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ABSTRACT

Closed-source language models such as GPT-4 have achieved remarkable per-
formance. Recently, many studies have focused on enhancing the capabilities
of smaller models, through knowledge distillation (KD) on those closed-source
language models. However, due to the inability to directly access the closed-
source language model’s output distribution, KD methods can currently only be
performed using one-hot labels, which hinders the effectiveness of KD. To ad-
dress this limitation, we propose a Bayesian estimation-based knowledge distil-
lation method. Specifically, our method comprises prior estimation and posterior
estimation. The prior estimation obtains a prior distribution by leveraging the
corpus generated by the closed-source language model. The posterior estimation
updates the prior distribution to obtain a posterior distribution, based on continued
sampling results. Then we utilize the prior and posterior distributions for distilla-
tion. Experimental results showcase that, in the context of KD for closed-source
language model, our method outperforms the current KD methods that directly
fine-tune on the one-hot labels.

1 INTRODUCTION

While closed-source large language models (LLMs) such as GPT-3.5 and GPT-4 have shown great
superiority over open-source counterparts like LLaMA(Touvron et al., 2023) and Falcon(Penedo
et al., 2023), they can only be accessed via API calls and allow limited customization and trans-
parency. One way to address this problem is to transfer their capabilities to open-source language
models, typically smaller in size, by prompting closed-source LLMs to generate samples that reflect
their capabilities and fine-tuning open-source language models on the generated one-hot labels.

Knowledge distillation (KD) (Hinton et al., 2015) is an effective technology that aims to obtain a
small but strong student model by distilling knowledge from a large teacher model. The objective
function in Hinton et al. (2015) involves calculating the Kullback-Leibler (KL) divergence between
the output distributions of the teacher model and the student model. By minimizing the KL diver-
gence, the student model is able to mimic the behavior and learn the intrinsic knowledge of the
teacher model. However, many current methods (Hsieh et al., 2023; Jiang et al., 2023; Ho et al.,
2022) that perform KD on the closed-source LLMs involves solely fine-tuning student model on
one-hot labels generated by the teacher model, as illustrated in Figure1. In contrast to using out-
put distribution (soft labels) to compute KL divergence, transferring deeper and more fundamental
knowledge from teacher model to student model is constrained when relying solely on fine-tuning
with one-hot labels. This represents a limitation in current KD methods for closed-source LLMs.

To address this limitation, we propose Bayesian estimation-based knowledge distillation to perform
effective knowledge distillation on closed-source language model (LM). Our method first estimates
the inaccessible output distribution (referred as to latent distribution) of closed-source LM, and then
performs KD on the estimated distribution. Our approach comprises two main components: prior
estimation and posterior estimation. (1) The prior estimation is designed to estimate the latent dis-
tribution by leveraging corpus generated by the closed-source LM. Our hypothesis is that within
the generated corpus, there are underlying patterns that characterize the latent distribution. Through
prior estimation, a prior distribution that approximates the latent distribution can be obtained. (2)
By continuously sampling from a proxy of the closed-source LM, posterior estimation derives a
posterior distribution to approximate the latent distribution. Then we perform KD on these esti-
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Figure 1: (a) In knowledge distillation of closed-source models, only one-hot labels (hard labels)
can be obtained. (b) In knowledge distillation of open-source models, output distributions (soft
labels) can be obtained. (c) Our method obtains estimated soft labels from closed-source models
by leveraging a proxy model. (d) Compared to hard labels, soft labels allow students to learn more
profound knowledge by guiding them to learn from multiple valid targets.

mated distributions. The utilization of the estimated distributions enables student model to tap into
more profound and essential aspects of the closed-source teacher model’s knowledge during distil-
lation process. It fosters a more comprehensive and insightful learning experience compared to the
previous closed-source KD paradigm relying solely on one-hot labels.

We conduct extensive experiments with LLaMA (Touvron et al., 2023) across various representa-
tive benchmarks, such as BBH(Suzgun et al., 2022), AGIEval(Zhong et al., 2023), ARCClark et al.
(2018), MMLU(Hendrycks et al., 2021), CSQA(Talmor et al., 2019) and GSM8K(Cobbe et al.,
2021). In the context of KD for closed-source LM, the empirical results demonstrate the effec-
tiveness of our method over directly fine-tuning on the one-hot labels. For example, our method
achieves an average accuracy improvement across the six benchmarks from 36.31% to 39.43% with
LLaMA-7B, over methods that solely fine-tune on one-hot labels. These findings provide com-
pelling evidence of the effectiveness of the proposed method.

2 RELATED WORK

The concept of knowledge distillation (KD) was originally introduced by Hinton et al. (2015) with
the aim of transferring the knowledge from a teacher model to a smaller student model. This knowl-
edge transfer is achieved by minimizing KL divergence between output distributions of the teacher
model and the student model. Current KD methods can be categorized into two primary types:
knowledge distillation for open-source models and knowledge distillation for closed-source models.

2.1 OPEN-SOURCE KNOWLEDGE DISTILLATION

Knowledge distillation was first applied to distilling open-source models. For instance, Sanh et al.
(2019) applies KD to the pre-training process of BERT (Devlin et al., 2019), yielding smaller models
with minor performance drops. Jiao et al. (2020) allows the student model’s intermediate features to
mimic the teacher model’s intermediate features, by minimizing the Mean Squared Error (MSE) loss
function. Other approaches, such as the one proposed by Gu et al. (2023), focus on distilling open-
source generative language model like LLaMA. Additionally, Park et al. (2019) leverages sample-
wise relative information within the teacher model to perform knowledge distillation on ResNet (He
et al., 2016). Mirzadeh et al. (2019) introduces an intermediate network to bridge the parameter size
gap between the CNN teacher model and the CNN student model. However, it’s important to note
that in all these methods, the student model needs access to the internal features or parameters of the
teacher model, which is not feasible in the context of distilling closed-source LM.

2.2 CLOSED-SOURCE KNOWLEDGE DISTILLATION

Given the outstanding performance of current SOTA closed-source LLMs like GPT-3.5 and GPT-
4, many studies have shifted their focus towards transferring knowledge from these closed-source
LLMs into smaller models. Some approaches, such as Hsieh et al. (2023); Ho et al. (2022); Mukher-
jee et al. (2023) utilize rationales generated by closed-source LLMs as training data. They then
perform fine-tuning on these generated rationales to transfer the teacher model’s reasoning abilities
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Notations Descriptions

C Corpus generated by the closed-source language model
V Vocabulary of language model
M Proxy model
I Input instruction
wt The tth response token, wt ∈ V
Qwt Probability Pr(wt|wt−1, . . . , w1, I) in the student model
P ∗
wt

Probability Pr(wt|wt−1, . . . , w1, I) in the closed-source model
Pwt

Random variable associated with the value of P ∗
wt

Y Discrete random event, Y ∈ {0, 1}
fWt

(Pwt
) Probability dense function of Pwt

fWt|Y (Pwt
|Y ) Conditional probability dense function of Pwt

given event Y
E(Pwt) Prior probability
E(Pwt

|M) Posterior probability

Table 1: Notations and descriptions.

into the student model. To enhance the student’s capabilities, Jiang et al. (2023), for instance, iden-
tifies challenging samples and has the closed-source teacher generate more to fine-tune the student.

However, in the context of knowledge distillation for closed-source LM, most existing methods stop
at fine-tuning on the teacher-generated one-hot labels. Our work, on the other hand, focuses on dis-
tilling knowledge from the closed-source LM more efficiently by estimating the latent distribution.
We achieve this by introducing Bayesian estimation-based methods to soften the one-hot labels pro-
vided by the closed-source teacher. We enhance the effectiveness of knowledge transferring from
the closed-source teacher model to the student model, by minimizing the KL divergence between
the output distribution of the student model and the estimated output distribution.

3 METHOD

We present Bayesian estimation-based knowledge distillation to enhance the efficiency of knowledge
distillation for closed-source LM.

3.1 PROBLEM STATEMENT

In this section, we first provide notations in Table 1. We consider a language model with vocabulary
V, takes an instruction I as input and generates response tokens w1, w2, w3 . . . as output. At time
t, the probability of generating token wt can be represented as Pr(wt|wt−1, . . . , w1, I). We refer
the distribution as the probabilities Pr(wt|wt−1, . . . , w1, I) encompassing all words within vocab-
ulary V. Let P ∗

wt
be the probability Pr(wt|wt−1, . . . , w1, I) in closed-source LM, then token-level

objective function of KD for the closed-source LM at time t can be derived as follows:

Lkl
t =

∑
wt∈V

P ∗
wt

log
P ∗
wt

Qwt

(1)

Where the Qwt
is the probability Pr(wt|wt−1, . . . , w1, I) in student model. Due to the inaccessibil-

ity of P ∗
wt

, this objective function degrades to computing cross entropy with one-hot labels, which
might limit the performance of KD. To this end, our goal is to estimate a probability to approxi-
mate the P ∗

wt
(referred to as latent probability). Subsequently, we perform KD on the estimated

probabilities. The overall architecture of our method is shown in Figure 2.
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Figure 2: Overview of our method. We first obtain prior distribution through the prior estimation.
Then in the posterior estimation, the prior distribution is updated through iterative sampling from
a proxy of the closed-source LM. The final objective function involves three targets: one-hot label,
prior distribution, and posterior distribution.

3.2 ESTIMATION METHODS

3.2.1 PRIOR ESTIMATION

In this section, we elaborate on the proposed prior estimation method. The prior estimation aims to
estimate a probability to approximate the latent probability P ∗

wt
at each time step t. Given sequence

(w′
t, w

′
t−1, . . . , w

′
1, I), the prior estimation aims to inform, at time step t, a high probabilities for

the student model to generate the ground-truth token w′
t while still allowing for some probability

of other valid tokens. Given corpus C generated by the closed-source LM, for a specific sequence
(w′

t, w
′
t−1, . . . , w

′
1, I) ∈ C, and for ∀wt ∈ V, if wt = w′

t, then the value of Pr(wt|w′
t−1, . . . , w

′
1, I)

can be computed as:

pwt =
#(wt, w

′
t−1, . . . , w

′
t−n)

γ#(w′
t−1, . . . , w

′
t−n)

+
γ − 1

γ
(2)

If wt ̸= w′
t, then the value of Pr(wt|w′

t−1, . . . , w
′
1, I) can be computed as:

pwt
=

#(wt, w
′
t−1, . . . , w

′
t−n)

γ#(w′
t−1, . . . , w

′
t−n)

(3)

Where the # represents the count of a particular response tokens sequence appears in C. The n is the
window size. The γ is a hyperparameter, γ ∈ Z+. The γ is used to adjust the dominant probability
contribution of the ground-truth token w′

t. For instance, when γ = 2, term γ−1
γ ensures that the

probability Pr(w′
t|w′

t−1, . . . , w
′
1, I) of generating ground-truth token w′

t is greater than 50%.

An assumption behind the prior estimation is that language models typically generate the next token
with a strong association to the most recent preceding tokens. Through Equation 2 and Equation
3, we obtain a scalar probability value pwt

. We consider the value of P ∗
wt

as a continuous random
variable denoted as Pwt

, Pwt
∈ [0, 1], with probability density function fWt

(Pwt
). The fWt

(Pwt
)

can be predefined in a way that the expected value of Pwt
is equal to the previously computed

scalar pwt
. Then a prior probability for approximating the latent probability P ∗

wt
can be obtained by

calculating the expectation of Pwt (replace Pwt with x):
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E(Pwt
) =

∫ 1

0

xfWt
(x)dx = pwt

(4)

3.2.2 POSTERIOR ESTIMATION

The posterior estimation is based on the prior estimation to estimate P ∗
wt

. Specifically, the posterior
estimation involves continued sampling from the closed-source LM. An intuitive idea is that, given
a sampled token ŵt and a target token wt, if the sampling results in ŵt = wt, the probability of
generating wt should be increased; on the other hand, if the sampling results in ŵt ̸= wt, then the
probability of generating wt should be decreased. A discrete random event Y is defined as follows:
In a sampling round of the closed-source LM, given input sequence (wt−1, . . . , w1, I) and a target
token wt, if the sampled token ŵt = wt, then Y = 1; otherwise, Y = 0.

In practice, we achieve this by introducing an open-source language model M as a proxy of the
closed-source model. The M is first fine-tuned on the corpus C for preliminary alignment. We feed
the sequence (wt−1, . . . , w1, I) into M to sample a generated token ŵt at time t. In a sampling
round, we update the prior probability dense function fWt(Pwt) based on the event Y . If Y = 1
occurs, according to Bayes’ theorem:

fWt|Y (Pwt |Y = 1) ∝ Pr(Y = 1|Pwt)fWt(Pwt) = PwtfWt(Pwt) (5)

Where fWt|Y (Pwt
|Y = 1) is the posterior probability dense function conditioned on event Y = 1.

Then, we integrating over PwtfWt(Pwt) to get a normalization factor η:

η =

∫ 1

0

xfWt(x)dx (6)

Then the value of fWt|Y (Pwt
|Y = 1) can be calculated as fWt|Y (Pwt

|Y = 1) = 1
ηPwt

fWt
(Pwt

).
In a sampling round, if event Y = 0 occurs instead, according to Bayes’ theorem:

fWt|Y (Pwt |Y = 0) ∝ Pr(Y = 0|Pwt)fWt(Pwt) = (1− Pwt)fWt(Pwt) (7)

Where fWt|Y (Pwt
|Y = 0) is the posterior probability dense function conditioned on event Y = 0.

Similarly, we integrating over (1− Pwt)fWt(Pwt) to get the normalization factor η:

η =

∫ 1

0

(1− x)fWt(x)dx (8)

Then the value of fWt|Y (Pwt
|Y = 0) can be calculated as fWt|Y (Pwt

|Y = 0) = 1
η (1 −

Pwt
)fWt

(Pwt
). The sampling process for M typically involves multiple iterations, where posterior

probability density function fWt|Y (Pwt
|Y ) of each round will update the prior probability density

function fWt
(Pwt

) for the next round. And we define fWt
(Pwt

) in the first round as the probability
density function obtained through prior estimation. We denote the final posterior probability dense
function as fWt|M(Pwt

|M). Then a posterior probability for approximating the latent probability
P ∗
wt

can be obtained by calculating the conditional expectation:

E(Pwt
|M) =

∫ 1

0

xfWt|M(x|M)dx (9)

3.3 OVERALL OBJECTIVE

The overall objective function at time step t comprises three objectives. Let 1wt
be the one-

hot label, the first objective at time step t can be derived by calculating the cross entropy as
Lce
t = −

∑
wt∈V 1wt

logQwt
. The second objective at time step t can be derived based on the prior
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estimation as Lkl
t =

∑
wt∈V E(Pwt

) log
E(Pwt )

Qwt
. We first normalize E(Pwt

|M) =
E(Pwt |M)∑

w′
t∈V E(Pw′

t
|M) ,

then the third objective at time step t can be derived based on the posterior estimation as Lkl
t|M =∑

wt∈V E(Pwt
|M) log

E(Pwt |M)

Qwt
. Given a sequence with length T , the overall objective function

can be derived as follows:

L =
1

T

T∑
t=1

(Lce
t + αLkl

t + βLkl
t|M) (10)

Where the α and β are hyperparameters used to adjust the contributions of the Lt and Lt|M in the
total loss. When α = 0 and β > 0, the student model does not learn from the prior distribution. And
the student model does not learn from the posterior distribution when α > 0 and β = 0.

4 EXPERIMENTAL SETUP

In this section, we setup a series of experiments to test the distilled models’ capabilities on various
benchmarks. These benchmarks assess the model across wide range of capabilities including reading
comprehension, commonsense knowledge, mathematical skills and logical reasoning.

4.1 DATASETS

We utilize the OpenOrca(Mukherjee et al., 2023) dataset as our training corpus. The OpenOrca
dataset is a collection of FLAN(Longpre et al., 2023) data augmented by closed-source LLMs like
GPT-4 and GPT-3.5. Following the settings in OpenOrca-Preview1-13B1 of paper Mukherjee et al.
(2023), and consider time efficiency, we conduct training on a subset of the original corpus contain-
ing 200k instances. We also utilize the Alpaca(Taori et al., 2023) dataset as an additional experi-
mental configuration.

We utilize benchmarks including BBH(Suzgun et al., 2022), AGIEval(Zhong et al., 2023),
ARC(Challenge)(Clark et al., 2018), MMLU(Hendrycks et al., 2021), CSQA(Talmor et al., 2019)
and GSM8K(Cobbe et al., 2021) for evaluation. Following the settings of Mukherjee et al. (2023),
we focus on datasets that involve multiple-choice questions. For all datasets, we conduct evaluation
under zero-shot setting without any exemplars and without any CoT(Wei et al., 2022).

4.2 BACKBONE MODELS

We employ currently state-of-the-art closed-source LLMs GPT-4 as well as text-davinci-003 as the
closed-source teacher models. We utilize LLaMA-7B and LLaMA-13B as student models, which
are initialized with pre-trained weights obtained from Hugging Face2. We choose LLaMA-33B as
the proxy model. We employ top-p sampling for decoding. We train our models on 8 32GB V100
GPUs. To accelerate training, we leverage LoRA (Hu et al., 2021). Additional details can be found
in Appendix A.

4.3 BASELINES

We consider instruction fine-tuning (IFT) approach as our baseline. For baseline models, to ensure
a fair comparison, we only consider models that have access to their original fine-tuning datasets.
Therefore we select OpenOrca-Perview1-13B from Mukherjee et al. (2023) and Alpaca (Taori et al.,
2023) as our baseline models. In addition, we also train our own version of baseline models.

5 RESULT AND ANALYSIS

In this section, we present the main results, ablation studies and additional experiments. All corpus
for proxy model fine-tuning, prior estimation, posterior estimation, and student distillation are iden-

1https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B
2https://huggingface.co/models
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Models #Params BBH AGIEval ARC MMLU CSQA GSM8K Average
GPT-4 - 67.4 56.4 - 86.4 - 92.0 -
LLaMA-7B (IFT) 7B 36.08 24.14 47.49 38.81 58.71 12.65 36.31
LLaMA-7B (ours) 7B 38.52 26.92 52.40 41.18 62.52 14.97 39.43
OpenOrca-Preview1-13B 13B 41.47 30.12 59.77 48.10 69.77 18.22 44.58
LLaMA-13B (IFT) 13B 42.77 26.74 58.2 45.3 66.27 20.93 43.37
LLaMA-13B (ours) 13B 44.83 29.35 61.84 48.17 68.94 23.36 46.08

Table 2: The results of the LLaMA models with different sizes on six benchmarks. We compare
our approach to methods directly instruction fine-tuning on the one-hot labels. The performance of
OpenOrca-Preview1-13B is assessed through our own evaluation. All student models are trained on
the OpenOrca dataset.

Models #Params BBH AGIEval ARC MMLU CSQA GSM8K Average
text-davinci-003 - 70.7 41.9 - 64.6 - - -
Alpaca-7B 7B 34.19 24.16 39.35 33.66 36.16 13.99 30.25
LLaMA-7B (ours) 7B 34.92 24.32 40.3 34.14 38.32 14.33 31.06
Alpaca-13B 13B 38.1 26.9 52.57 41.41 55.27 19.27 38.92
LLaMA-13B (ours) 13B 40.82 28.35 53.84 42.17 56.78 19.83 40.3

Table 3: The results of the LLaMA models with different sizes on six benchmarks. We compare
our method with Alpaca. All student models are trained on the Alpaca dataset.

tical. Unless otherwise specified, ”IFT” represents the baseline model that we have implemented
ourselves, and the default training corpus we utilize is OpenOrca.

5.1 MAIN RESULTS

Table 2 shows the performance comparison of our method against baseline models on the six bench-
marks. Detailed experimental results can be found in Appendix C. The training corpus we utilized in
this table is the OpenOrca dataset. Our method outperforms OpenOrca-Preview1-13B from Mukher-
jee et al. (2023) as well as our own implemented IFT models under both the 7B and 13B model
parameter scales. Table 3 shows the performance comparison between our method and Alpaca.
The training corpus we utilized in this table is the Alpaca dataset. It shows a similar trend, with
our method outperforming Alpaca. A case study in Table 4 demonstrates that our model exhibits
better comprehension and answer generation capabilities in terms of reasoning ability compared to
the baseline IFT model. The experimental results demonstrate that in the context of KD for closed-
source LM, distilling knowledge using the estimated soft labels through our method yields superior
results compared to directly using one-hot labels.

5.2 ABLATION STUDY

This ablation study examines the impact of components within our method. While retaining the
standard cross-entropy loss Lce

t , we evaluate the effect of using only the prior estimation (α > 0,
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Figure 3: Ablation results of LLaMA-7B across five representative benchmarks. In ”Distill-
ing+Prior” we adjust α = 0.5, β = 0, to investigate the effect of the prior estimation. In ”Dis-
tilling+Posterior” we adjust α = 0, β = 1, to investigate the effect of the posterior estimation. In
”Distilling+Prior+Posterior” we adjust α = 0.5, β = 1 to study combined effect of both.
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Instruction The fastest car was 1.25 times faster than the 2nd fastest car. The 2nd fastest car
was 5 times faster than the average car. The average car can go 120 Miles per hour.
How fast does the faster car go?

Ours The 2nd fastest car is 5 times faster than the average car, so it can go 5 x 120 = 600
Miles per hour. The faster car is 1.25 times faster than the 2nd fastest car, so it can
go 1.25 x 600 = 750 Miles per hour.
Therefore, the faster car goes 750 Miles per hour. ✓

IFT The faster car can go 1.25 x 5 = 60 Miles per hour.
Therefore, the faster car goes 60 Miles per hour. ×

Table 4: Examples from GSM8K dataset. Our method enhances the student model’s comprehension
and leads to more detailed responses compared to the IFT method.
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Figure 4: The comparison of knowledge distillation performance using the posterior distribution
under different sampling round settings, as well as the comparison with IFT, with the model utilizing
LLaMA-7B.

β = 0), and using only posterior estimation (α = 0, β > 0), and using both (α > 0, β > 0). We
select five representative benchmarks. All results are presented in Figure 3.

Effect of the prior estimation Compared to IFT, distilling on the prior distribution (Distill-
ing+Prior) can enhance the model performance. The results indicate that, in addition to guiding
the student towards learning from ground-truth token, informing the student model about other valid
tokens benefits the distillation. The consistent improvement over IFT suggests that the prior estima-
tion can capture these valid tokens that represent the capabilities of the teacher model.

Effect of the posterior estimation Compared to IFT, distilling on the posterior distribution (Dis-
tilling+Posterior) significantly boosts the performance. The improvement over ”Distilling+Prior”
indicates that, the sampling results from proxy model further refines the prior distribution. The
posterior distribution can provide more comprehensive information that is beneficial for distillation.

Combined effect of both As shown in Figure 3, we incorporate the prior distribution and the poste-
rior distribution into the distillation process (Distilling+Prior+Posterior). We observe that the effect
is similar to ”Distilling+Posterior”, with limited improvements seen on only a subset of the bench-
marks. We analyze the reason for this phenomenon is the posterior distribution already contains
the information from the prior distribution, the improvement gained from incorporating the prior
distribution is limited.
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Figure 5: Under different dataset sizes, we investigate the comparison of three methods: IFT, dis-
tilling on prior distribution (Distilling+Prior), and distilling on both prior and posterior distributions
(Distilling+Prior+Posterior), with the student model utilizing LLaMA-7B.
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5.3 IMPACT OF SAMPLING ROUNDS

In this section, we discuss the impact of the number of sampling rounds on posterior estimation.
The results are represented in Figure 4. We observe that the best performance is achieved on most
benchmarks when the sampling rounds falls within the range of [10,20]. Furthermore, excessive
sampling, such as 50 times, leads to a decline in performance. We analyze this phenomenon can be
attributed to the distribution discrepancy and prior distribution vanishing.

Distribution discrepancy We observe there exist discrepancies between the ground-truth one-hot
labels provided by the closed-source LM and the output distribution of the proxy model. Although
the proxy model has been aligned by fine-tuning on corpus C generated by the closed-source LM,
the token with the highest probability given by the proxy model at some positions is different from
the ground-truth token (For example, when the ground-truth label at the current position is ”\n”,
the proxy model assigns a high probability (e.g., 0.99) to ”<\s>”, while the probability of ”\n”
becomes close to 0), as elaborated in Appendix B.2. In this case, the inconsistency in distributions
may negatively impact the performance of the distillation.

Prior Distribution Vanishing In Bayesian estimation, there exists a phenomenon where the prior
distribution vanishing as the posterior estimation undergoes excessive iterations. In other words, the
impact of the prior distribution weakens with each successive iteration.

We analyze that in Figure 4, excessive sampling (e.g., 50 times) leads to the degeneration of the
posterior distribution into the proxy model’s output distribution, resulting in negative impact on the
performance of knowledge distillation. Therefore, it is important to control the number of samples
within a reasonable range. Based on our experimental results, we find that choosing a sampling
count between 10 and 20 works fine.

5.4 IMPACT OF CORPUS SIZE

We investigate the effect of training corpus C size, as shown in Figure 5. We observe that as the size
of the training corpus C increases, the method ”Distilling+Prior+Posterior” consistently outperforms
the performance of IFT across benchmarks. A similar trend can also be observed in the method
”Distilling+Prior”. We analyze that our method benefits from a larger corpus. As the corpus size
increases, it becomes more advantageous for the prior estimation to estimate a more accurate and
information-rich distribution, subsequently influencing the posterior estimation.

6 CONCLUSION

In this work, we address the challenge of knowledge distillation for closed-source language mod-
els, where directly access to the teacher’s output distribution is not available. We proposed Bayesian
estimation-based knowledge distillation to estimate the output distribution of closed-source language
models, enabling effective knowledge distillation. Our approach comprises two main components:
prior estimation and posterior estimation. The prior estimation involves obtaining a prior distribution
by leveraging the corpus generated by the closed-source language model. The posterior estimation
updates prior distribution based on continued sampling results from a proxy model. Extensive exper-
iments are conducted based on LLaMA. The results across various benchmarks consistently show
that our method outperforms directly fine-tuning on one-hot labels, when it comes to knowledge
distillation of closed-source language models.
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Models Batch Size Max Length Lora Rank #GPUs Precision Dimension #Heads #Layers
LLaMA-33B 1 512 96 8 float16 6656 52 60
LLaMA-13B 4 512 16 8 float16 5120 40 40
LLaMA-7B 6 512 16 4 float16 4096 32 32

Table 5: Model configurations.
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Figure 6: The issue of probability sparsity in the output distribution. A significant portion of proba-
bility values concentrates on a few tokens, while the probabilities for other tokens are close to zero.

A EXPERIMENTAL DETAILS

The model configurations are provided in Table 5. We train the student models for three epochs, ex-
perimenting with learning rates of 1e-5, 3e-5, and 5e-5 during training. In the knowledge distillation
process, we use the following hyperparameters: For the total loss, α = 0.5 and β = 1. For prior
estimation, we set γ = 3 and n = 5. For posterior estimation, we conduct 10 rounds of sampling.
We evaluate the models on the benchmarks using the final checkpoint.

B DISTRIBUTION ANALYSIS

B.1 PROBABILITY SPARSITY

During the distillation process, we observed a phenomenon of probability sparsity in the output
distribution of the proxy model. Typically, only a few tokens have high probabilities, while the
probabilities of other tokens are close to zero, as shown in Figure 6. In our distillation process,
we retained only the probabilities of the top ten tokens with the highest probabilities, setting the
probabilities of the remaining tokens to zero. This phenomena indicates that during the sampling
process of the proxy model, we don’t need to perform a large number of samples to cover all tokens
with non-zero probabilities.

B.2 DISTRIBUTION DISCREPANCY

We observe that as the number of sampling rounds increased, the model’s performance improved on
most benchmarks. However, when the number of sampling rounds becomes excessive, such as 50
rounds, the model’s performance started to decrease, as shown in Figure 4. We analyze that when the
number of sampling rounds becomes excessive, the posterior distribution tends to degenerate into
the proxy distribution. When directly using the proxy distribution for knowledge distillation, we
observe discrepancies between the proxy distribution and ground-truth labels (For example, when
the ground-truth label at the current position is ”\n”, the proxy distribution assigns a high probability
(e.g., 0.99) to ”<\s>”, while the probability of ”\n” becomes close to 0.), which can lead to issues
in distillation. More cases are shown in Figure 7.
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One-Hot Label

Proxy Distribution

Posterior Distribution

Figure 7: Discrepancies between the the ground-truth distribution and the output distribution of
proxy model (proxy distribution) in terms of the top-4 token, while the posterior distribution can
stay consistent with the ground-truth distribution.
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Figure 8: The change in performance of distilling on the posterior distribution (Distilling+Posterior)
with the fine-tuning epochs of the proxy model. We utilize LLaMA-7B as the student model, and
LLaMA-33B as the proxy model.

C EXPERIMENTAL RESULTS

The detailed experimental results for the LLaMA model on BBH, AGIEval, and MMLU bench-
marks are presented in Table 8, Table 7 and Table 9. We also conducted experiments on the
FlanT5(Longpre et al., 2023) model using the OpenOrca dataset, and the results are shown in the
Table 6. We find that, compared to the IFT method, our approach does lead to some improvement,
although the improvement is limited. We speculate that this might be because FlanT5 is a model
that has been fine-tuned with instructions, and its original model already had some basic capabilities
for these tasks. Therefore, the additional training results in limited improvement.

We also investigated the impact of continuous fine-tuning of the proxy model on the OpenOrca
corpus, as shown in the Figure 8. We find that as the number of epochs for fine-tuning the proxy
model increases, it leads to a decrease in the performance of posterior estimation. We speculate that
this may be due to the proxy model overfitting to the current corpus, resulting in a decrease in the
effectiveness. During training, we avoid excessive fine-tuning epochs for the proxy model.
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Models #Params BBH AGIEval ARC MMLU CSQA GSM8K Average
GPT-4 - - 56.4 - 86.4 - 92.0 -
FlanT5-large (IFT) 780M 34.63 28.12 46.44 39.41 76.78 4.54 38.32
FlanT5-large (ours) 780M 35.22 28.84 46.61 39.34 76.93 4.71 38.61
FlanT5-xl (IFT) 3B 38.47 28.34 59.6 46.91 84.79 6.12 44.04
FlanT5-xl (ours) 3B 39.51 30.1 60.12 46.78 85.38 7.1 44.83

Table 6: The results of the FlanT5 models with different parameter sizes on the six benchmarks. We
compare our method with IFT.

Models #Params AQuA-RAT LogiQA LSAT-AR LSAT-LR SAT-English
(w/o Psg.) SAT-Math Average

LLaMA-7B (IFT) 7B 19.71 26.81 18.22 27.44 30.35 22.29 24.14
LLaMA-7B (ours) 7B 22.39 29.68 19.46 33.33 30.46 26.19 26.92
LLaMA-13B (IFT) 13B 18.61 27.59 17.7 34.58 36.27 25.7 26.74
LLaMA-13B (ours) 13B 25.22 29.63 19.65 36.67 33.5 31.43 29.35

Table 7: Performance comparison in AGIEval benchmark on the selected multiple-choice English
questions. We use OpenOrca dataset as training corpus.

Tasks LLaMA-13B (IFT) LLaMA-13B (ours) LLaMA-7B (IFT) LLaMA-7B (ours)
Boolean Expressions 58.8 62.4 65.06 66.4

Causal Judgement 61.27 63.01 56.98 61.85
Date Understanding 50.0 54.02 49.3 49.26
Disambiguation QA 56.8 60.0 49.4 54.8

Formal Fallacies 56.4 54.4 54.0 54.0
Geometric Shapes 25.2 23.6 12.42 22.4

Hyperbaton 63.6 66.8 49.2 54.8
Logical Deduction (5 objects) 33.8 36.14 26.51 30.96
Logical Deduction (3 objects) 23.39 30.12 18.7 18.11
Logical Deduction (7 objects) 44.2 51.6 42.17 42.8

Movie Recommendation 77.59 79.32 50.78 53.42
Navigate 51.6 56.8 45.6 55.2

Penguins in a Table 32.61 36.11 30.58 34.91
Reasoning about Colored Objects 39.6 42.8 27.54 30.33

Ruin Names 36.4 33.8 15.2 14.8
Salient Translation Error Detection 31.6 37.2 24.0 28.4

Snarks 48.31 52.25 43.82 45.7
Sports Understanding 60.8 60.4 56.0 55.6
Temporal Sequences 17.28 11.2 13.49 9.68

Tracking Shuffled Objects (5 objects) 19.46 21.1 17.2 17.74
Tracking Shuffled Objects (7 objects) 14.63 17.17 11.98 14.8
Tracking Shuffled Objects (3 objects) 37.5 36.02 33.9 32.52

Average 42.77 44.83 36.08 38.52

Table 8: Zero-shot performance comparison in Big-Bench Hard benchmark on multiple-choice
questions.

Models #Params Humanities Other Social Sciences STEM Average
LLaMA-7B (IFT) 7B 38.49 44.63 40.24 31.87 38.81
LLaMA-7B (ours) 7B 41.4 47.32 42.17 33.82 41.18
LLaMA-13B (IFT) 13B 46.02 53.19 48.24 33.91 45.34
LLaMA-13B (ours) 13B 47.81 56.7 51.36 36.79 48.17

Table 9: Performance comparison on the Massive Multitask Language Understanding benchmark.
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