i)

m , x
(j)
m̄ ) =

∣∣∣π − 2π[A(:,i)
m ]T [A

(:,j)
m̄ ]/P

∣∣∣ , (8)
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Algorithm 2 Optimization: One-Shot Communication for Kernel Learning

1: Initialize: α1
m ∈ RN , step-sizes {ηtm}

Tm
t=1 at each agent m ∈ [M ]

2: for m ∈ [M ] do
3: Using Algorithm 1 construct KP

4: Communicate ȳm = [y
(1)
m , . . . , y

(n)
m ]T ∈ Rn

5: Using KP and ȳm construct L̂P (α) (cf. (10)) locally using L̂m,P (α)
6: Option I: Solve (10) exactly at each agent
7: Option II: Solve (10) inexactly using GD at each agent
8: for t = 1 to Tm
9: GD Update: αt+1

m = αtm − ηtm∇R̂P (αtm)
10: end for
11: end for
12: Return: αT+1

m for all m ∈ [M ]

This implies that K can be approximated for the GIP kernel by communicating only nP bits of
information per agent. Note that in the general case if the feature vectors are not normalized, then
(7) can be evaluated by communicating additional n real values of the norms of the feature vectors
by each agent; see Step 7 in Algorithm 1.

[Approximation for RF kernel] For the RF kernel, we choose ζ(·, ·) = ζ̄(·, ·) and p(ω) = q(ω) as
defined in (6) and approximate K with KP as

k(x(i)
m , x

(j)
m̄ ) ≈ kP (x(i)

m , x
(j)
m̄ ) = 〈φP (x(i)

m ), φP (x
(j)
m̄ )〉, (9)

where k(x
(i)
m , x

(j)
m̄ ) and kP (x

(i)
m , x

(j)
m̄ ) are elements of K and KP , resp., φP (x

(i)
m ) = 1/

√
P [A

(:,i)
m ]

and φP (x
(j)
m̄ ) = 1/

√
P [A

(:,j)
m̄ ]. Note that K can be approximated for the RF kernel by sharing only

nP real values per agent. Further, the distribution q(ω) and the mapping ζ̄(·, ·) depend on the type
of RF kernel used. For example, for shift-invariant kernels with random Fourier features, we can
choose ζ̄(x, ω) =

√
2 cos(ωTx+ b) with ω ∼ q(ω) and b ∼ U [0, 2π] (Rahimi & Recht, 2008).

Now that using Algorithm 1 we have approximated the kernel matrix at all the agents, we are ready
to solve (3) approximately.

3.2 THE DECENTRALIZED OPTIMIZATION STEP

The approximated kernel regression problem (3) with KP obtained using Algorithm 1, and local
loss L̂m,P (α) := 1

n

∑
i∈Nm `

([
KPα

](i)
m
, y

(i)
m

)
is

min
α∈RN

{
R̂P (α) = L̂P (α) +

λ

2
‖α‖2KP

=
1

M

M∑
m=1

L̂m,P (α) +
λ

2
‖α‖2KP

}
. (10)

Remark 3. For the approximate problem (10), we would want KP constructed using the multi-agent
kernel approximation approach to be positive semi-definite (PSD), i.e., the kernel function kP (·, ·)
is a positive definite (PD) kernel. From the definition of the approximate RF kernel (9), it is easy to
verify that it is PD. However, it is not clear if the approximated GIP kernel is PD. Certainly, for the
GIP kernel we expect that as P →∞ we have KP → K, i.e., asymptotically KP is PSD, since K
is PSD. In the Appendix, we introduce a sufficient condition (Assumption 6) that ensures KP to be
PSD for the GIP kernel. In the following, for simplicity we assume KP is PSD.

Decentralized optimization based on one-shot communication: In this setting, we share the in-
formation among all the agents in one-shot, then each agent learns its corresponding minimizer
using the gathered information. We assume that each agent can communicate with every other agent
either in a decentralized manner (or via a central server) before initialization. This is a common
assumption in distributed learning with RF kernels where the agents need to share random seeds
before initialization to determine the approximate feature mapping (Richards et al., 2020; Xu et al.,
2020). Here, consensus is not enforced as each agent can learn a local minimizer which has a good
global property. The label information is also exchanged among all the agents. In Algorithm 2, we
list the steps of the algorithm. In Step 3, the agents learn KP (the local estimate of the kernel matrix)
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using Algorithm 1. In Step 4, the agents share the labels ȳm so that each agent can (approximately)
reconstruct the loss L̂(α) (cf. (10)) locally. Then each agent can either choose Option I or Option
II to solve (10). A few important properties of Algorithm 2 are:

[Communication] Each agent communicates a total ofO(nP ) = O(NP/M) bits (if the norms also
need to be transmitted, then with an additionalN/M real values) for the GIP kernel, andO(NP/M)
real values for the RF kernels. Importantly, for the GIP kernel the communication is independent of
the parameter dimension, making it suitable for decentralized overparameterized learning problems;
see Table 1 for a comparison with other approaches.

[No consensus needed] Each agent executes Algorithm 2 independently to learn αm, without need-
ing to reach any kind of consensus. They are free to choose different initializations, step-sizes, and
even regularizers (i.e., λ in (10)). In contrast to the classical learning, where algorithms are designed
to guarantee consensus (Koppel et al., 2018; Richards et al., 2020; Xu et al., 2020), our algorithms
allow each agent to learn a different function.

The proposed framework relies on sharing matrices Am’s that are random functions of the local
features. Note that problem (10) can also be solved by using an iterative distributed gradient tracking
algorithm (Qu & Li, 2018), with the benefit that no label sharing is needed; see Appendix D.
Remark 4 (Optimization performance). Note that using Algorithm 2, we can solve the approximate
problem (10) to arbitrary accuracy using either Option I or Option II. However, it is by no means
clear if the solution obtained by Algorithm 2 will be close to the solution of (3). Therefore, after
problem (10) is solved, it is important to understand how close the solutions returned by Algorithm
2 are to the original kernel regression problem (3).

4 MAIN RESULTS

In this section, we analyze the performance of Algorithm 2. Specifically, we are interested in un-
derstanding the training loss and the generalization error incurred due to the kernel approximation
(cf. Algorithm 1). For this purpose, we focus on `2 loss functions for which the kernel regression
problem (10) can be solved in closed-form. Specifically, we want to minimize the loss:

L(f) =
1

2
Ex,y∼π(x,y)[(f(x)− y)2]. (11)

We solve the following kernel ridge regression problem with the choice L̂(α) = 1
2N ‖ȳ −Kα‖2,

min
α∈RN

{
R̂(α) =

1

2N
‖ȳ −Kα‖2 +

λ

2
‖α‖2K

}
(12)

where we denote ȳ = [ȳT1 , . . . , ȳ
T
M ]T ∈ RN with ȳm = [y

(1)
m , y

(2)
m , . . . , y

(n)
m ]T ∈ Rn. The above

problem can be solved in closed form with α̂∗ = [K +N · λ · I]−1ȳ. The approximated problem at
each agent with the kernel KP and with the loss function L̂P (α) = 1

2N ‖ȳ −KPα‖2 is

min
α∈RN

{
R̂P (α) =

1

2N
‖ȳ −KPα‖2 +

λ

2
‖α‖2KP

}
(13)

with the optimal solution returned by Option I in Algorithm 2 as α̂∗P = [KP +N · λ · I]−1ȳ. The
goal is to analyze the impact of the approximation on the performance of Algorithm 2. Specifically,
we bound the difference between the optimal losses of the exact and the approximated Kernel ridge
regression. We begin with some assumptions.
Assumption 1. We assume |k(x, x′)| ≤ κ2 and |kP (x, x′)| ≤ κ2 for some κ ≥ 1.
Assumption 2. The function g(·) in (5) used to construct the GIP kernel is G-Lipschitz w.r.t. ψ,
i.e., ∃G ≥ 0 such that: |g(ψ, z2, z3)− g(ψ̂, z2, z3)| ≤ G|ψ − ψ̂|, ∀ψ, ψ̂ ∈ [0, π] and ∀z2, z3 ∈ R.
Assumption 3. We assume that the data labels |y| ≤ R almost surely for some R > 0.
Assumption 4. There exists fH ∈ H such that L(fH) = infh∈H L(h).

A few remarks are in order. Note that Assumptions 1, 3 and 4 are standard in the statistical learning
theory (Cucker & Zhou, 2007; Caponnetto & De Vito, 2007; Ben-Hur & Weston, 2010; Rudi &
Rosasco, 2017). Moreover, for RF kernel Assumption 1 is automatically satisfied if |ζ(x, ω)| ≤ κ
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almost surely (Rudi & Rosasco, 2017) (cf. (6) and (9)). Assumption 2 is required for estimating
the kernel by approximating the pairwise angles between feature vectors. It is easy to verify that the
popular kernels including, NTK (15), Arccosine, Gaussian and Polynomial kernels satisfy Assump-
tion 2 with feature vectors belonging to a compact domain (this ensures that the Lipschitz constant
G is independent of the feature vector norms). Now we are ready to present the results.

We analyze how well Algorithm 1 approximates the exact kernel. We are interested in the approxi-
mation error as a function of the number of random samples P . We have the following lemma.
Lemma 4.1 (Kernel Approximation). For KP returned by Algorithm 1, the following holds with

probability at least 1− δ: (i) For the GIP kernel, ‖K−KP ‖ ≤ GN
(√

32π2

P log 2N
δ + 8π

3P log 2N
δ

)
.

(ii) Similarly, for the RF kernel, ‖K−KP ‖ ≤ κ2N
(√

8
P log 2N

δ + 4
3P log 2N

δ

)
.

Note that as P increases KP → K, in particular, to achieve an approximation error of ε > 0,
we need P = O(ε−2). Importantly, Lemma 4.1 plays a crucial role in analyzing the optimization
performance of the kernel approximation approach. Next, we state the training loss incurred as a
consequence of solving the approximate decentralized problem (13) in Algorithm 2 instead of (12).
Theorem 4.2 (Approximation: Optimal Loss). Suppose P ≥ 2

9 log 2N
δ , then for both the GIP and

the RF kernels, the solution returned by Algorithm 2 (Option I) for solving (12) approximately (i.e,
(13)), satisfies the following with probability at least 1− δ∣∣L̂P (α̂∗P )− L̂(α̂∗)

∣∣ = O
(√

1
P log 2N

δ

)
and

∣∣R̂P (α̂∗P )− R̂(α̂∗)
∣∣ ≤ O(√ 1

P log 2N
δ

)
.

Theorem 4.2 states that as P increases, the optimal training loss achieved by solving approximate
problem (13) via Algorithm 2 (Option I) will approach the performance of the centralized system
(12) for both the GIP and the RF kernels. The proof of the above result utilizes Lemma 4.1 and the
definition of the loss functions in (12) and (13). See Appendix G for a detailed proof.

The results of Lemma 4.1 and Theorem 4.2 characterize the approximation performance of the
proposed approximation – optimization framework on fixed number of training samples. Of course,
it is of interest to analyze how the proposed approximation algorithms will perform on unseen test
data. Towards this end, it is essential to analyze the performance of the function f̂P learned from
solving (13) via Algorithm 2. We have the following result.

Theorem 4.3 (Generalization performance). Let us choose λ = 1/
√
N , δ ∈ (0, 1), and N ≥

max
{

4
3‖K‖2 , 72κ2

√
N log 32κ2

√
N

δ

}
, also choose P ≥ max

{
8, 512π2G2

‖K‖2 , 288π2G2N
}

log 16
δ for

the GIP kernel and P ≥ max
{

8κ2, 32κ2

‖K‖2 , 72κ2
√
N
}

log 128κ2
√
N

δ for the RF kernel, where K is

defined in Appendix F. Then with probability at least 1− δ, we have for f̂P returned by Algorithm 2
(Option I) for approximately solving (12) (i.e., (13)): L(f̂P )− infh∈H L(h) = O

(
1/
√
N
)
.

The proof of Theorem 4.3 utilizes a result similar to Lemma 4.1 but for integral operator defined
using kernels k(·, ·) and kP (·, ·). Theorem 4.3 states that with appropriate choice of λ (the regu-
larization parameter), N (the number of overall samples), and P (the messages communicated per
agent), the proposed algorithm achieves the minimax optimal generalization performance (Capon-
netto & De Vito, 2007). Also, note that the the requirement of P = O(

√
N) for the RF kernel

compared to P = O(N) for the GIP kernel is due to the particular structure of the RF kernel (cf.
(6)). It can be seen from Lemmas H.4 and H.5 in Appendix H, that the approximation obtained with
the RF kernel allows the derivation of tighter bounds compared to the GIP kernel. The next corollary
precisely states the total communication required per agent to achieve this optimal performance.
Corollary 1 (Communication requirements for the GIP and RF kernels). Suppose Algorithm 2 uses
the choice of parameters stated in Theorem 4.3 to approximately optimize (12). Then it requires a
total of O(N2/M) bits (resp. O(N

√
N/M) real values) of message exchanges per node when the

GIP kernel (resp. the RF kernel) is used, to achieve minimax optimal generalization performance.
Moreover, if unnormalized feature vectors are used, then the GIP kernel requires an additional
O(N/M) real values of message exchanges per node.
Compared to DKRR-RF-CM (Liu et al., 2021), Decentralized RF (Richards et al., 2020), DKLA,
and COKE (Xu et al., 2020), the number of message exchanges required by the proposed algorithm
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Table 2: Total communication (in bits) per node required to achieve a fixed MSE (×10−3) performance.

Algorithm Communication (bits)
P = 100 P = 500 P = 1000

DKRR-RF-CM (Liu et al., 2021) 25, 600 640, 000 896, 000
DecentralizedRF (Richards et al., 2020) 57, 600 352, 000 576, 000
DKLA (Xu et al., 2020) 44, 800 288, 000 448, 000
Algorithm 2 (Our Paper) 22, 800 62, 800 112, 800

Target MSE (×10−3) 24.36 20.93 19.25

Table 3: Comparison of MSE for a fixed communication budget.

Algorithm MSE (×10−3)
P = 100 P = 500 P = 1000

DKRR-RF-CM (Liu et al., 2021) 35.30 50.51 67.48
DecentralizedRF (Richards et al., 2020) 39.42 43.37 45.77
DKLA (Xu et al., 2020) 35.89 43.87 44.73
Algorithm 2 (Our Paper) 24.36 20.93 19.25

Communication Budget (bits) 22, 800 62, 800 112, 800

is independent of the iteration numbers, and it is much less compared to other algorithms, especially
for the GIP kernel in the overparameterized regime; see Table 1 for detailed comparisons.

5 EXPERIMENTS

We compare the performance of the proposed algorithm to DKRR-RF-CM (Liu et al., 2021), De-
centralized RF (Richards et al., 2020), and DKLA (Xu et al., 2020). We evaluate the performance
of all the algorithms on real world datasets from the UCI repository.

Specifically, we present the results on National Advisory Committee for Aeronautics (NACA) airfoil
noise dataset (Lau & López, 2009), where the goal is to predict aircraft noise based on a few mea-
sured attributes. The dataset consists of N = 1503 samples that are split equally among M = 10
nodes. Each node utilizes 70% of its data for training and 30% for testing purposes. Each feature
vector x(i)

m ∈ R5 represents the measured attributes such as, frequency, angle, etc., and each la-
bel y(i)

m represents the noise level. Additional experiments on different datasets and classification
problems, as well as the detailed parameter settings, are included in the Appendix A.

We evaluate the performance of all the algorithms with the Gaussian kernel. Note that the algo-
rithms DKRR-RF-CM, Decentralized RF, and DKLA can only be implemented using the RF ap-
proach while our proposed algorithm utilizes the GIP kernel. Also, in contrast to these benchmark
algorithms that use iterative parameter exchange, the proposed Algorithm 2 uses only one-shot com-
munication. First, in Table 2, we compare the communication required by each algorithm with the
Gaussian kernel for P = 100, 500, and 1000 to achieve the same test mean squared error (MSE) for
each setting, see last row of Table 2. Note that for P = 100, the communication required by Algo-
rithm 2 is less than 50% of that required by DKLA and Decentralized RF while it is only slightly
less than that of DKRR-RF-CM. Moreover, as P increases to 500 and 1000, it can be seen that
Algorithm 2 only requires a fraction of communication compared to other algorithms, and this fact
demonstrates the utility of the proposed algorithms for over-parameterized learning problems. In
Table 3, we compare the averaged MSE achievable by different algorithms, when a fixed total com-
munication budget (in bits) is given for each setting (see the last row of Table 3 for the budget). Note
that Algorithm 2 significantly outperforms all the other methods as P increases. This is expected
since Algorithm 2 essentially solves a centralized problem (cf. Problem (10)) after the multi-agent
kernel approximation (cf. Algorithm 1), and a large P provides a better approximation of the kernel
(cf. Lemma 4.1). In contrast, for the parameter sharing based algorithms the performance deterio-
rates even though the kernel approximation improves with large P as learning a high-dimensional
parameter naturally requires more communication rounds as well as a higher communication budget
per communication round.

Please note that we also compare the performance of Algorithm 2 with the benchmarking algo-
rithms discussed above for the NTK. We further benchmark the performance of Algorithm 2 against
the centralized algorithms for the Gaussian, the Polynomial, and the NTK. However, due to space
limitations, we relegate these numerical results to the Appendix A.
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APPENDIX

In this section, we discuss in detail some important aspects of the proposed kernel approximation
framework along with additional experiments and the proofs of Theorems 4.2 and 4.3.

A ADDITIONAL EXPERIMENTS

The goal of this section is to empirically analyze the performance of the proposed approximation –
optimization framework on real datasets. We evaluate the performance of the proposed approach on
regression and classification tasks on datasets from the UCI repository. First for the regression task,
we compare the mean squared error (MSE) and the communication performance of the proposed
algorithm to popular decentralized regression algorithms DKRR-RF-CM (Liu et al., 2021), Decen-
tralized RF (Richards et al., 2020), and DKLA (Xu et al., 2020). For the classification task, we
benchmark the classification performance of the proposed algorithm against centralized algorithms.
Specifically, via this set of experiments we determine the communication required by each agent to
achieve performance similar to the centralized algorithms. To present the results, we use three types
of popular GIP kernels, namely, the Polynomial, the Gaussian, and the NTK. Below, we discuss the
dataset and the implementation details for both the tasks.

Regression Problem. We consider the regression task on the following UCI datasets: (i) Airfoil
self-noise dataset. We compare the performance of the proposed algorithm with the benchmarking
algorithms on National Advisory Committee for Aeronautics (NACA) airfoil noise dataset (Lau
& López, 2009), where the goal is to predict aircraft noise based on a few measured attributes.
The dataset consists of N = 1503 samples with each feature vector x(i)

m ∈ R5 representing the
measured attributes such as, frequency, angle, etc., and each label y(i)

m ∈ R represents the noise
level. (ii) Energy dataset. We also evaluate the performance of the algorithms on Appliances energy
prediction dataset (Candanedo et al., 2017), where the goal is to predict the total energy consumption
of a house based on attributes like, pressure, wind speed, and temperature and humidity in different
areas of the house, etc. This dataset contains T = 19735 samples with the feature vector x(i)

m ∈ R28

describing the measured attributes and y(i)
m ∈ R representing the total energy consumption in the

house.

Algorithm and Parameter Settings. For each setting we assume that there are M = 10 nodes in
the network connected via a star topology. The overall data is split equally among the nodes. Each
node utilizes 70% of its data for training and 30% for testing purposes. The learning performance
of all the algorithms is evaluated by average MSE across all the nodes. Moreover, for our algorithm
the testing is performed using Algorithm 4 in Appendix E. For all the algorithms, the regularization
parameter λ is tuned from the set {10−3, 10−2, 10−1, 1, 10} while the step-sizes for Decentralized
RF (Richards et al., 2020) and DKLA (Xu et al., 2020) are tuned from {10−3, 10−2, 10−1}. For the
regression task, we compare the performance of the proposed algorithms with the Gaussian kernel
and the NTK. Note that DKRR-RF-CM (Liu et al., 2021), Decentralized RF (Richards et al., 2020)
and DKLA (Xu et al., 2020), can only be implemented using parameter sharing based RF approach
(please see the respective papers) while our algorithm utilizes the GIP kernel approximation (cf.
Algorithm 1) for the decentralized implementation. For the Gaussian kernel, we choose the scale
parameter to be 1 and the P -dimensional random feature mapping is constructed using Algorithm 1
in Rahimi & Recht (2008). For the NTK, we generate the P -dimensional feature mapping utilizing
the gradient of a single-hidden layer ReLU network with weights of the final layer chosen from
U [{−1, 1}] (Cho & Saul, 2009; Chizat et al., 2019).

Discussion. In Tables 2 and 3 of Section 5, we compared the performance of Algorithm 2 against the
benchmarking algorithms on the Airfoil self-noise dataset with the Gaussian kernel. Next, in Table
4 we evaluate the performance of Algorithm 2 against other algorithms on the same dataset with
the NTK. We choose P = 100 and compare the communication performance (measured in bits)
for all the algorithms for a fixed MSE in Table 4a. Note that Algorithm 2 requires only a fraction
of communication compared to other algorithms. Next, in Table 4b we compare the MSE perfor-
mance of the algorithms for a fixed communication budget. Again, we observe that the proposed
approximation – optimization approach achieves better performance compared to the state-of-the-art
algorithms.

14



Published as a conference paper at ICLR 2022

Table 4: Comparison of the communication and the MSE performance of the algorithms on the airfoil self-
noise dataset for the NTK.

(a) Total communication (in bits) per node required
to achieve a fixed MSE (×10−3) performance.

Algorithm Communication (bits)
DKRR-RF-CM 352, 000
Decentralized RF 108, 800
DKLA 70, 400
Algorithm 2 22, 800

Target MSE (×10−3) 23.82

(b) MSE comparison for a fixed communication bud-
get (measured in bits).

Algorithm MSE (×10−3)

DKRR-RF-CM 45.13
Decentralized RF 43.84
DKLA 43.89
Algorithm 2 23.82

Communication budget (bits) 22,800

Table 5: Total communication (in bits) per node required to achieve a fixed MSE (×10−3) perfor-
mance on the energy dataset with the Gaussian kernel.

Algorithm Communication (bits)
P = 100 P = 500 P = 1000

DKRR-RF-CM (Liu et al., 2021) 377, 600 9, 504, 000 19, 008, 000
DecentralizedRF (Richards et al., 2020) 518, 400 3, 168, 000 6, 336, 000
DKLA (Xu et al., 2020) 505, 600 3, 168, 000 6, 336, 000
Algorithm 2 (Our Paper) 319, 200 879, 200 1, 578, 000

Target MSE (×10−3) 10.74 9.54 9.17

In Tables 5 and 6, we compare the communication and the MSE performance, respectively, of the
algorithms for the energy dataset. We compare the performance with the Gaussian kernel for P =
100, 500, and 1000. In Table 5, we compare the communication required by each algorithm to
achieve the same MSE for each setting, see last row of Table 5. We execute the parameter sharing
algorithms DKRR-RF-CM (Liu et al., 2021), Decentralized RF (Richards et al., 2020), and (Xu
et al., 2020) for a maximum of 100 iterations and report the total communication at the end of 100
rounds if the algorithm does not achieve the target MSE. Note that for all the algorithms and under
all the settings, Algorithm 2 requires fewer bits of communication compared to other algorithms.
In Table 6, we compare the averaged MSE achievable by different algorithms, when a fixed total
communication budget (in bits) is given for each setting (see the last row of Table 6 for the budget).
Again, note that Algorithm 2 significantly outperforms all the other methods.

Classification Problem. We benchmark the performance of the proposed approximation – opti-
mization framework against the centralized algorithms on multi-class classification tasks. For this
purpose, we use 90 UCI benchmarking datasets for evaluating the classification performance of the
algorithms. For the datasets, we follow the pre-processing suggested in Fernández-Delgado et al.
(2014). The datasets are chosen such that the sample sizes for each task are smaller than 5000
(Arora et al., 2020), with an average of approximately 965 samples per task. The samples are ran-
domly split into equal sized training and test sets, and typical 4-fold cross-validation is used for
performance comparison (Pedregosa et al., 2011). Note that for testing we utilize Algorithm 4 in
Appendix E. For communication comparison, we consider three settings where the data is equally
split randomly among agents with number of agents chosen as 5, 10 and 20. Next, we discuss the
algorithms and parameter setting.

Algorithm and parameter settings. We evaluate the classification performance (test accuracy) of
the proposed algorithm on three popular GIP kernels, namely the Polynomial, the Gaussian, and
the NTK. For multi-class classification, we utilize kernel SVM with soft margin and regularization
hyper-parameter λ tuned from the set {10−2, 10−1, 100, 101, 102}. For all the kernels, the hyperpa-
rameters are tuned using the validation method in Fernández-Delgado et al. (2014). For the NTK,
we choose the kernel corresponding to a single hidden-layer ReLU network (please see (15)). More-
over, for the decentralized implementation all the kernels are estimated locally at individual nodes
using the GIP kernel approximation in Algorithm 1. All the presented results are averaged over 3
independent runs of the algorithms.
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Table 6: Comparison of MSE for a fixed communication budget (measured in bits) on the energy
dataset with the Gaussian kernel.

Algorithm Mean Squared Error (×10−3)
P = 100 P = 500 P = 1000

DKRR-RF-CM (Liu et al., 2021) 20.70 24.05 27.67
DecentralizedRF (Richards et al., 2020) 22.17 18.96 20.40
DKLA (Xu et al., 2020) 21.26 19.87 29.80
Algorithm 2 (Our Paper) 10.74 9.54 9.17

Communication Budget (bits) 319, 200 879, 200 1, 578, 000

(a) NTK. (b) Gaussian kernel. (c) Polynomial kernel.

Figure 1: Performance of Algorithm 2 with P on Kernel SVM for different kernels.

Discussion. In Figure 1, we compare the test accuracy of the proposed approximation – optimiza-
tion framework against the baseline centralized algorithm for the Gaussian, the Polynomial, and the
NTK as P increases. Note that for all the kernels, the test accuracy of Algorithm 2 increases rapidly
in the beginning and approaches the centralized benchmarks as P increases. Importantly, note that
with only P = 1000, the test accuracy of Algorithm 2 is within 2% of the centralized benchmarks
under all the settings. Since, this P is independent of the parameter dimension (i.e., D in (4)), this
implies that the proposed approximation – optimization approaches can be utilized to alleviate the
communication burden for distributed learning algorithms, especially for overparameterized learn-
ing problems. To analyze the communication performance of the proposed approach, in Table 7 we
compare the overall bits communicated by each agent to achieve an accuracy of 75%. We note that
for learning with the NTK, each agent needs to communicate only 220 real values3 on average for a
network with 10 agents. This implies that a total of 2200 real values are shared across the network,
which is only about 2.5 times the total sample size (N ≈ 965 on average). In contrast, if the agents
share high-dimensional parameters (cf. Table 1) (resp. partial data), then the total real values shared
will be 965β for β ≥ 2 per iteration (resp. 965 · df , where df is the dimension of the (shared)
features), which will be much higher than our proposed approximation – optimization schemes even
for moderate values of df .

B RELEVANT LITERATURE

Current state-of-the-art decentralized/distributed kernel regression problems can be classified into
three main categories. Below, we discuss each class of algorithms and their properties.

One of the most popular approaches for distributed kernel learning is the divide-and-conquer ap-
proach, where the overall dataset is partitioned among multiple agents, and each agent locally learns
its corresponding optimal function (Zhang et al., 2015). These locally learned functions at each agent
are then shared via one-shot communication to construct the global model. Divide-and-conquer ap-
proaches can guarantee the same generalization performance as of a centralized system (Zhang et al.,
2015; Chang et al., 2016; Lin et al., 2017; Guo et al., 2017; Mücke & Blanchard, 2018). However,
both practically and theoretically, divide-and-conquer approaches impose strict restriction on the
number of agents, i.e., the performance of the distributed kernel regression degrades significantly
as the number of agents increase (see Figure 2 in Lin et al. (2020)). In Lin et al. (2020), the au-

3On a 64 bit architecture, communicating 14, 080 bits is equivalent to communicating 220 real values.
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Table 7: Communication (in bits) required per agent by Algorithm 2 to achieve 75% classification
performance on 90 UCI benchmarking datasets.

Communication (bits)
Number of Agents Polynomial Kernel Gaussian Kernel NTK
5 57, 600 32, 000 28, 160
10 28, 800 16, 000 14, 080
20 14, 400 8, 000 7, 040

thors proposed distributed kernel ridge regression with communications (DKRR-CM), where they
showed that the dependence on the number of nodes can be improved by allowing some iterative
communication between the nodes. However, a major issue with the state-of-the-art communica-
tion based approaches is that they require (neighboring) agents to share their local data with each
other (or with the server), hence raising privacy concerns. A number of works have been proposed
for decentralized/distributed kernel learning including Predd et al. (2006); Gao et al. (2015); Shin
et al. (2016); Chouvardas & Draief (2016); Koppel et al. (2018); Pradhan et al. (2021) that require
the (neighboring) agents to share raw data among each other that is undesirable for many practical
applications.

Random Fourier features approach first proposed in Rahimi & Recht (2008) for centralized learning,
and later adopted for decentralized kernel learning in (Bouboulis et al., 2017; Richards et al., 2020;
Xu et al., 2020; Liu et al., 2021) alleviates some of the privacy concerns by allowing nodes to share
finite dimensional parameters. In the random features (RF) approach, all the agents share a random
seed to construct a finite dimensional feature map (Bouboulis et al., 2017; Xu et al., 2020). The
kernel learning problem is then solved in the parameter domain with each agent iteratively updating
the local parameters while sharing the learned parameters with the server (or the neighboring agents)
in each cycle to achieve consensus. Specifically, Bouboulis et al. (2017) and Richards et al. (2020)
developed distributed GD based algorithms for the kernel regression problems. In Bouboulis et al.
(2017), the authors adopted a simple combine then adapt (CTA) algorithm, and provided asymptotic
consensus guarantees and regret bounds for the optimization problem with general loss functions.
In Richards et al. (2020) the authors proposed Decentralized RF algorithm based on RF approxi-
mation, they focused on `2 loss and provided generalization guarantees for the decentralized kernel
learning problem. In contrast to Bouboulis et al. (2017) and Richards et al. (2020), Xu et al. (2020)
proposed DKLA and COKE, where they utilized decentralized ADMM (Shi et al., 2014) to solve
the (RF approximated) decentralized kernel learning problem, and provided both optimization and
generalization guarantees for the proposed algorithms. The work Liu et al. (2021) proposed DKRR-
RF-CM and improved upon the results of Lin et al. (2020) by adopting the RF approach. Specifically,
DKRR-RF-CM avoids data sharing and improves the dependence on the number of agents to guar-
antee optimal generalization guarantees compared to DKRR-CM (Lin et al., 2020). Please see Table
1 for a comparison of these approaches to that of the learning framework proposed in this work.

Despite of all the benefits of the RF approaches, they suffer from excessive communication overhead
when the parameter dimension is large compared to the data size (i.e., the overparameterized regime)
(Belkin et al., 2019). For example, the number of random features required to approximate the NTK
(Jacot et al., 2018; Arora et al., 2019) of a multi-layer neural network increase exponentially with
the number of layers and can be much larger than the number of data samples even for a single
layer NTK (Arora et al., 2019; Han et al., 2021). For such problems, it is prohibitively expensive
to share the learned local parameters at each communication round. To reduce the communication
overhead, there are two classical approaches: (i) sharing model parameters intermittently between
computations (McMahan et al., 2017; Stich, 2018; Lin et al., 2018), and/or, (ii) compressing model
parameters before sharing (Seide et al., 2014; Alistarh et al., 2017; Bernstein et al., 2018). Although
these approaches can lead to some communication savings, they require iteratively communicating
high-dimensional parameters or might lead to increased variance (McMahan et al., 2017; Alistarh
et al., 2017), hence slowing down convergence. As discussed in the introduction section, perhaps
a more efficient way is to directly share the local data if the size of local data is much smaller
than that of the parameters. However, this approach raises privacy concerns, and is rarely used
in practice. Therefore, it is necessary to devise techniques for decentralize kernel learning where
one can avoid sharing very high-dimensional parameters iteratively, and at the same time does not
require raw data sharing among agents. In this work, we take an approach orthogonal to all the
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above mentioned works and propose a decentralized kernel learning framework that is suitable for
learning in the overparameterized regime. Specifically, the proposed framework departs from the
popular consensus-based approaches by locally solving the learning problem independently at each
agent. This is accomplished by approximating the “global” learning problem locally at each agent
via one-shot information sharing among agents before initialization (see Section 3 for more details).

C NEURAL TANGENT KERNEL

In this section, we discuss the NTK as a motivation to define the GIP kernels.

Neural tangent kernel (NTK): The NTK of an L hidden-layer fully-connected neural network with
element wise activation a : R→ R is Jacot et al. (2018); Chizat et al. (2019); Arora et al. (2019):

k(x, x′) =

L+1∑
h=1

(
Σ(h−1)(x, x′) ·

L+1∏
h′=h

Σ̇(h′)(x, x′)

)
,

where Σ(h) and Σ̇(h) are defined recursively as:

Σ(0)(x, x′) = xTx′,

Λ(h)(x, x′) =

(
Σ(h−1)(x, x) Σ(h−1)(x, x′)
Σ(h−1)(x′, x) Σ(h−1)(x′, x′)

)
∈ R2, (14)

Σ(h)(x, x′) = E(u,v)∈N (0,Λ(h))[a(u)a(v)] and Σ̇(h)(x, x′) = E(u,v)∈N (0,Λ(h))[ȧ(u)ȧ(v)],

where ȧ(·) is the derivative of a. For ReLU activation the NTK in (14) is a GIP kernel (Han et al.,
2021) and can be defined in closed form (Arora et al., 2020; Han et al., 2021). Note that to approxi-
mate the multi-layer NTK one needs at least P = O(N2) parameters (Arora et al., 2019). Therefore,
implementing a decentralized method that utilizes parameter sharing will incur heavy communica-
tion cost. Next, we show that the NTK can easily be approximated in a decentralized manner using
the GIP kernel characterization. For ease of exposition, we consider the NTK with ReLU activation
for a single hidden-layer neural network (Cho & Saul, 2009; Cho, 2012; Chizat et al., 2019) where
the weights of the final layer are chosen from U [{−1, 1}]

k(x, x′) = xTx′
π − ψ(x, x′)

2π
, (15)

where ψ(x, x′) = arccos(xTx′/‖x‖‖x′‖) ∈ [0, π]. Note that the NTK (15) depends on the inner-
product as well as the angle between x and x′, and the former can be constructed by the latter if
one also knows the norms of the data samples. The main reason we focus on the GIP kernels for
decentralized implementation is that, this class of kernels can be fully specified at each agent if the
norms of all the feature vectors as well as the angles between any pair of them are known at each
agent. Moreover, for many applications of practical interest (Bietti & Mairal, 2019; Geifman et al.,
2020; Pedregosa et al., 2011) normalized feature vectors are utilized for learning, for such problems
the GIP kernel at each agent can be fully computed only with the knowledge of the pairwise angles
between the (normalized) feature vectors. Further, the RF kernels also exhibit a special structure
where they can be approximated with the knowledge of feature mapping φP (·) ∈ RP corresponding
to all the feature vectors. The RF kernel approximation is expected to work well for generic kernels
(Rahimi & Recht, 2008; Rudi & Rosasco, 2017), however, they might not be suited for all the
problems, especially for overparameterized problems (like NTK in (15)), where P can be very large
, i.e., P = O(Nβ) with β > 1 (Han et al., 2021; Arora et al., 2019) (cf. Table 1 and discussion
in Section 1). For such overparameterized problems, GIP kernel is an appealing alternative to the
RF kernel. The above discussed properties of the GIP (and the RF) kernels enable us to design
an efficient decentralized kernel approximation and message exchange scheme, which allows the
agents to estimate randomly approximated versions of these kernels, but without directly sharing the
(raw) local data.

D AN ALGORITHM BASED ON DECENTRALIZED GRADIENT TRACKING
(DGT)

Note that in this setting we utilize DGT to learn α locally. Since, this algorithm is a natural extension
of DGT in the functional space, there will be consensus in parameters αm learned at each agent
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Algorithm 3 Decentralized Gradient Tracking for Kernel Learning

1: Initialize: α1
m = α1 ∈ RN , ∆1

m = ∇R̂P (α1
m), step-sizes {ηt}Tt=1 at each agent m ∈ [M ]

2: for m ∈ [M ] do
3: Using Algorithm 1 construct KP

4: Construct local functions L̂m,P (α) (cf. equation 10)
5: for t = 1 to T do
6: Update: αt+1

m =
∑
k∈NBm [W ]mkα

t
m − ηt∆t

m

7: Gradient Tracking: ∆t+1
m =

∑
k∈NBm [W ]mk∆t

k +∇R̂P (αt+1
m )−∇R̂P (αtm)

8: end for
9: end for

10: Return: αT+1
m for all m ∈ [M ]

m ∈ [M ] (Qu & Li, 2018). Note that in contrast to Algorithm 2, DGT does not require sharing
labels. For DGT we assume that the agents communicate via a undirected graph represented by
a doubly stochastic matrix W . We denote by NBm the neighbourhood of agent m ∈ [M ], i.e.,
NBm = {k ∈ [M ] : [W ]mk 6= 0}. The steps of DGT are listed in Algorithm 3. In Step 3, each
agent locally computes KP . We utilize the fact that the once KP is known, the loss in (10) is
decomposable in m ∈ [M ]. This implies that each agent can update the local parameters αm using
Steps 6 and 7. Below we list important properties of Algorithm 3:

[Communication] The total communication required at each agent is O(nP +NT ) values (where
the term nP are bits for the GIP and real values for the RF kernels). The DGT algorithm is useful
when problem (10) is strongly-convex (or PL), in that case T = O(logN) (Qu & Li, 2018) and
total communication becomes Õ(nP +N). Note that even for non-convex losses L̂m,P (·), the local
objective at each agent can be made strongly-convex with large regularizer, λ.

[Consensus] DGT with appropriately chosen step-sizes {ηt}Tt=1 will guarantee consensus of αm’s,
this will ensure functional consensus, i.e., f̂m,P ≈ f̂m̄,P for m 6= m̄ and m, m̄ ∈ [M ].

E TESTING ALGORITHM FOR DECENTRALIZED KERNEL REGRESSION

In this section, we outline how to perform testing once the kernel model has been trained to solve
(10). Suppose that there is a set Ntest test samples {(x(i), y(i))}Ntest

i=1 . The idea is to utilize the local
information at each agent, {Am}Mm=1, combined with the new data, to construct the testing kernel
matrix, based on which the testing process can be carried out.

Specifically, we use Algorithm 4 to construct the kernel matrix KP,test ∈ RNtest×N as

1. GIP kernel: For the GIP kernel, we consider the same setting as (7) and construct KP.test as

kP (x(i), x(j)
m ) = g(ψP (x(i), x(j)

m ), ‖x(i)‖, ‖x(j)
m ‖), (16)

where kP (x(i), x
(j)
m ) ∀i ∈ [Ntest] and ∀j ∈ Nm, ∀m ∈ [M ] are the individual elements of KP,test

and where ψP (x(i) is defined using Atest and Am as:

ψP (x(i), x(j)
m ) =

∣∣∣∣π − 2π
[A

(:,i)
test ]T [A

(:,j)
m ]

P

∣∣∣∣,
where A(:,i) ∈ RP represents the ith column of matrix A.

2. RF kernel: Similarly, for the RF kernel, we construct KP.test as

kP (x(i), x(j)
m ) = 〈φP (x(i)), φP (x(j)

m ))〉, (17)

where again kP (x(i), x
(j)
m ) are the individual elements of KP,test, similar to (9), we have

φP (x(i)) = 1/
√
P [A

(:,i)
test ] and φP (x

(j)
m ) = 1/

√
P [A

(:,j)
m ].

Once we have KP,test, then the testing is performed as:

f̂P,m(x(i)) =
[
KP,test · α(T+1)

m

](i)
, (18)
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Algorithm 4 Local Kernel Estimation for Testing

1: Initialize: Test samples {x(i)}Ntest
i=1 ; {ωi}Pi=1 and matrices {Am}Mm=1 from Algorithm 1

2: Compute ζ(x(i), ωj) ∀i ∈ [Ntest] and j ∈ [P ]

3: Define matrix Atest ∈ RP×Ntest with elements ζ(x(i), ωj)
4: Estimate the kernel matrix KP,test using (16) for the GIP and (17) for the RF kernel

where and
[
KP,test · α(T+1)

m

](i)
represents the ith element of the vector [KP,test · α(T+1)

m ] ∈ RNtest .
Using (18) we can evaluate the test loss

L̂P,test(α
T+1
m ) =

1

Ntest

Ntest∑
i=1

`
([

KP,test · α(T+1)
m

](i)
, y(i)

)
. (19)

Next, we present the performance of the multi-agent kernel approximation framework proposed in
this work. Note that the algorithms presented above work for arbitrary loss functions. However, in
the sequel we focus on the `2 loss and provide training and generalization loss incurred because of
the multi-agent kernel approximation.
Remark 5 (Optimization performance of GD (Nesterov, 2003) and DGT (Qu & Li, 2018)). Algo-
rithms 2 and 3 can solve the approximated kernel problem (10) to arbitrary accuracy. In particular,
for strongly-convex and smooth objectives, both GD and DGT converge at a linear rate. On the other
hand, for convex and smooth objectives both GD and DGT converge sub-linearly with rateO(1/T ).

F NOTATIONS

First, we define some notations below.

• Recall that the features and the labels are generated as (x, y) ∼ π(x, y) where π(x, y) defines
the joint probability distribution on X × R.

• πx denotes the marginal distribution of the features on X .

• π(y|x) denotes the conditional distribution of the label y given the feature x on R.

• We define by L2(X , πx) as the space of square integrable functions with Lebesgue measure
defined by πx.

• The inner-product and the norm on space L2(X , πx) is defined by

Inner-product: 〈f, g〉πx =

∫
x∈X

f(x)g(x)dπx(x),

Norm: ‖f‖πx =
(
〈f, f〉πx

)1/2
, ∀f, g ∈ L2(X,πx).

• We define the RKHS induced by mapping k and kP asH andHP , respectively, as

H = span{k(x, ·) : x ∈ X}, and HP = span{kP (x, ·) : x ∈ X}.

with inner-products defined as 〈k(x, ·), k(x′, ·)〉H = k(x, x′) in H and
〈kP (x, ·), kP (x′, ·)〉HP = kP (x, x′) in HP . We also note that HP = RP for the RF
kernels.

Next, we define some operators which shall be utilized in bounding the optimization and general-
ization losses.

• We define K : L2(X , πx)→ L2(X , πx) and KP : L2(X , πx)→ L2(X , πx) as

(Kh)(x) =

∫
z∈X

k(x, z)h(z)dπz and (KPh)(x) =

∫
z∈X

kP (x, z)h(z)dπz.

• Next, we define Φ : H → L2(X , πx) and ΦP : HP → L2(X , πx) as

(Φβ)(x) = 〈φ(x), β〉 and (ΦPβ)(x) = 〈φP (x), β〉
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• Moreover, using the definitions of Φ and ΦP we define the covariances C : H → H and CP :
HP → HP as

C = Φ∗Φ and CP = Φ∗PΦP ,

Also, note that from the definition of Φ we have K = ΦΦ∗ and KP = ΦPΦ∗P .

• We define the finite sample version of the operators Φ∗ and Φ∗P as Φ̂∗ : RN → H and Φ̂∗P :
RN → HP , respectively as

Φ̂∗ŷ =
1√
N

N∑
i=1

φ(xi)ŷi and Φ̂∗P ŷ =
1√
N

N∑
i=1

φP (xi)ŷi.

where ŷ ∈ RN .

• From the definition of Φ̂ and Φ̂P

– We define Ĉ : H → H and ĈP : HP → HP as

Ĉ = Φ̂∗Φ̂ and ĈP = Φ̂∗P Φ̂P .

– Moreover, we define K̂ : RN → RN and K̂P : RN → RN as

K̂ = Φ̂Φ̂∗ and K̂P = Φ̂P Φ̂∗P .

• For an operatorA, we define the operatorAλ asAλ = A+λI . We also denote by λmax(A) as the
largest eigen value of A. We denote by ‖A‖ the operator norm and ‖A‖HS the Hilbert-Schmidt
norm of a linear operator A.

Remark 6. Note from the definition of operators K̂ and K̂P we have

K̂ =
1

N
K, and K̂P =

1

N
KP .

We will utilize this fact and the operators defined above in the proofs for bounding the optimization
and generalization errors for the kernel methods.

G OPTIMIZATION PERFORMANCE OF MULTI-AGENT KERNEL
APPROXIMATION FRAMEWORK: PROOF OF THEOREM 4.2

In this section, we present the complete proof of Theorem 4.2. Specifically, the main technical
results in this section is to analyze the impact of the multi-agent kernel approximation framework
proposed in this work on the training performance for the proposed algorithms. For this purpose,
we bound difference between the optimal losses for the exact and the approximated kernel ridge
regression problems (12) and (13). Towards this end, we first provide a few technical lemmas.

First, we present two concentration inequalities to bound the distance between the empirical mean
of a sequence of random matrices (and random variables) from their mean. These results will be
later used in Proposition G.4 to bound the operator norms of difference between the kernel matrix
K and its approximation KP . First, we present the Bernstein’s inequality for random matrices.
Proposition G.1 (Bernstein’s inequality for random matrices, Theorem 6.1.1 in Tropp (2012)). Con-
sider a sequenceX` for ` ∈ N of independent, random, Hermitian matrices of dimensionN . Assume
that

E[X`] = 0 and ‖X`‖ ≤ C almost surely.

Define a random matrix as Y :=
∑
`X`, and denote its variance as σ2 := ‖E[Y 2]‖. Then for all

ε ≥ 0, we have

P[‖Y ‖ ≥ ε] ≤ 2N exp

(
−ε2

2(σ2 + C · ε/3)

)
.

Moreover, with probability at least 1− δ for δ ∈ (0, 1] we have:

‖Y ‖ ≤
√

2σ2 log
2N

δ
+

2C

3
log

2N

δ
.
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In the next proposition, we present the Bernstein’s inequality to bound the distance between the
empirical mean of a sequence of random variables and their mean.
Proposition G.2 (Bernstein’s inequality for random variables). Consider a sequence {x`}`∈N of
independent, random variables such that the following holds:

E[x`] = 0 and |x`| ≤ C almost surely.

Define the random variable y :=
∑
` x`, and denote its variance as σ2 := E[y2]. Then for all ε ≥ 0,

we have:

P[|y| ≥ ε] ≤ 2 exp

(
−ε2

2(σ2 + C · ε/3)

)
.

Next, using the above propositions we derive a union bound on the estimate ψP (x
(i)
m , x

(j)
m̄ ) in (8)

from its mean ψ(x
(i)
m , x

(j)
m̄ ) for all training data samples, i.e., for all i ∈ Nm and j ∈ Nm̄ with

m, m̄ ∈ [M ]. Recall from Algorithm 1 and (8) that we have

ψP (x(i)
m , x

(j)
m̄ ) =

∣∣∣∣π − 2π
[A

(:,i)
m ]T [A

(:,j)
m̄ ]

P

∣∣∣∣, (20)

where A(:,i)
m ∈ RP . Specifically, the matrix Am for the GIP kernel for the mth agent is

Am =


ζ(x

(1)
m , ω1) ζ(x

(2)
m , ω1) · · · ζ(x

(n)
m , ω1)

ζ(x
(1)
m , ω2) ζ(x

(2)
m , ω2) · · · ζ(x

(n)
m , ω2)

...
...

. . .
...

ζ(x
(1)
m , ωP ) ζ(x

(2)
m , ωP ) · · · ζ(x

(n)
m , ωP )

 ∈ RP×n,

where we choose ζ(x, ω) = 1[ωTx ≥ 0] and with {ω`}L`=1 chosen uniformly randomly from a
circularly symmetric distribution. Please see discussion in Section 3.1 for details.

Below, we present the union bound.

Proposition G.3 (Union Bound: GIP kernel). Let ψ(x
(i)
m , x

(j)
m̄ ) = arccos

(
〈x(i)
m ,x

(j)
m̄ 〉

‖x(i)
m ‖‖x(j)

m̄ ‖

)
be the

angle between two feature vectors x(i)
m and x(j)

m̄ , and letψP (x
(i)
m , x

(j)
m̄ ) be an estimate ofψ(x

(i)
m , x

(j)
m̄ )

as defined in (20). Then with probability at least 1− δ, the following holds:∣∣ψP (x(i)
m , x

(j)
m̄ )− ψ(x(i)

m , x
(j)
m̄ )
∣∣ ≤√32π2

P
log

2N

δ
+

8π

3P
log

2N

δ
,

∀i ∈ Nm, ∀j ∈ Nm̄ and ∀m, m̄ ∈ [M ].

Proof. Note from the definition of ψP (x
(i)
m , x

(j)
m̄ ) in (20) for the GIP kernel, we have∣∣ψP (x(i)

m , x
(j)
m̄ )− ψ(x(i)

m , x
(j)
m̄ )
∣∣ (i)

=

∣∣∣∣∣∣∣π − 2π
[A

(:,i)
m ]T [A

(:,j)
m̄ ]

P

∣∣∣− ∣∣π − 2πE[ζ(x(i)
m , ω)ζ(x

(j)
m̄ , ω)]

∣∣∣∣∣∣
(ii)

≤ 2π

∣∣∣∣ [A(:,i)
m ]T [A

(:,j)
m̄ ]

P
− E[ζ(x(i)

m , ω)ζ(x
(j)
m̄ , ω)]

∣∣∣∣ (21)

with ζ(x, ω) = 1[ωTx ≥ 0] and where (i) uses E[ζ(x
(i)
m , ω)ζ(x

(j)
m̄ , ω)] =

π−ψ(x(i)
m ,x

(j)
m̄ )

2π for ω ∼
N (0, I) Chizat et al. (2019); Cho & Saul (2009); Cho (2012), and (ii) follows from the reverse
triangle inequality. Next, note from the definition of Am, we have

[A
(:,i)
m ]T [A

(:,j)
m̄ ]

P
=

1

P

P∑
`=1

ζ(x(i)
m , ω`)ζ(x

(j)
m̄ , ω`) (22)

Let us define the random variable z` as

z` :=
1

P

[
ζ(x(i)

m , ω`)ζ(x
(j)
m̄ , ω`)− E

[
ζ(x(i)

m , ω)ζ(x
(j)
m̄ , ω)

]]
.
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Note from the definition of z` that we have

E[z`] = 0 and |z`| ≤
1

P
, ∀` ∈ [P ].

To proceed, let us define the sum of z`’s as Z(x
(i)
m , x

(j)
m̄ ) =

∑L
`=1 z`. Noticing that we can relate

Z(x
(i)
m , x

(j)
m̄ ) to the quantity (21) we want to bound in as

Z(x(i)
m , x

(j)
m̄ ) =

P∑
`=1

z`

=
1

P

P∑
`=1

[
ζ(x(i)

m , ω`)ζ(x
(j)
m̄ , ω`)− E

[
ζ(x(i)

m , ω)ζ(x
(j)
m̄ , ω)

]]
(i)
=

[A
(:,i)
m ]T [A

(:,j)
m̄ ]

P
− E

[
ζ(x(i)

m , ω)ζ(x
(j)
m̄ , ω)

]
.

where the equality (i) follows from (22). Moreover, note that this term is zero mean which follows
from the fact that each z` is zero mean in the first equality. Further, we bound the variance of
Z(x

(i)
m , x

(j)
m̄ ) as

σ2 = E[(Z(x(i)
m , x

(j)
m̄ ))2] = E

[( P∑
`=1

z`

)2] (i)
=

P∑
`=1

E[z2
` ]

(ii)

≤ 1

P
,

where (i) comes from the facts that (a): each z` for ` ∈ [P ] is zero mean, and (b): z` and zk are
independent for all ` 6= k; (ii) uses the fact that z2

` ≤ 1/P 2 for all ` ∈ [P ].

Applying Proposition I.1 to the random variable Z(x
(i)
m , x

(j)
m̄ ), we get

P
[∣∣Z(x(i)

m , x
(j)
m̄ )
∣∣ ≥ ε] ≤ 2 exp

(
−ε2

2
(
(1/P ) + (ε/3P )

)).
Taking the union bound over all the training samples, i.e., ∀i ∈ Nm, ∀j ∈ Nm̄ with ∀m, m̄ ∈ [M ],
we get

P
[ ⋃
m,m̄∈[M ]

⋃
i∈Nm,j∈Nm̄

{∣∣Z(x(i)
m , x

(j)
m̄ )
∣∣ ≥ ε}] ≤ M∑

m=1

M∑
m̄=1

∑
i∈Nm

∑
j∈Nm̄

P
[∣∣Z(x(i)

m , x
(j)
m̄ )
∣∣ ≥ ε]

≤ 2N2 exp

(
−ε2

2
(
(1/P ) + (ε/3P )

)).
Note from above that we have that with probability at least 1− δ

|Z(x(i)
m , x

(j)
m̄ )| =

∣∣∣∣ [A(:,i)
m ]T [A

(:,j)
m̄ ]

P
− E

[
ζ(x(i)

m , ω)ζ(x
(j)
m̄ , ω)

]∣∣∣∣
≤
√

8

P
log

2N

δ
+

4

3P
log

2N

δ
, ∀i ∈ Nm,∀j ∈ Nm̄ with ∀m, m̄ ∈ [M ].

Substituting the above in (21) completes the proof..

Next, we provide a key technical result, which bounds the operator norm of the difference between
the kernel, K and it’s approximation KP . We present the results for both th GIP and the RF kernel.
The following proposition is utilized in the proof of Theorem 4.2.
Proposition G.4. The following holds with probability at least 1− δ

1. For GIP kernel, we have

‖K−KP ‖ ≤ G ·N ·
(√

32π2

P
log

2N

δ
+

8π

3P
log

2N

δ

)
.
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2. For RF kernel, we have

‖K−KP ‖ ≤ κ2 ·N ·
(√

8

P
log

2N

δ
+

4

3P
log

2N

δ

)
.

Proof. First, we consider the GIP kernel.

(i): GIP kernel: Note from the definition of approximated GIP kernel in (7) that the individual
elements of KP ∈ RN×N are g(ψP (x

(i)
m , x

(j)
m̄ ), ‖x(i)

m ‖, ‖x(j)
m̄ ‖). Similarly, from (5) individual ele-

ments of K ∈ RN×N are g(ψ(x
(i)
m , x

(j)
m̄ ), ‖x(i)

m ‖, ‖x(j)
m̄ ‖), ∀i ∈ Nm, ∀j ∈ Nm̄ with ∀m, m̄ ∈ [M ].

Next, we use the notation B =
[
bij
]
∈ RN×N to denote the matrix with individual elements bij ,

i.e.,

B =

 b11 b12 · · · b1N
...

...
. . .

...
bN1 bN2 · · · bNN

 =
[
bij
]
∀i, j ∈ [N ]. (23)

Then we have with probability at least 1− δ

‖K−KP ‖
(i)
=

∥∥∥∥∥
[
g(ψ(x(i)

m , x
(j)
m̄ ), ‖x(i)

m ‖, ‖x
(j)
m̄ ‖)− g(ψP (x(i)

m , x
(j)
m̄ ), ‖x(i)

m ‖, ‖x
(j)
m̄ ‖)

]∥∥∥∥∥
(ii)

≤

∥∥∥∥∥
[∣∣∣∣g(ψ(x(i)

m , x
(j)
m̄ ), ‖x(i)

m ‖, ‖x
(j)
m̄ ‖)− g(ψP (x(i)

m , x
(j)
m̄ ), ‖x(i)

m ‖, ‖x
(j)
m̄ ‖)

∣∣∣∣
]∥∥∥∥∥

(iii)

≤ G ·

∥∥∥∥∥
[∣∣∣ψ(x(i)

m , x
(j)
m̄ )− ψP (x(i)

m , x
(j)
m̄ )
∣∣∣]∥∥∥∥∥

(iv)

≤ G ·
(√

32π2

P
log

2N

δ
+

8π

3P
log

2N

δ

)
·

∥∥∥∥∥∥∥
1 1 · · · 1

...
...

. . .
...

1 1 · · · 1


∥∥∥∥∥∥∥

(v)

≤ G ·N ·
(√

32π2

P
log

2N

δ
+

8π

3P
log

2N

δ

)
,

where equality (i) uses the definition of the GIP kernel and its approximation in (5) and (7), resp.;
inequality (ii) results from the fact that for Lp-operator norm with p an even integer we have for
any matrix B ∥∥∥∥∥∥∥

 b11 b12 · · · b1N
...

...
. . .

...
bN1 bN2 · · · bNN


∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥
 |b11| |b12| · · · |b1N |

...
...

. . .
...

|bN1| |bN2| · · · |bNN |


∥∥∥∥∥∥∥ ,

inequality (iii) results from the Lipschitzness of function g(·, z1, z2) in Assumption 2 and the fact
that for any matrices A and B with positive entries, we have ‖B‖ ≤ ‖A + B‖; inequality (iv)
utilizes Proposition G.3 and again the fact that for any matrices A and B with positive entries, we
have ‖B‖ ≤ ‖A + B‖; Finally, (v) uses the fact that the L2-operator norm (maximum eigenvalue)
of the all one matrix of dimension N ×N is N .

Therefore, the first result has been proven.

(ii): RF kernel: First, we note that the matrix KP can be decomposed as

KP =
1

P

L∑
`=1

K`,

where K` ∈ RN×N consists of individual elements of the form ζ(x
(i)
m , ω`) · ζ(x

(j)
m̄ , ω`), ∀i ∈ Nm,

∀j ∈ Nm̄ with ∀m, m̄ ∈ [M ]. Recall that {ω`}P`=1 are drawn i.i.d from distribution p(ω). Please
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see discussion in Section 3.1 on RF kernel approximation. Then using the matrix notation defined
in (23) we we write K` as

K` :=
[
ζ(x(i)

m , ω`) · ζ(x
(j)
m̄ , ω`)

]
∈ RN×N ∀i ∈ Nm,∀j ∈ Nm̄ with ∀m, m̄ ∈ [M ].

We apply Proposition G.1 on the sequence of random matrices defined by [K` −K]/P . Note that
we have:

E
[
K` −K

P

]
= 0 and

∥∥∥∥K` −K

P

∥∥∥∥ ≤ 2N · κ2

P
,

where the first equality follows from the definition of the RF kernel in (6) and the definition of K`,
and the second inequality follows from Assumption 1. To apply Proposition G.1, we need to upper
bound the variance of the sum

∑P
`=1

K`−K
P = KP −K. Towards this end, we obtain:

σ2
(
KP −K

)
:=
∥∥E[(KP −K)2]

∥∥
(i)
=

1

P 2

∥∥∥ L∑
`=1

E[(K` −K)2]
∥∥∥

(ii)
=

1

P

∥∥E[(K` −K)2]
∥∥

(iii)

≤ 1

P

∥∥∥∥ ∣∣∣E[(K` −K)2]
∣∣∣ ∥∥∥∥

(iv)

≤ 4κ4N

P

∥∥∥∥∥∥∥
1 1 · · · 1

...
...

. . .
...

1 1 · · · 1


∥∥∥∥∥∥∥

(v)

≤ 4κ4N2

P
,

where (i) follows from the fact that K` −K are zero mean and independent across ` ∈ [P ]; (ii)
utilizes that K` −K are i.i.d. across ` ∈ [P ]; for inequality (iii), we used the notation that for a
matrix B, |B| denotes the matrix with absolute values of B and combined it with the fact that for
Lp-operator norm with p as an even integer we have for any matrix B that∥∥∥∥∥∥∥

 b11 b12 · · · b1N
...

...
. . .

...
bN1 bN2 · · · bNN


∥∥∥∥∥∥∥ ≤

∥∥∥∥∥∥∥
 |b11| |b12| · · · |b1N |

...
...

. . .
...

|bN1| |bN2| · · · |bNN |


∥∥∥∥∥∥∥ .

Inequality, (iv) results from the use of Assumption 1, specifically, using Assumption 1 verify that
each element of E[(K`−K)2] is bounded by 4κ4N and combine with the fact that for any matrices
A and B with positive entries, we have ‖B‖ ≤ ‖A+B‖; finally, (v) utilizes that for all one matrix
of dimension N ×N the L2 operator norm (maximum eigen-value) is equal to N .

Therefore, we have the result. Next, using Proposition G.1 with X` = K`−K
P , we have

‖KP −K‖ ≤
√

8κ4N2

P
log

2N

δ
+

4Nκ2

3P
log

2N

δ
= κ2 ·N ·

(√
8

P
log

2N

δ
+

4

3P
log

2N

δ

)
.

with probability at least 1− δ.

Therefore, the proof is complete.

Finally, we state our main result.
Theorem G.5. For any fixed λ > 0, the following holds with probability at least 1− δ

1. For the GIP kernel, we have:∣∣∣L̂P (α̂∗P )− L̂(α̂∗)
∣∣∣ ≤ 2R2 ·G

λ
·
(√

32π2

P
log

2N

δ
+

8π

3P
log

2N

δ

)
.
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Moreover, we have:∣∣∣R̂P (α̂∗P )− R̂(α̂∗)
∣∣∣ ≤ 3R2 ·G

λ
·
(√

32π2

P
log

2N

δ
+

8π

3P
log

2N

δ

)
.

2. For the RF kernel, we have:∣∣∣L̂P (α̂∗P )− L̂(α̂∗)
∣∣∣ ≤ 2R2 · κ2

λ
·
(√

8

P
log

2N

δ
+

4

3P
log

2N

δ

)
.

Moreover, we have∣∣∣R̂P (α̂∗P )− R̂(α̂∗)
∣∣∣ ≤ 3R2 · κ2

λ
·
(√

8

P
log

2N

δ
+

4

3P
log

2N

δ

)
.

Proof. Recall from the notations in Appendix F that we have

K̂ =
1

N
K, and K̂P =

1

N
KP . (24)

and we defined

K̂λ = K̂ + λ · I, K̂P,λ = K̂P + λ · I, (25)

where I is the identity matrix of some appropriate size. It is easy to observe that the optimal solutions
to problems (12) and (13) are given by the following closed-form solutions

α̂∗ = [K +N · λ · I]−1ȳ =
1

N
· K̂−1

λ · ȳ, α̂∗P = [KP +N · λ · I]−1ȳ =
1

N
· K̂−1

P,λ · ȳ. (26)

From the definition of the loss function for the `2 loss, we obtain:∣∣∣L̂P (α̂∗P )− L̂(α̂∗)
∣∣∣ (i)

=
1

2N

∣∣∣ ‖ȳ − K̂P · K̂−1
P,λ · ȳ‖

2 − ‖ȳ − K̂ · K̂−1
λ · ȳ‖

2
∣∣∣

(ii)
=

1

2N

∣∣∣ 〈[K̂P · K̂−1
P,λ − K̂ · K̂

−1
λ

]
ȳ,
[
K̂P · K̂−1

P,λ + K̂ · K̂−1
λ

]
ȳ
〉

− 2
〈
ȳ,
[
K̂P · K̂−1

P,λ − K̂ · K̂
−1
λ

]
ȳ
〉 ∣∣∣

(iii)

≤ 1

2N

[ ∥∥∥[K̂P · K̂−1
P,λ + K̂ · K̂−1

λ

]
ȳ
∥∥∥︸ ︷︷ ︸

term(A)

∥∥∥[K̂P · K̂−1
P,λ − K̂ · K̂

−1
λ

]
ȳ
∥∥∥︸ ︷︷ ︸

term(B)

+ 2‖ȳ‖
∥∥∥[K̂P · K̂−1

P,λ − K̂ · K̂
−1
λ

]
ȳ
∥∥∥︸ ︷︷ ︸

term(B)

]
(27)

where (i) utilizes (25) and (26); (ii) uses the following

‖A · z − z‖2 − ‖B · z − z‖2 = ‖A · z‖2 − ‖B · z‖2 − 2〈z, [A−B]z〉
= 〈[A+B]z, [A−B]z〉 − 2〈z, [A−B]z, 〉,

and (iii) results from the application of Cauchy-Schwartz and triangle inequality.

Next, we consider the term(A) and term(B) in (27), and provide upper bounds for them. Let us first
analyze term(B). we have:[

K̂ · K̂−1
λ − K̂P · K̂−1

P,λ

]
ȳ =

[(
K̂ + λ · I − λ · I

)
K̂−1
λ −

(
K̂P + λ · I − λ · I

)
K̂−1
P,λ

]
ȳ

(i)
=
[(
I − λ · K̂−1

λ

)
−
(
I − λ · K̂−1

P,λ

)]
ȳ

= λ ·
[
K̂−1
P,λ − K̂

−1
λ

]
ȳ

(ii)
= λ · K̂−1

P,λ

[
K̂λ − K̂P,λ

]
K̂−1
λ · ȳ

(iii)
= λ · K̂−1

P,λ

[
K̂ − K̂P

]
K̂−1
λ · ȳ (28)
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where (i) follows from the definition of K̂λ and K̂P,λ; (ii) results from A−1 − B−1 = A−1(B −
A)B−1 for invertible matrices A and B and (iii) again results from the definition of K̂λ and K̂P,λ.
This implies that we have:∥∥[K̂ · K̂−1

λ − K̂P · K̂−1
P,λ

]
ȳ‖

(i)

≤ λ · ‖K̂−1
P,λ‖ · ‖K̂ − K̂P

∥∥ · ‖K̂−1
λ ‖ · ‖ȳ‖

(ii)

≤
√
N ·R
λ

‖K̂ − K̂P

∥∥
(iii)

≤ R√
N · λ

‖K−KP

∥∥
where inequality (i) results from the Cauchy-Schwartz inequality; (ii) uses the fact that ‖K̂−1

P,λ‖ ≤
1/λ, ‖K̂−1

λ ‖ ≤ 1/λ and ‖ȳ‖ ≤
√
N ·R, and (iii) utilizes the definition of K̂ and K̂P .

Next, we utilize high probability bounds for the term ‖K −KP ‖, which characterize the effect of
sampling using P observations. Towards this end, we invoke Proposition G.4, which provides two
high probability bounds for this term, one for the GIP, and one for the RF kernel. Specifically, for
the former kernel, we have the following∥∥[K̂ · K̂−1

λ − K̂P · K̂−1
P,λ

]
ȳ‖ ≤ R ·G ·

√
N

λ

(√
32π2

P
log

2N

δ
+

8π

3P
log

2N

δ

)
,

with probability at least 1− δ. Similarly, we have for the RF kernel∥∥[K̂ · K̂−1
λ − K̂P · K̂−1

P,λ

]
ȳ‖ ≤ R · κ2 ·

√
N

λ

(√
8

P
log

2N

δ
+

4

3P
log

2N

δ

)
,

with probability at least 1 − δ. This completes the analysis for term(B) in (27). Next, we consider
the term(A) in (27). We have:∥∥∥[K̂P K̂

−1
P,λ + K̂K̂−1

λ

]
ȳ
∥∥∥ ≤ ∥∥[K̂P K̂

−1
P,λ

]
ȳ
∥∥+

∥∥[K̂K̂−1
λ

]
ȳ
∥∥

≤ 2‖ȳ‖ ≤ 2
√
N ·R.

Now substituting the bounds for term(A) and term(B) into (27), we get the following bounds:

For the GIP kernel:∣∣∣L̂P (α̂∗P )− L̂(α̂∗)
∣∣∣ ≤ 2R2 ·G

λ
·
(√

32π2

P
log

2N

δ
+

8π

3P
log

2N

δ

)
. (29)

For the RF kernel:∣∣∣L̂P (α̂∗P )− L̂(α̂∗)
∣∣∣ ≤ 2R2 · κ2

λ
·
(√

8

P
log

2N

δ
+

4

3P
log

2N

δ

)
. (30)

Next, we bound the loss incurred because of multi-agent kernel approximation for the oveall objec-
tive for both the kernels. Note from the definition of the R̂(α) and R̂P (α)∣∣∣R̂(α̂∗)− R̂(α̂∗P )

∣∣∣ =
∣∣∣L̂(α̂∗)− L̂(α̂∗P ) +

λ

2
‖α̂∗‖2K −

λ

2
‖α̂∗P ‖2KP

∣∣∣
≤
∣∣∣L̂(α̂∗)− L̂(α̂∗P )

∣∣∣+
λ

2

∣∣∣‖α̂∗‖2K − ‖α̂∗P ‖2KP

∣∣∣, (31)

which follows from the use of triangle inequality. Note that we have already bounded the first term.
In the following, we bound the second term of (31) above.
λ

2
·
∣∣∣‖α̂∗‖2K − ‖α̂∗P ‖2KP

∣∣∣ (i)
=

λ

2N
·
∣∣∣ȳT [K̂−1

λ · K̂ · K̂
−1
λ − K̂

−1
P,λ · K̂P · K̂−1

P,λ

]
ȳ
∣∣∣

(ii)

≤ λ

2N
· ‖ȳ‖2 ·

∥∥K̂−1
λ · K̂ · K̂

−1
λ − K̂

−1
P,λ · K̂P · K̂−1

P,λ

∥∥
(iii)

≤ λ

2
·R2 ·

[ ∥∥K̂−1
λ · K̂ · K̂

−1
λ − K̂

−1
P,λ · K̂ · K̂

−1
λ

∥∥︸ ︷︷ ︸
term(C)

+
∥∥K̂−1

P,λ · K̂ · K̂
−1
λ − K̂

−1
P,λ · K̂P · K̂−1

P,λ

∥∥︸ ︷︷ ︸
term(D)

]
,

(32)
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where (i) follows from the definition of α̂∗ and α̂∗P along with the notation in (24) and (25); (ii)
results from Cauchy-Schwartz inequality, and (iii) uses Assumption 3 and the triangle inequality.
Next, we bound term(C) and term(D) in (32). First, from the definition of term(C), we have

term(C) =
∥∥K̂−1

λ · K̂ · K̂
−1
λ − K̂

−1
P,λ · K̂ · K̂

−1
λ

∥∥ (i)

≤
∥∥K̂−1

λ − K̂
−1
P,λ

∥∥ · ∥∥K̂ · K̂−1
λ

∥∥
(ii)

≤
∥∥K̂−1

λ

∥∥ · ∥∥K̂P − K̂
∥∥ · ∥∥K̂−1

P,λ

∥∥ · ∥∥K̂ · K̂−1
λ

∥∥
(iii)

≤ 1

λ2
·
∥∥K̂P − K̂

∥∥
(iv)

≤ 1

N · λ2
·
∥∥KP −K

∥∥,
where (i) results from the Cauchy-Schwartz inequality; (ii) utilizesA−1−B−1 = A−1(B−A)B−1

for invertible matrices A and B along with Cauchy-Schwartz inequality; (iii) uses that fact that we
have ‖K̂−1

λ ‖ ≤ 1/λ, ‖K̂−1
P,λ‖ ≤ 1/λ and ‖K̂ · K̂−1

λ ‖ ≤ 1, and (iv) results from the notation in (24).
Next, we bound term(D) as

term(D) =
∥∥K̂−1

P,λ ·K · K̂
−1
λ − K̂

−1
P,λ · K̂P · K̂−1

P,λ

∥∥ (i)

≤
∥∥K̂−1

P,λ

∥∥ · ∥∥K̂ · K̂−1
λ − K̂P · K̂−1

P,λ

∥∥
(ii)

≤ λ ·
∥∥K̂−1

P,λ

∥∥2 ·
∥∥K̂P − K̂

∥∥ · ∥∥K̂−1
λ

∥∥
(iii)

≤ 1

λ2
·
∥∥K̂P − K̂

∥∥
(iv)

≤ 1

N · λ2
·
∥∥KP −K

∥∥,
where inequality (i) follows from Cauchy-Schwartz inequality; (ii) results from (28) and the appli-
cation of Cauchy-Schwartz inequality; (iii) follows from the fact that we have ‖K̂−1

λ ‖ ≤ 1/λ and
‖K̂−1

P,λ‖ ≤ 1/λ, and (iv) results from the notation defined in (24).

Substituting the upper bounds of term(C) and term(D) in (32), we get

λ

2

∣∣∣‖α̂∗‖2K − ‖α̂∗P ‖2KP

∣∣∣ ≤ R2

N · λ
·
∥∥KP −K

∥∥.
Finally, using Lemma G.4, we have for the GIP kernel

λ

2

∣∣∣‖α̂∗‖2K − ‖α̂∗P ‖2KP

∣∣∣ ≤ R2 ·G
λ
·
(√

32π2

P
log

2N

δ
+

8π

3P
log

2N

δ

)
,

Substituting, the above expression in (31) and combining with the bound in (29), we get the state-
ment of the theorem.

Similarly, we have for the RF kernel

λ

2

∣∣∣‖α̂∗‖2K − ‖α̂∗P ‖2KP

∣∣∣ ≤ R2 · κ2

λ
·
(√

8

P
log

2N

δ
+

4

3P
log

2N

δ

)
.

Finally, substituting the above expression in (31) and combining with the bound in (30), we get the
statement of the theorem.

Therefore, the proof is complete.

Finally, the proof of Theorem 4.2 is a simple consequence of Theorem G.5.

H GENERALIZATION PERFORMANCE OF MULTI-AGENT KERNEL
APPROXIMATION FRAMEWORK: PROOF OF THEOREM 4.3

To prove generalization bounds we extensively use the notations defined in Appendix F.
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Definition H.1. We define by fπ as the MMSE estimator for f as
fπ(x) = Ey∼π(y|x)[y|x].

We make the following assumption.
Assumption 5. There exists fH ∈ H s.t. L(fH) = infh∈H L(h). From the definition of MMSE es-
timator above we have fπ = fH. Moreover, this assumption implies that there exists h ∈ L2(X , πx)
s.t. we have

fH(x) = (K1/2h)(x). (33)
for some ‖h‖πx ≤ R.

Note that Assumption 5 is same as Assumption 4 in the main paper. The existence of fH ensures
that (33) holds for some h ∈ L2(X , πx). Moreover, without loss of generality we assume ‖h‖πx to
be bounded by R (same R as in Assumption 3).

Note that for the `2 loss defined in (11) and under Assumption 5, we have for any f ∈ L2(X , πx)
(Caponnetto & De Vito, 2007)

L(f)− inf
h∈H
L(h) = L(f)− L(fπ) = ‖f − fπ‖2πx . (34)

Now the goal is to bound the generalization error with f replaced by the f̂P (learned by solving the
approximate kernel problem stated in (13)). Using the notations defined in Appendix F, we have

f̂P = ΦP Φ̂∗P

[[
K̂P + λ · I

]−1
ŷ
]

= ΦP Φ̂∗P

[[
Φ̂P Φ̂∗P + λ · I

]−1
ŷ
]

= ΦP

[[
Φ̂∗P Φ̂P + λ · I

]−1
Φ̂∗P ŷ

]
= ΦP · Ĉ−1

P,λ · Φ̂
∗
P · ŷ.

where we have defined ŷ = 1√
N
ȳ.

Using the above we have
f̂P − fπ = ΦP · Ĉ−1

P,λ · Φ̂
∗
P · ŷ − ΦP · Ĉ−1

P,λ · Φ
∗
P · fπ︸ ︷︷ ︸

term(A)

(35)

+ ΦP · Ĉ−1
P,λ · Φ

∗
P · fπ − ΦP · C−1

P,λ · Φ
∗
P · fπ︸ ︷︷ ︸

term(B)

(36)

+ ΦP · C−1
P,λ · Φ

∗
P · fπ − K ·K−1

λ · fπ︸ ︷︷ ︸
term(C)

(37)

+K ·K−1
λ · fπ − fπ︸ ︷︷ ︸

term(D)

. (38)

Next, we bound each term separately below for both the GIP and the RF kernels. We note that for the
RF kernel we follow the proofs developed in Rudi & Rosasco (2017) with some minor corrections.

Bound for term(A) First, we consider term(A) given in (35).

Lemma H.1. For any δ ∈ (0, 1], with λ ≤ 3
4‖K‖ and N ≥ max

{
72κ2

λ , 2λ
9

}
log 4κ2

λ·δ . Moreover,

with P ≥ max
{

8, 512π2G2

‖K‖2

}
log 2

δ for the GIP kernel and with P ≥ max
{

8κ2, 32κ2

‖K‖2

}
log 2

δ for
the RF kernel, we have with probability at least 1− 3δ

‖term(A)‖πx =
∥∥ΦP · Ĉ−1

P,λ · Φ̂
∗
P · ŷ − ΦP · Ĉ−1

P,λ · Φ
∗
P · fπ

∥∥
πx
≤ 6R · κ√

λ ·N
log

2

δ
+

√
18R2 · κ2

λ ·N
log

2

δ
.

Proof. From the definition of term(A) in (35), we have
term(A) = ΦP · Ĉ−1

P,λ · Φ̂
∗
P · ŷ − ΦP · Ĉ−1

P,λ · Φ
∗
P · fπ

= ΦP · Ĉ−1
P,λ ·

[
Φ̂∗P · ŷ − Φ∗P · fπ

]
(i)
=
(
ΦP · Ĉ−1

P,λ · C
1/2
P,λ

)︸ ︷︷ ︸
term(A1)

·
(
C
−1/2
P,λ ·

[
Φ̂∗P · ŷ − Φ∗P · fπ

])︸ ︷︷ ︸
term(A2)

. (39)
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where (i) follows from C
1/2
P,λ · C

−1/2
P,λ = I . Next, we individually bound term(A1) and term(A2)

below.

First, we bound term(A1) using Proposition 8 in Rudi & Rosasco (2017), we define β1 :=

λmax

[
C
−1/2
P,λ ·

(
CP − ĈP

)
· C−1/2

P,λ

]
‖term(A1)‖ = ‖ΦP · Ĉ−1

P,λ · C
1/2
P,λ‖

(i)

≤ ‖ΦP · Ĉ−1/2
P,λ ‖ · ‖Ĉ

−1/2
P,λ · C1/2

P,λ‖
(ii)

≤ ‖Ĉ−1/2
P,λ · C1/2

P,λ‖
2

(iii)

≤ 1

1− β1
,

where (i) utilizes the Cauchy-Schwartz inequality; (ii) follows from the fact that:

‖ΦP · Ĉ−1/2
P,λ ‖ = ‖ΦP · C−1/2

P,λ ‖︸ ︷︷ ︸
≤1

·‖C1/2
P,λ · Ĉ

−1/2
P,λ ‖ ≤ ‖Ĉ

−1/2
P,λ · C1/2

P,λ‖,

finally, (iii) utilizes Proposition 8 in Rudi & Rosasco (2017). Next, we bound term β1. Using

Lemma H.2, with the choice of λ ≤ ‖CP ‖ and with N ≥ max

{
72κ2

λ , 2λ
9

}
log 4κ2

λδ , we have with

probability at least 1− δ

β1 = λmax

[
C
−1/2
P,λ ·

(
CP − ĈP

)
· C−1/2

P,λ

]
≤ 1

3
,

Finally, we need to ensure that the random variable ‖CP ‖ ≥ λ with high probability for both the
GIP and the RF kernel.

Note from Proposition H.7 that for: (i) the GIP kernel with P ≥ max
{

8, 512π2G2

‖K‖2

}
log 2

δ and (ii)

for the RF kernel with P ≥ max
{

8κ2, 32κ2

‖K‖2

}
log 2

δ , we have with probability at least 1− δ

‖K −KP ‖ ≤
1

4
‖K‖.

Next, choosing λ s.t. we have λ ≤ 3
4‖K‖. Note that the choice of λ and the choice of P implies

that we have with probability at least 1− δ
‖CP ‖ = ‖Φ∗P · ΦP ‖ = ‖ΦP · Φ∗P ‖ = ‖KP ‖

≥
∣∣‖K‖ − ‖K −KP ‖

∣∣ ≥ ‖K‖ − ‖K −KP ‖ ≥
3

4
‖K‖ ≥ λ.

Now combining the two facts that β1 ≤ 1/3 holds with probability 1− δ conditioned on ‖CP ‖ ≥ λ
and ‖CP ‖ ≥ λ holds with probability at least 1− δ, it is easy to verify that we have β1 ≤ 1/3 with
probability at least 1− 2δ. This further implies that we have with probability at least 1− 2δ

‖term(A1)‖ ≤ 3

2
. (40)

Next, we consider term(A2) in (39)4

term(A2) = C
−1/2
P,λ ·

[
Φ̂∗P · ŷ − Φ∗P · fπ

]
= C

−1/2
P,λ ·

[
1

N

N∑
i=1

(
φP (xi) · yi − Φ∗ · fπ

)]
We modify Lemma 6 in Rudi & Rosasco (2017) to bound this term. First, note that the random
variable φP (xi)·yi−Φ∗P ·fπ is zero mean. Next, we apply Bernstein’s inequality stated in Proposition
I.2. Consider the random vector zi defined as

zi = C
−1/2
P,λ · φP (xi) · yi,

with mean E[zi] = µ = C
−1/2
P,λ ·Φ∗L ·fπ . Note that zi are i.i.d. with the moments of random variable

z = C
−1/2
L,λ · φP (x) · y bounded as

E‖zi − µ‖pHP = E‖zi − E[z]‖pHP
(i)

≤ EzEzi‖zi − z‖
p
HP

(ii)

≤ 2p−1EzEzi
(
‖zi‖pHP + ‖z‖pHP

)
= 2pE‖z‖pHP ,

4For ease of presentation, we relabel the set {(x(i)
m , y(i)

m ) : ∀i ∈ Nm, ∀m ∈ [M ]} with {(xi, yi)}Ni=1.
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where (i) follows from the Jensen’s inequality and (ii) utilizes the convexity of ‖ · ‖pHP . Next, we
bound E‖z‖pHP as

E‖z‖pHP = E
∥∥C−1/2

P,λ · φP (x) · y
∥∥p
HP

(i)

≤ E
[
‖C−1/2

P,λ · φP (x)‖pHP · |y|
p
] (ii)

≤ Rp · E
[∥∥C−1/2

P,λ · φP (x)
∥∥p
HP

] (iii)

≤
(
R · κ√
λ

)p
,

where (i) utilizes Cauchy-Schwartz inequality; (ii) follows from Assumption 3 and, (iii) results
from the following∥∥C−1/2

P,λ · φP (x)
∥∥2

HP
≤ 1

λ
· ‖φP (x)‖2HP =

1

λ
· 〈φP (x), φP (x)〉HP =

1

λ
· kP (x, x) ≤ κ2

λ
,

where we utilized the definition of kP (·, ·) and Assumption 1. Combining with the above we get

E‖zi − µ‖pHP ≤
(

2R · κ√
λ

)p
.

This implies that we can apply Bernstein’s inequality stated in Proposition I.2 with σ = B =
2Rκ/

√
λ, therefore, we get with probability at least 1− δ

‖term(A2)‖HP ≤
4R · κ√
λ ·N

log
2

δ
+

√
8R2 · κ2

λ ·N
log

2

δ
. (41)

Finally, substituting the bound for term (A1) derived in (40) and the bound for term (A2) derived in
(41) in (39) and noting the fact that (40) holds with probability at least 1 − 2δ and (41) holds with
probability at least 1− δ, we have with probability at least 1− 3δ

‖term(A)‖πx ≤
6R · κ√
λ ·N

log
2

δ
+

√
18R2 · κ2

λ ·N
log

2

δ
.

Therefore, the lemma is proved.

Lemma H.2. For some δ ∈ (0, 1] and with λ ≤ ‖CP ‖ we have with probability at least 1− δ

λmax

[
C
−1/2
P,λ ·

(
CP − ĈP

)
· C−1/2

P,λ

]
≤ 2

3N
log

4κ2

λ · δ
+

√
2κ2

λ ·N
log

4κ2

λ · δ
.

Proof. The proof follows from Proposition 6 in Rudi & Rosasco (2017).

Next, we bound term(B).

Bound for term(B) Let us consider term(B) in (36), we have

Lemma H.3. For δ ∈ (0, 1], with P ≥ max
{

8, 288π2G2

λ2

}
log 2

δ for the GIP kernel and with

P ≥ max
{

2λ
9 ,

72κ2

λ

}
log 4κ2

λ·δ for the RF kernel, we have with probability at least 1− 4δ

‖term(B)‖πx =
∥∥ΦP · Ĉ−1

P,λ · Φ
∗
P · fπ − ΦP · C−1

P,λ · Φ
∗
P · fπ

∥∥ ≤ 12R · κ2

√
λ ·N

log
2

δ
+

√
36R2 · κ4

λ ·N
log

2

δ
.

Proof. Consider term(B), note that from Lemma 3 in Rudi & Rosasco (2017), we have

‖term(B)‖πx =
∥∥ΦP · Ĉ−1

P,λ · Φ
∗
P · fπ − ΦP · C−1

P,λ · Φ
∗
P · fπ

∥∥
πx

≤ R ·
∥∥K−1/2

P,λ ·K1/2
∥∥︸ ︷︷ ︸

term(B1)

·
∥∥ΦP · Ĉ−1

P,λ · C
1/2
P,λ

∥∥︸ ︷︷ ︸
term(B2)

·
∥∥C−1/2

P,λ ·
(
CP − ĈP

)∥∥︸ ︷︷ ︸
term(B3)

. (42)

Next, we bound each term individually.
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First, we consider term(B1) in (42) above, we define β2 := λmax

[
K
−1/2
λ ·

(
K−KP

)
·K−1/2

λ

]
, then

we have

‖term(B1)‖ =
∥∥K−1/2

P,λ ·K1/2
∥∥ (i)

≤
∥∥K−1/2

P,λ ·K1/2
λ

∥∥ (ii)

≤
(

1

1− β2

)1/2

,

where (i) follows from the fact that ‖K1/2‖ ≤ ‖K1/2
λ ‖ and (ii) utilizes Proposition 8 in

Rudi & Rosasco (2017). Note that from Lemma H.4 for (i) the GIP kernel with P ≥
max

{
8, 288π2G2

λ2

}
log 2

δ and for (ii) the RF kernel with P ≥ max
{

2λ
9 ,

72κ2

λ

}
log 4κ2

λ·δ , we have
with probability at least 1− δ

β2 ≤
1

3
.

This implies that with probability at least 1− δ, we have

‖term(B1)‖ ≤ 2. (43)

Next, note from the definition of term(B2) in (42) that it is same as term(A1) in (39). Therefore,
using the same bound as derived in (40), we have with probability at least 1− 2δ

‖term(B2)‖ ≤ 3

2
. (44)

Next, we bound term(B3) in (42). Using Equation (28) of Lemma 7 in Rudi & Rosasco (2017), we
have with probability at least 1− δ

‖term(B3)‖ ≤ 4κ2

√
λ ·N

log
2

δ
+

√
4κ4

λ ·N
log

2

δ
. (45)

Finally, substituting the bounds derived in (43), (44) and (45) in (42) and utilizing the fact that (43)
holds with probability at least 1− δ, (44) holds with probability at least 1− 2δ and (45) holds with
probability at least 1− δ, we get with probability at least 1− 4δ

‖term(B)‖πx ≤
12R · κ2

√
λ ·N

log
2

δ
+

√
36R2 · κ4

λ ·N
log

2

δ
.

Therefore, the lemma is proved.

Lemma H.4. For some δ ∈ (0, 1], then with probability at least 1− δ for

1. We have for the GIP kernel

λmax

[
K
−1/2
λ ·

(
K −KP

)
·K−1/2

λ

]
≤ 8π ·G

λ · P
log

2

δ
+

√
8π2 ·G2

λ2 · P
log

2

δ
.

2. We have for the RF kernel (Proposition 6 in Rudi & Rosasco (2017))

λmax

[
K
−1/2
λ ·

(
K −KP

)
·K−1/2

λ

]
≤ 2

3P
log

4κ2

λ · δ
+

√
2κ2

λ · P
log

4κ2

λ · δ
.

Proof. For the GIP kernel, we have

λmax

[
K
−1/2
λ ·

(
K −KP

)
·K−1/2

λ

] (i)

≤ ‖K−1/2
λ ·

(
K −KP

)
·K−1/2

λ ‖
(ii)

≤ 1

λ
· ‖K −KP ‖.

where (i) follows from the definition of the operator norm and (ii) uses the fact that ‖K−1/2
λ ‖ ≤

1/
√
λ. Next, utilizing the bound for ‖K − KP ‖ from Proposition H.7, we have the proof of the

lemma.

Next, we consider term(C).
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Bound for term(C) We consider term(C) in (37).

Lemma H.5. For δ ∈ (0, 1], with probability at least 1− δ

1. For the GIP kernel, we have

‖term(C)‖πx =
∥∥ΦP · C−1

P,λ · Φ
∗
P · fπ−K ·K−1

λ · fπ
∥∥ ≤ 8πR ·G√

λ · P
log

2

δ
+

√
8π2R2 ·G2

λ · P
log

2

δ
.

2. For the RF kernel, with P ≥ max
{

2λ
9 ,

72κ2

λ

}
log 4κ2

λ·δ we have from Lemma 8 in Rudi & Rosasco
(2017)

‖term(C)‖πx =
∥∥ΦP · C−1

P,λ · Φ
∗
P · fπ −K ·K−1

λ · fπ
∥∥

≤ 4R · (λ+ κ2)

3
√
λ · P

log
16κ2

λ · δ
+

√
8R2 · κ2

P
log

16κ2

λ · δ
.

Proof. Let us consider the first term of term(C) for the GIP kernel, we have from the definition of
CP,λ

ΦP · C−1
P,λ · Φ

∗
P · fπ = ΦP ·

(
CP + λI

)−1 · Φ∗P · fπ
(i)
= ΦP ·

(
Φ∗P · ΦP + λ · I

)−1 · Φ∗P · fπ
(ii)
= ΦP · Φ∗P ·

(
ΦP · Φ∗P + λ · I

)−1 · fπ
(iii)
= KP ·

(
KP + λ · I

)−1 · fπ
(iv)
= KP ·K−1

P,λ · fπ

where (i) follows from the definition of CP ; (ii) uses the fact that for any continuous spectral
function and compact operator Z, we have F (Z∗Z)Z∗ = Z∗F (ZZ∗); (iii) uses the definition of
KP and finally, (iv) results from the notation of KP,λ. Therefore, we have

term(C) = KP ·K−1
P,λ · fπ −K ·K

−1
λ · fπ

=
(
KP ·K−1

P,λ −K ·K
−1
λ

)
· fπ

(i)
= λ ·

(
K−1
P,λ −K

−1
λ

)
· fπ

(ii)
= λ ·K−1

P,λ

(
K −KP

)
K−1
λ · fπ

(iii)
= λ ·K−1

P,λ ·
(
K −KP

)
·K−1

λ ·K
1/2 · h

=
(
λ ·K−1

P,λ

)
·
(
K −KP

)
·K−1/2

λ ·
(
K
−1/2
λ ·K1/2

)
· h

where (i) uses the identityA ·(A+λ ·I)−1 = I−λ(A+λ ·I)−1 for bounded positive operators; (ii)
results from A−1−B−1 = A−1 · (B−A) ·B−1 for invertible bounded positive operators, and (iii)
utilizes Assumption 5. Taking the norm on both sides and utilizing Cauchy-Schwartz inequality, we
get

‖term(C)‖πx ≤
∥∥λ ·K−1

P,λ

∥∥ · ∥∥K −KP

∥∥ · ∥∥K−1/2
λ

∥∥ · ∥∥K−1/2
λ K1/2

∥∥ · ‖h‖πx ≤ R√
λ
· ‖K −KP ‖,

where the last inequality follows from
∥∥λ ·K−1

P,λ

∥∥ ≤ 1,
∥∥K−1/2

λ

∥∥ ≤ 1/
√
λ,
∥∥K−1/2

λ ·K1/2
∥∥ ≤ 1

and ‖h‖πx ≤ R from Assumption 5.

Finally, using Proposition H.7 we have for the generalized inner-product kernel with probability at
least 1− δ

‖term(C)‖πx ≤
8πR ·G√
λ · P

log
2

δ
+

√
8π2R2 ·G2

λ · P
log

2

δ
.

Therefore, the lemma is proved.

Let us next consider term(D).
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Bound for term(D) We consider term(D) in equation 38.

Lemma H.6. We have

‖term(D)‖πx = ‖K ·K−1
λ · fπ − fπ‖πx ≤ R ·

√
λ.

Proof. We have

term(D) = K ·K−1
λ · fπ − fπ =

(
K ·K−1

λ − I
)
· fπ

(i)
= −λ ·K−1

λ · fπ
(ii)
= −λ ·K−1

λ ·K
1/2 · h = −

(
λ ·K−1/2

λ

)
·
(
K
−1/2
λ ·K1/2

)
· h,

where (i) uses the identityA · (A+λ ·I)−1 = I−λ(A+λ ·I)−1 and (ii) follows from Assumption
4. Taking the norm on both sides and applying Cauchy-Schwartz inequality, we get

‖term(D)‖πx ≤
∥∥λ ·K−1/2

λ

∥∥ · ∥∥K−1/2
λ ·K1/2

∥∥ · ‖h‖πx ≤ R · √λ,
where the last inequality results from ‖λ1/2 ·K−1/2

λ ‖ ≤ 1, ‖K−1/2
λ ·K1/2‖ ≤ 1 and ‖h‖πx ≤ R

follows from Assumption 5.

Next, we combine the four terms to bound ‖f̂P − fπ‖πx .

Proposition H.7. The following holds with probability at least 1− δ

1. For the GIP kernel, we have

‖K −KP ‖ ≤
8πG

P
log

2

δ
+

√
8π2G2

P
log

2

δ
.

2. For the RF kernel, we have

‖K −KP ‖ ≤
4κ2

P
log

2

δ
+

√
2κ2

P
log

2

δ
.

Proof. We first prove (i), note from the definition of K −KP and the norm in L2(X , πx)-space we
have

‖K −KP ‖ = sup
‖h‖πx=1

∥∥∥∫
z∈X

(
k(x, z)− kP (x, z)

)
h(z)dπz

∥∥∥
πx

= sup
‖h‖πx=1

∥∥∥∫
z∈X

(
g(ψ(x, z), ‖x‖, ‖z‖)− g(ψP (x, z), ‖x‖, ‖z‖)

)
h(z)dπz

∥∥∥
πx

= sup
‖h‖πx=1

∥∥∥∫
z∈X

∣∣g(ψ(x, z), ‖x‖, ‖z‖)− g(ψP (x, z), ‖x‖, ‖z‖)
∣∣h(z)dπz

∥∥∥
πx

≤ G sup
‖h‖πx=1

∥∥∥ ∫
z∈X

∣∣ψ(x, z)− ψP (x, z)
∣∣h(z)dπz

∥∥∥
πx

Recall using ζ(x, ω) = 1[ωTx ≥ 0] for the GIP kernel, we have from the definition of ψ(x, z) and
ψP (x, z)

ψ(x, z) =

∣∣∣∣π − 2πE
[
ζ(x, ω)ζ(z, ω)

]∣∣∣∣ and ψP (x, z) =

∣∣∣∣π − 2π

P

P∑
`=1

ζ(x, ω`)ζ(z, ω`)

∣∣∣∣.
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Substituting in the above, we get

‖K −KP ‖

≤ G sup
‖h‖πx=1

∥∥∥∥∥
∫
z∈X

∣∣∣∣∣∣∣∣π − 2πE
[
ζ(x, ω) · ζ(z, ω)

]∣∣∣− ∣∣∣π − 2π

P

P∑
`=1

ζ(x, ω`) · ζ(z, ω`)
∣∣∣∣∣∣∣∣ · h(z)dπz

∥∥∥∥∥
πx

≤ 2πG sup
‖h‖πx=1

∥∥∥∥∥
∫
z∈X

∣∣∣∣E[ζ(x, ω) · ζ(z, ω)
]
− 1

P

P∑
`=1

ζ(x, ω`) · ζ(z, ω`)

∣∣∣∣ · h(z)dπz

∥∥∥∥∥
πx

= 2πG sup
‖h‖πx=1

∥∥∥∥∥
∫
z∈X

(
E
[
ζ(x, ω) · ζ(z, ω)

]
− 1

P

P∑
`=1

ζ(x, ω`) · ζ(z, ω`)

)
· h(z)dπz

∥∥∥∥∥
πx

= 2πG ·
∥∥Ω− ΩP

∥∥
≤ 2πG ·

∥∥Ω− ΩP
∥∥
HS
.

Finally, we bound
∥∥Ω − ΩP

∥∥ using Proposition I.2. Using the notation ζω` = ζ(·, ω`), we define
the random variable Θ` = Ω− ζω` ⊗ ζω` , this implies that from the definition of Ω− ΩP , we have
from Lemma 1 in Rudi & Rosasco (2017)

1

P

P∑
`=1

Θ` = Ω− ΩP with E[Θ`] = 0 ∀` ∈ [P ].

Next, note that Θ` are random vectors belonging to the Hilbert space of Hilbert-Schmidt operators
on L2(X , πx). Therefore, we can apply Proposition I.2. Moreover, from the definition of Ω and ΩP ,
‖Ω− ζω` ⊗ ζω`‖HS ≤ 2 and E‖Θ`‖2HS ≤ 1. Therefore, from the application of Proposition I.2, we
have with probability at least 1− δ

‖Ω− ΩP ‖HS ≤
4

P
log

2

δ
+

√
2

P
log

2

δ
.

Substituting in the expression above we get the result of statement (i).

The proof of (ii) follows from Lemma 9 in Rudi & Rosasco (2017).

Combining bounds on term(A), term(B), term(C) and term(D) Here, we combine the results
of Lemmas H.1, H.3, H.5 and H.6 to bound ‖f̂P − fπ‖πx . We get the following theorem.
Theorem H.8. For the two classes of kernels with λ ≤ 3

4‖K‖, the following is satisfied with prob-
ability at least 1− δ

1. For the GIP kernel, with

N ≥ max
{72κ2

λ
,

2λ

9

}
log

32κ2

λ · δ
and with

P ≥ max
{

8,
512π2G2

‖K‖2
,

288π2G2

λ2

}
log

16

δ
,

we have

‖f̂P − fπ‖πx ≤
√

216R2 · κ4

λ ·N
log

16

δ
+

√
32π2R2 ·G2

λ · P
log

16

δ
+R ·

√
λ.

2. For the RF kernel, with

N ≥ max
{72κ2

λ
,

2λ

9

}
log

32κ2

λ · δ
and with

P ≥ max

{
8κ2,

32κ2

‖K‖2
,

2λ

9
,

72κ2

λ
,

2(λ+ κ2)2

9κ2

}
log

128κ2

λ · δ
,

we have

‖f̂P − fπ‖πx ≤
√

216R2 · κ4

λ ·N
log

16

δ
+

√
32R2 · κ2

P
log

128κ2

λ · δ
+R ·

√
λ.
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Finally, using the above Theorem H.8 and (34), we bound the generalization error.
Theorem H.9. For the two classes of kernels with λ ≤ 3

4‖K‖, the following is satisfied with prob-
ability at least 1− δ

1. For the GIP kernel, with

N ≥ max
{72κ2

λ
,

2λ

9

}
log

32κ2

λ · δ
and with

P ≥ max
{

8,
512π2G2

‖K‖2
,

288π2G2

λ2

}
log

16

δ
,

we have

L(f)− inf
h∈H
L(h) ≤ 648R2 · κ4

λ ·N
log

16

δ
+

96π2R2 ·G2

λ · P
log

16

δ
+ 3R2 · λ.

2. For the RF kernel, with

N ≥ max
{72κ2

λ
,

2λ

9

}
log

32κ2

λ · δ
and with

P ≥ max

{
8κ2,

32κ2

‖K‖2
,

2λ

9
,

72κ2

λ
,

2(λ+ κ2)2

9κ2

}
log

128κ2

λ · δ
,

we have

L(f)− inf
h∈H
L(h) ≤ 648R2 · κ4

λ ·N
log

16

δ
+

96R2 · κ2

P
log

128κ2

λ · δ
+ 3R2 · λ.

Finally, we choose the parameters to get the result of Theorem 4.3.

Choosing parameters: Here, we optimally choose the parameters λ, P , N such that all the
conditions in Theorem H.8 and H.9 are satisfied and the proposed approximation approach achieves
the (minimax) optimal generalization performance.

• GIP kernel: For the GIP kernel, we choose the parameters as follows:

– Regularization parameter: λ = 1/
√
N .

– Number of overall samples:

N ≥ max

{
4

3‖K‖2
, 72κ2 ·

√
N · log

32κ2 ·
√
N

δ

}
– Number of bits communicated:

P ≥ max
{

8,
512π2G2

‖K‖2
, 288π2G2 ·N

}
log

16

δ

• RF kernel: For the RF kernel we choose the parameters as follows:

– Regularization parameter: λ = 1/
√
N .

– Number of overall samples:

N ≥ max

{
4

3‖K‖2
, 72κ2 ·

√
N · log

32κ2 ·
√
N

δ

}
– Number of real values communicated:

P ≥ max

{
8κ2,

32κ2

‖K‖2
, 72κ2 ·

√
N

}
log

128κ2 ·
√
N

δ

Now with the above choice of parameters we have Theorem 4.3 stated beolw.
Theorem H.10. With the choice of parameters stated above, we have with probability at least 1− δ
for both the GIP and RF kernels that

L(f)− inf
h∈H
L(h) = O

(
1√
N

)
.
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I CONCENTRATION INEQUALITIES

Proposition I.1. For x1, . . . , xN , a sequence of zero-mean i.i.d. random variables with xi ∈ R for
all i ∈ [N ]. If there exists T, S ∈ R s.t. xi ≤ T a.s. and Ex2

i ≤ S for all i ∈ [N ]. Then with
probability at least 1− δ we have

1

N

N∑
i=1

xi ≤
2T log 1

δ

3N
+

√
2S log 1

δ

N
.

Proposition I.2. For x1, . . . , xN , a sequence of i.i.d. random vectors on a separable Hilbert space
H. Assume µ = Exi and let σ,B ≥ 0 s.t.

E‖xi − µ‖pH ≤
1

2
p!σ2Bp−2 ∀p ≥ 2,

for any i ∈ [N ]. Then we have with probability at least 1− δ∥∥∥∥ 1

N

N∑
i=1

xi − µ
∥∥∥∥
H
≤

2B log 2
δ

N
+

√
2σ2 log 2

δ

N
.

Proposition I.3. Let F be a separable Hilbert space and let X1, . . . , XN be a sequence of i.i.d.
self-adjoint positive random operators on F . Assume that E[Xi] = 0 and λmax(Xi) ≤ T a.s. for
some T > 0 for all i ∈ [N ]. Let S be such that E(Xi)

2 ≤ S. Then with probability at least 1 − δ
we have

λmax

(
1

N

N∑
i=1

Xi

)
≤ 2Tβ

3N
+

√
2‖S‖β
N

,

with β = log 2TrS
‖S‖·δ .

J SUFFICIENT CONDITION FOR POSITIVE DEFINITE GIP KERNEL

Assumption 6. We assume that there exists a mapping from {xi, . . . , xN} 7→ {x̃i, . . . , x̃N} with
xi ∈ Rd and x̃i ∈ RD for some D ∈ N such that the following is satisfied:

1. ‖x̃i‖ = ‖xi‖ for all i ∈ [N ].

2. ψ(x̃i, x̃j) = ψP (xi, xj) for all i, j ∈ [N ] where ψP (xi, xj) is defined in (8).

The above assumption implies that there exists a mapping that transforms the feature vectors such
that their norms are preserved and the pairwise angles between the transformed set of vectors are
same as the approximated angles for the GIP kernel (cf. (8)).
Proposition J.1. Under Assumption 6, the kernel KP approximated using (7) for the GIP kernel is
positive semi-definite.

Proof. From the definition of the approximated GIP kernel (7) and Assumption 6, we have
kP (xi, xj) = g(ψP (xi, xj), ‖xi‖, ‖xj‖) = g(ψP (x̃i, x̃j), ‖x̃i‖, ‖xj‖) = k(x̃i, x̃j).

Using the above fact, we have for the approximated GIP kernel for any vector v ∈ RN

vTKP v =

N∑
i,j=1

[v]i[v]jkP (xi, xj)

=

N∑
i,j=1

[v]i[v]jk(x̃i, x̃j)

(i)
=

〈 N∑
i=1

[v]iφ(xi),

N∑
j=1

[v]jφ(xj)

〉

=

∥∥∥∥ N∑
i=1

[v]iφ(xi)

∥∥∥∥ ≥ 0,

37



Published as a conference paper at ICLR 2022

where (i) follows from Mercer’s theorem, i.e., for positive definite kernel k, there exists φ(·) such
that k(xi, xj) = 〈φ(xi), φ(xj)〉. Moreover, we used the fact that the GIP kernel k is well defined
irrespective of the dimension of the feature vectors.

Therefore, we have the proof.

38


	Introduction
	Problem Statement
	The Proposed Algorithms
	Multi-agent kernel approximation
	The decentralized optimization step

	Main Results
	Experiments
	Additional Experiments
	Relevant Literature
	Neural tangent kernel
	An algorithm based on decentralized gradient tracking (DGT)
	Testing algorithm for decentralized kernel regression
	Notations
	Optimization performance of multi-agent kernel approximation framework: Proof of Theorem 4.2
	Generalization performance of multi-agent kernel approximation framework: Proof of Theorem 4.3
	Concentration inequalities
	Sufficient condition for positive definite GIP kernel

